k)
(J
.. Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2025 SCPE. Volume 26, Issues 3, pp. 1092-1103, DOI 10.12694 /scpe.v26i3.4108

ENHANCING SECURITY OF CLOUD DATA USING CRYPTOGRAPHIC ALGORITHM
BASED ON PFECCRS

AMRUTA GADAD*AND DEVI Af

Abstract. A web-based cloud computing application is basically used to save data with a view of accessing it from anywhere
at any time. After analyzing the literature review, it is known that the work for cloud data security is either maintaining the
security level or increasing the transmission speed of plain text of cloud, but failed to prove both security level as well as data
transmission speed of cloud from one end to another end. Hence, to strengthen the data security of cloud and also to improve
the data transmission speed, an integration of encoding, compression and cryptographic algorithms is important. An encoding
technique of Prime Factorization (PF) for changing the original plain text into an intermediate plain text as encoded plain text
followed by compression technique of Run Length Encoding (RLE) to reduce the file size so that the transmission speed of encoded
message will be increased as well as the compression ratio will be higher and finally the Dynamic RSA algorithm is pertained to
intensify the security by converting the compressed message into cipher text wherein Integrated Compressed Cryptosystem (ICC)
and hence Prime Factorization Encoded Compressed Cryptosystems (PFECCRS) is proposed. The comparative analysis proved
that the proposed methodology has increased the security level to 99.25%.

Key words: Prime Factorization, Encoding, Compression, Run Length Encoding, Encryption, Dynamic RSA.

1. Introduction. Cloud computing, a carriage of all computing assistance such as a carrier of software,
servers majorly the databases, where each and every human try to save their data on this carriage. The
security of this service carrier should be of prime concern to protect it from unauthorised users who may
try to alter, destroy or misuse the data. The protection of all forms of cloud data can be done with the
help of different concepts of cryptography, combination of compression and cryptography, or combining any
mathematical encoding, compression and cryptography. The care must be taken that the data must be secured
from several types of attacks such as phishing, replay attacks, cycle attack, fraudulent transactions, data
stealing and many more [1]. A data is secured by converting the plain text into an unintelligible form of
coded message and this process is called encryption. Transforming the cipher text back to original text is
called decryption. The integrated process of encryption and decryption is known as cryptography. There are
many cryptographic algorithms being used which are classified based on the type of key used. The usage of
both public key and private key is known as asymmetric cryptography and only a single private key is said as
symmetric cryptography. Symmetric-key encryption is the process where the plain text is converted into the
non-readable text by using anyone of the symmetric-key encryption algorithm [2]. The converted non readable
text is again decrypted back to the original plain text using the identical symmetric-key. Similarly asymmetric
encryption is the process where the plain text is converted into the cipher text by using two separated keys
basically known as public key and private key. The public key is used to convert the original plain text into the
cipher text during the transfer from sender to receiver and private key is used during decryption i.e., converting
the coded text message back to the original plain text [3].

Many different approaches are analysed to convert the plain text into encoded message using both public
key and private key techniques, similarly there are different methodologies for compression, this compression
helps in reducing the file size which furthers reduces the transmission speed and required storage space for
file. There are mainly two approaches of compression lossless and lossy compression techniques. The lossless
compression technique is best approached for text data and lossy works for image and other types of data. [4]
Researchers have also showed how the different compression algorithms have also worked efficiently for cloud
datal5].

*School of Computer Science and Applications, REVA University, Bangalore, India
tSchool of Computer Science and Applications, REVA University, Bangalore, India

1092



Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1093

Continuing further the document is structured into following sections. Background and related work are
explained in section 2. Section 3 explains the relevant mathematical work used in this methodology. The
proposed technique of Prime Factorization Encoded Compressed Cryptosystems (PFECCRS) is explained in
section 4 and continued its illustration with an example in section 5. The experimental results of the same are
discussed in section 6. Finally, section 7 ends up with conclusion.

2. Background and Related Work. The most widely used symmetric-key algorithms for data security
are the stream cipher and block cipher algorithms. A stream cipher typically works on smaller units of plain-
text, usually bits or bytes, whereas a block cipher symmetric-key algorithm converts a fixed length block of
plaintext data into a block of ciphertext data of the same length The authors proposed the encoded compressed
cryptosystems to improve the security level along with encoding using the Lucas and Fibonacci number systems
and proved the security level to be 94.4% for 16MB files after Huffman compression and dynamic RSA [6]. The
most commonly and strongly used symmetric algorithms are Advanced Encryption Standards (AES), Data
Encryption Standards (DES) and many more [7,8]. Similarly, the asymmetric algorithms that are frequently
used are Rivest-Shamir-Adleman (RSA), Elliptic Curve Cryptography (ECC) and some more [9]. The major
functions used to analyse the strength of all the cryptographic algorithms are confidentiality, data integrity,
security, authentication and non-repudiation.

As cryptography plays a vital role in data security similarly compression algorithms are also used to increase
the transmission speed from one end to other end and then the encoding methods are used to convert the plain
text into intermediate plaintext, to protect data from the hackers. The different compression algorithms that
are widely used for data security are Huffman coding, RLE, Arithmetic encoding, Burrows wheeler transform
(BWT) and many other algorithms resulting in good compression ratio by reducing the storage space and
increasing the transmission speed [3]. These algorithms are classified as lossless and lossy data compression
algorithms. The intermediate plain text can also be formed by different encoding algorithms such as Binary
Number Systems, Fibonacci Series Lucas Series, two dimensional matrices and many others which helped to
increase the security level of all the designed methodology [6,7,10].

Wid Akeel Awadh, Ali Salah Alasady, Mohammed S Hashim [13] proposed a multilayer data security
model where the authors concentrated on merging the cryptographic and compression algorithm and further
added a steganographic approach to enhance the security. AES-256 using RSA for encryption followed by
Brotli compression and finally the LSB steganography technique ensured to achieve confidentiality, privacy,
and integrity of the data. Sunday Adeola Ajagbe, Oluwashola David Adeniji, Adedayo Amos Olayiwola, Seun
Femi Abiona [14] here the authors focused on AES based text encryption for NFC using Huffman Compression
algorithm. AES was implemented in both ECB and CBC cipher-modes to compare performance, focusing
on the time required for encryption. They mainly concentrated on implementing intrusion mitigation system
to prevent interference in communication levels and integration with other security measures like multi-factor
authentication for fortification. Shiladitya Bhattacharjee, Himanshi Sharma, Tanupriya Choudhury, Ahmed
M. Abdelmoniem [15] the authors proposed a combined approach to enhancing encryption and compression
algorithms for large data transfer. The chaotic S box encryption and adaptive Huffman compression algorithm
proved to achieve superior time and space efficiency with enhanced privacy and integrity for any generic data
in terms of entropy, bits per code, information loss percentage, and throughput.

N. Sugirtham, R. Sherine Jenny, B. Thiyaneswaran, S. Kumarganesh, C. Venkatesan, K. Martin Sagayam,
Lam Dang, Linh Dinh, Hien Dang, [16] explained using a modified Playfair algorithm, partitioning the plaintext,
adding filler characters, inserting filler information, compressing using LZMA, and utilizing a variety of encoding
schemes are all part of the methodology. The suggested approach removes fillers for authentic retrieval and
fortifies the Playfair cipher. With only minor key changes, the avalanche effect ranges from 65% to 93.7%.
For compressed, secure text, the encrypted document is further encrypted using LZMA. The complete study
of all such different cryptographic and compression algorithms used for data security are as explained, which
says how each cryptographic algorithm merged or unmerged with compression algorithms are how efficient in
satisfying any of the parameters like efficiency, security level, integrity and many more [9)].

3. Mathematical Background.
Prime Factorization. Let a,,(n) be the sum of the m!" powers of the primes in the prime factorization of n.
For example, al1(23.5.11%) = 24+24+2+5+11+11+11, a2(22.5.113) =22422422+52+112+112+112, a5(22.5.113)



1094 Amruta Gadad, Devi A

Fig. 3.1: Example for the process of prime factorization

= 254-254+25+55+115+115+115. Let b,,(n) be the mth power of the maximum prime factor in the prime
factorization of n. For example, b1(23.5.113) = 11, b2(23.5.113) = 112, b5(23.5.113) = 115 [9].
The prime factors of any non-prime integer n can be found among a set.

(P1, P2,..Pk) where Pi<+/n,1<i<n,

where P1, P2..... Pk are the prime factors that the trivial division method finds for the given number n. This
trial division method, divides n by smaller prime numbers (beginning with 2, 3, 5, 7 and so on) in a blind
manner and is the simplest way to factor n. If the remainder of division is zero, a prime number is chosen as
a factor. This process is continued until all prime numbers that are less than or equal to n are identified and
hence is used to factor small integers formed by some digits, but it is not suitable for large numbers due to its
enormous time complexity [12].

For example, calculating the prime factors for the ASCII value of letter A which is 98 and hence the value
of n = 98. i.e., 98 = 49 x 2, as shown in the Fig. 3.1. The factors found for the number 98 by using trivial
division method where the number 98 is divided by the smallest possible prime number 2, in the second step
the value 49 is processed through trivial division and hence dividing it by 7 times resulting as 7 x 7. The final
obtained prime factors for the number 98 is 2(72).

4. Proposed Methodology. The proposed methodology is illustrated in Fig. 4.1 which is basically
designed to strengthen the data security and increase the transmission speed of plain text during the transfer
of data from one end to another end. The plain text PT of cloud server is initially converted into intermediate
Encoded Plain Text (EPT) before it is encrypted. The EPT is generated by applying prime factorization for all
ASCII values of the plain text, these prime factors are converted into binary digits which intern forms the first
level of data security. The EPT is not encrypted directly instead it is processed through the RLE Compression
algorithm first forming the next intermediate message known as Intermediate Compressed Message (ICM), this
ICM helps in strengthening the rate of data transfer from the user to cloud server. The ICM is finally used in
forming the cipher text applying Dynamic RSA where the intermediate message ICM is given as input message
for RSA algorithm whose block size is less than n (formed from two distinct large prime numbers). This cipher
text on the sender side is converted back to the plain text by reversing the process i.e., the encrypted cipher
text is subjected to decryption of Dynamic RSA were finding back the message ICM which is again processed
through decompression of RLE obtaining back the Intermediate Decompressed Message IDCM. The IDCM is
decoded back to the original PT by using reverse process of prime factorization.

4.1. Prime Factorization. To encode the PT of cloud into intermediate EPT, the prime factors are
found for the ASCII values of the plain text. The resultant prime factors are further substituted into equivalent
binary numbers. The binary values formed for each ASCII value is considered and the process is repeated for
all the letters of the given PT. After conversion of all ASCII values into prime factors followed by substitution
into binary numbers, all these binary numbers are merged and found the intermediate EPT. The PT processing
through multiple steps to find the intermediate EPT is as shown below in Algorithm 1.

4.2. Compression with Run Length Encoding. Compression techniques are basically classified as
Lossy and Lossless compression methods. RLE is also one of the Lossless data compression techniques which is
applied when data is the sequence of characters in which some particular characters are repeated consecutively



Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1095

Intermediate
Plain Encoded Plain Text Compressed
(EPT) Message (ICM)
Text (PT) Prime Factorization RLE , { Dynamic RSA
D Encoding (Comp on) ,\ (Encryption)
Cipher
Text
(CT)
Intermediate Intermediate h V-4

Dynamic RSA
(Decryption)

Plain Decompressed Compressed
Text (PT Prime Factorization Message (IDCM) RLE Message (ICM)
————— # —————————— ———————
Decoding (Decompression)

Fig. 4.1: Proposed PFECCRS scheme

Algorithm 1 Prime factorization

BPF Prime- Factorization (N)

/{ N is an integer for which prime factorization is to be found

/f Pn is a prime number n=0,1,2,3,

// BPF is Binary Prime Factorization for N, LBPF is the length of BPF.
// RCW is the Right most Code Word; || is concatenation Input N

Output BPF
1. Read N
2. BPF ¢
3. Find P(i) < Pn, where i is the position of nearest value of n and Pn isi,i-1,1-2
4. While(N=0) do begin
IfP(i) < n then P(i) <1 else P(i) < 0
End if
BPF — BPF || B(i)
Find the reminder N «N-P(i) i «— i-1
End While N
5. While (i 0) do begin
P(i) < 0
BPF — BPF || B(i)
End while i
6. RCW «1
7. BPF « BPF | RCW
return BPF

many times. The consecutive repeated characters are compressed by representing it with a number which tells
how many times the character has been repeated consecutively.

If the sequence is of the form WWWWWWWEEEETTTTTTTTTTTDDDDDSSSSSSS then this sequence
can be compressed using RLE as TW4E11T5D7S so that instead of occupying 34 bytes of memory it can be
reduced to only 11 bytes of memory. This process of RLE is majorly used in image compression and binary
sequence compression. As the EPT obtained after PF is a binary sequence of characters, the use of RLE could
be justified and the same is elaborated in the algorithm 2 for the BPF to obtain the ICM.

4.3. Dynamic RSA for Encryption and Decryption. The ICM obtained after RLE is taken as the
input for converting the ICM into the cipher text which is carried out using Dynamic RSA algorithm. The
conventional RSA algorithm usually uses the public key of size 1024 bits or 2048 bits but in this proposed
methodology some changes are made, such as limiting the ICM block size to n, which is the product of two
powerful prime numbers, p and q, implying that n = p x ¢q. By using the concept of dynamic RSA, the resulted
ICM is encrypted as shown in the algorithm 3.



1096 Amruta Gadad, Devi A

Algorithm 2 RLE Compression

RBPFm is Compressed RLE Code for BPFm
Where m = mi, i=1,2,3, l(m)
Input: BPF(m)
Output: RBPFm
1. RBPFm < ¢
2. For each DBPFmi, mi€m, i=1,2.3.....n
If LEN(DBPFmi > 0)
LC=1
v =DBPFmi[0]
v1=DBPFmi[i]
If(vli==v)
LC=LC+1
Else
RBPFm = RBPFm +LC +v
LC=1
v=vl
RBPFm = RBPFm + vl
return RBPFm

Algorithm 3 Dynamic RSA for encryption and decryption

Determine the block size b
Generate two large distinct prime p and q, both are of same size.
Compute n=pq: ¢(n) = (p-1) x(g-1)
Convert n into binary  nb «—
Find b « Len(ab)
Select a random integer e, 1 < e < ¢(n) such that ged (e, d(n))
Use the Extended Euclidean Algorithm to compute the unique Integer d
Such that ed=1(mod) ¢(n). 1<e < ¢p(n)
9. A’sPublic Key is (n.e); A’s Private Key is (n.d)
/{ RSA Encryption and Decryption Based on Compressed Prime factorization

Enecryption

Obtain A’s authenticate Public Key (n.g)

c—0o

Repeat

1. Read the first b bits from RBPFm
ii. Convert the bits into binary

Let it be ICM
compute CT= (ICM)* mod n

. c<«¢|CT
iv. Read the next b bits from RBPFm
4. Send the ciphertext C to A

ol

001 B

Wk

The encrypted message is sent to the sender which is further decrypted back to the DM (Deerypted
Message) as shown in the Decryption algorithm.

Decryption

To recover the CT from C, A do the following

Use the private key d to recover

ICM = (CT) modn

Once ICM is obtained the whole process is reversed.

The ICM is decompressed back to IDCM and finally decoded back to the PT by reversing the

process of PF.

W




Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1097

Table 5.1: Prime factorization encoding to obtain encoded plain text

Prime
PT ﬁﬁg Factors for Binary Values for Prime Factors
z Asc
1|/2(3|4|5|6(7(8(9(1011|12|13|14|15|16|17(18{19|20(21(22|23|24|25|26|27|28(|29(30|31|32(33|34(35|36(37|38|39|40(41|42 43|44 (45(46/47|48/49| 50
b 98 2x7x7 0(1fo|0oj0o|0f0Of0O|Of(O|OJO|O|0O|O|O|OfOfO(O|Of(O|OfO|0O|O|O|O|Of0O|O(OfO|OfO|O|O|O]O|OfO|O|O|OfOfO|O|O|L
a 97 1x97 i|jojojojojofojofofo|ojojojojojo|0f0jojofofo|ofjOoj0O|O|O|O|0Of0O|O|OfO|OfO|O|O|O]jO|Of0O|O|O|OfOfO|O|O|O]D
b 98 2x7x7 o(1f(ojojojofofojofo|ojojojojojojofofojojofojofjojojojojo|ofojojofojojojofojojojofojojojofofojojo|1
a 97 1x97 i|ojojojojofojofofo|ojoj0j0O|OjO|0Of0Q|O|O|OfO|OfO|0O|O]|O|O|0Of0O|O|OfO|OfO|O|O|O]jO|Of0O|O|O|OfOfO|O|O|O]D

Binary Valuesfor Prime Factors

51|52|53|54|55|56|57|58(59| 60|61 |62|63 | 64| 65|66 67|68|69|70(71|72|73| 74| 75| 76| 77| 78| 79|80|81 |82| 83| 84| 85|86(87|88)|80|00|01(92|93| 04|05/ 96|97|98|99 (100

ofjofjofoj0ojOf0|O|O|jO|Of0D)O|O|OfO|O|O|O|O|O|OjO|O|O|O|OfO|O|O|O|OfO|OjO|OfO|O|OfOfOfO|OjOfO]|O |1

ojojo|ojojofojojOjOoj0Of0)OjO|0D|O|O]O|O|O|O]OjOjOjOjO]OfO|0|O|O|0OfO|OjOjOfO|OjOfOf0O|O]OjOfO]|O 1

5. Proposed Methodology — Example. The proposed methodology is explained in brief for the plain
text ‘baba’ further used as PT. Here the PT is first converted to its equivalent ASCII values which is further
processed through all the different levels of security to find the cipher text. Firstly, the EPT is obtained by
finding the prime factors for each letter, such as for the letter ‘b’ the equivalent ASCII value is 98 and its
equivalent prime factors are 2 x 7 x 7. After calculating the prime factors, a binary sequence of characters are
found for this prime factor by giving the magnitude as 1 for all the values of the obtained prime factors and
0 for all the other numbers i.e. for all non-prime factors, and hence the same process is repeated for all the
characters of the plain text ‘baba’ as shown in the Table 5.1.

This sequence of characters is moved to process through RLE Compression Algorithm which results in the
following output. RLE o p: ICM: 148021950101480219501. Its Binary equivalent is 1100110101101011111101011
111001001010111011000100101001101101101 which is called as ICM. The ICM is finally converted into cipher
text by using the Dynamic RSA for which the value of two large prime numbers p = 57548534591 and the value
of q = 57548534663, then calculating the value of n = 3311833837715018027833, result of multiplication of two
prime numbers n = p X q whose binary equivalent is 1011001110001000111011010110000010001101110110100
10101010001001100111001.

Further ®(n) = 57548534590 x 57548534662 = 3311833837599920958580.

Let e = 331185747557334567, using the Extended Euclidean algorithm d is calculated as 20173444791987593
48237. Length of number of bits ‘n’ is 72 and hence the block size should be less than 72 wherein here
the block size as 64 bits in intermediate message ICM which is the result of RLE Compression Algorithm.
Now using the value of ‘¢’ and ‘d’ the PT is encrypted as CT, calculated as CT = (ICM)¢ mod n =
14802195021480219501331185747557334567 mod 3311833837715018027833, resulting in CT= 238379815787132
0965090. To further decrypt the encrypted PT, ICM = CT“ mod n = 2383798157871320965090201734447919875
9348237 mod 3311833837715018027833, resulting in ICM = 14802195021480219501. The final PT is received
by the receiver by completely reversing the process, i.e., the CT message is decrypted and decompressed into
IDCM.

The obtained IDCM is a sequence of binary numbers, for example for the letter ‘b’ the sequence of binary
numbers is 010000000000000000000000000000000000000000000000001 as shown in Table 5.2. Decoding this
sequence of bits is done by replacing the binary numbers with respective magnitude values wherever the bit
value is ‘1’ which results into the respective prime factors obtained for the ASCII value of b, and finally
converting the respective ASCII values back to PT.

6. Experimental Results. As explained in the proposed methodology the data security is enhanced by
encoding the PT using mathematical concept of PF, followed by compression, the data is compressed using
RLE and finally the result of compression is encrypted using Dynamic RSA algorithm. This methodology is
implemented in VC++4 using Core i5 processor for different text files of different sizes. One text file is created
which is containing the information of i2k2 Website and the same is used to generate the text files of different
sizes such as 1024 KB, 2048 KB , 4096 KB and so on. The security level is calculated for all these files of



1098 Amruta Gadad, Devi A

Table 5.2: IDCM for prime factorization decoding

Prime
Binary Values for Prime Factors Factors for ':fl(ul: PT
ASCH Values
50|51(52(53|54|55|56|57|58|59|60(61|62)|63(64(65|66|67(68|69|70|71(72|73|74|75|76(77(78|79|80|81|582|83(84|85|86(87(88|80|00|01|02|03/04|05|06(97|98
2x7x7 98 | b
ojofofo)jo|0f0|0O|O|O0|0OjOfO|O|O|O|O|OfO0fOfO|OfO|O|OfOfO]jO|O(O|O|O|O|O|OfO|OfOfO|O|O|O|O|O|OfO|0]1 1197 97 | a
2i&Tx7 98 [ b
0 o|jofofojojofof0o|0fojojofofoO|jOjO|O|O|O|O|O|OfO)|O|OfO|O]jO|O|O|O|OfO|OjO|O|OfOfOfO|O0|O0|O]|O|O(1 1x97 97 | a
Binary Values for Prime Factors
1(2(3(4|5|/6(7(8|9|10\11|12|13(14|15|16(17|18|19|20|21|22|23(24|25(26(27|28|29(30|31|32|33|34|35/36(37(38|39|40|41|42|43|44|45(46/47|48(40
ol1{ofo|O|Of0|O|O|O0|O]jO|Of(O|O|O|O|OfOfOfO|OfO|O|OfOfO]jO|OfO|O|O|O|OjOfO|OfOfO]|O|O|O|OfO|OfO|0]|O(1
1(ojojoj|ojofofO|O|O0|O|O|OfOQ]OjO[O|OQ|O(OQ|O|O|O(O|O(fOfO|O|OfO (OO |0|QjOjO|O|O|O|O|O|O(O(O|OfOQ|0O]|Of0Q
oj1{oefojojofof0ojojo|0jojOofO|O|jO|O|OfOfOfO|OfO|O|OfOfO]jO|OfO|O|O|O|OQjOfO|OfOfO)O|OQ|O|OfO|OfOQ|0O]O(1
i(ojojo|0j0f0of0O|O|0O|O|O|OfO]JOjO|O|O|OjOfO|O0|OfO|OfOfO)|O|OfO(O|O|0O|OjO(O|O|O|O|O|O|OfO(O|OfO|0O]|O0

Table 6.1: Encryption and decryption time for Conventional RSA and Dymamic RSA before compression

Conventional RSA before Compression
Encryption Time Decryption Time
METHOD File Size in KB File Size in KB
1024 | 2048 4096 8192 16384 1024 2048 4096 8192 16384

FRSA 3806 | 7448 | 15015 | 29871 | 59649 | 3918 | 7570 | 14900 | 29940 | 59538
LRSA 3884 | 7717 | 15315 | 30623 | 61253 | 3835 | 7839 | 15305 | 30707 | 61203
PRSA 4094 | 8141 | 16214 | 32435 | 64877 | 4230 | 8282 | 16334 | 32565 | 64927
Dynamic RSA before Compression
Encryption Time Decryption Time

METHOD File Size in KB File Size in KB
1024 | 2048 4096 8192 16384 | 1024 | 2048 4096 8192 16384

FDRSA | 3738 | 7454 | 14881 | 29863 | 59630 | 3768 | 7545 | 14978 | 29839 | 59534
LDRSA | 3927 | 7686 | 15471 | 30735 | 61227 | 3880 | 7693 | 15460 | 30707 | 61194
PDRSA | 4157 | 8218 | 16277 | 32458 | 64811 | 4229 | 8120 | 16294 | 32446 | 64892

different sizes using IBM CAT, which provides a graphical interface for searching, displaying, and analysing
data extracted from various cryptographic components. A comparison study is also conducted between the
existing method and the proposed method, as well as with conventional and Dynamic RSA with and without
the use of a compression algorithm. The different parameters such as encryption time, decryption time, security
level and compression ratio are calculated for all file of various sizes which is as shown in the following tables.
All these different parameters are calculated using for different file sizes of the cloud data, wherein here the
i2k2 cloud desktop as a service is used and the Common Gateway Interface CGI is built for the same.

Table 6.1 and their corresponding graphical representations are shown in Fig. ?? which shows the difference
in the encryption and decryption time for text of cloud of different file sizes for all the existing and proposed
methodologies using both Prime Factorization Rivest Shamir Adleman PRSA and Prime Factorization Dynamic
Rivest Shamir Adleman PDRSA before applying RLE.

The encryption and decryption time taken for the proposed methods PRSA and PDRSA is more than that of
the existing methods Fibonacci Rivest Shamir Adleman FRSA and Fibonacci Dynamic Rivest Shamir Adleman
FDRSA and Lucas Rivest Shamir Adleman LRSA and Lucas Dynamic Rivest Shamir Adleman LDRSA. The
encoding process using PF takes multiple steps like converting the letter to their ASCII values and then finding
the prime factors for obtained ASCII value and lastly to encode to their subsequent binary sequence and hence
the process of encoding using PF takes more time for encryption and decryption.

Table 6.2 is depicted in Fig. 6.2 which shows the encryption and decryption time for the proposed Prime
Factorization Rivest Shamir Adleman Run Length Encoding PRSAR and Prime Factorization Dynamic Rivest
Shamir Adleman Run Length Encoding PDRSAR along with existing methods Fibonacci Rivest Shamir Adle-
man Run Length Encoding FRSAR, Lucas Rivest Shamir Adleman Run Length Encoding LRSAR and Fi-



Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1099

Convention RSA before Dynamic RSA before Compression
Compression 70000
70000 60000 1
60000 ' " . 50000 |
g 50000 I = 40000 i
g 40000 ‘ | 2 30000 e |
£ 30000 | . e} ] |
| | | 20000 o N
10000 . I 1 2 I i1l 10000 = I Il : I i1
o mnn NID NER NOR NRN oo NED RES ARH HR o s I WAL AL AN oo NNE B HE WA
- % e o W w ® W o = - ® ¥ @ 9w W W ® o
(=] - =1 ) o« (=] - & & o [=] - -3 o o0 (=} - - o o0
g2 2 8 2 8 8 8 8 2 ®& E 2 8 2 28 2 8 2 3
- A w8 A AT e = 8 ¥ ® ¥ &S & ¥ = e
File Size in KB File Size in KB File Size in KB File Size in KB
Encryption Time Decryption Time Encryption Time Decryption Time
mFRSA mLRSA mPRSA mFDRSA =LDRSA =PDRSA

(a) (b)

Fig. 6.1: (a) Encryption and decryption time for Conventional RSA before compression; (b) Encryption and
decryption time for Dynamic RSA before compression

Table 6.2: Encryption and decryption time for Conventional RSA and Dymamic RSA after compression

Conventional RSA after Compression
Encryption Time Decryption Time
METHOD File Size in KB File Size in KB
1024 | 2048 | 4096 | 8192 | 16384 | 1024 | 2048 | 4096 8192 | 16384
FRSAR | 3899 | 7637 | 15000 | 29802 | 59558 | 3869 | 7446 | 15069 | 29805 | 59658
LRSAR | 4013 | 7916 | 15489 | 31155 | 62081 | 4010 | 7897 | 15613 | 31021 | 61984
PRSAR | 4101 | 8115 | 16344 | 32403 | 64961 | 4066 | 8189 | 16323 | 32534 | 64841
Dynamic RSA after Compression
Encryption Time Decryption Time
METHOD File Size in KB File Size in KB
1024 | 2048 | 4096 | 8192 | 16384 | 1024 | 2048 | 4096 8192 | 16384
FDRSAR | 3778 | 7450 | 14954 | 29809 | 59589 | 3784 | 7592 | 14926 | 29836 | 59640
LDRSAR | 3862 | 7780 | 15408 | 30723 | 61212 | 3830 | 7703 | 15350 | 30627 | 61213
PDRSAR | 4193 | 8279 | 16242 | 32579 | 64895 | 4097 | 8102 | 16349 | 32575 | 64837

bonacci Dynamic Rivest Shamir Adleman Run Length Encoding FDRSAR, Lucas Dynamic Rivest Shamir
Adleman Run Length Encoding LDRSAR after applying RLE Compression algorithm.

The proposed methodology exhibits lesser encryption and decryption time as there is an increase in file
size after using RLE compression algorithm in both conventional and dynamic RSA. The encryption time for
16MB file for FRSA is 59649 ms and for FDRSA is 59630 ms as shown in Table 6.1 but the results of Table 6.2
analyse that there is decrease in encryption and decryption time after the addition of the RLE algorithm.

Fig. 6.3 represents the contents of Table 6.3. in which the compression ratio is calculated for proposed
methods and PDRSAR and further the comparison is made with existing methods of FRSAR, LRSAR and
FDRSAR and LDRSAR. The compression ratio for the above is calculated using the formula as

) . Uncompressed file size
Compression ratio =

Compressed file size (6.1)

As mentioned in the equation 1 the compression ratio is calculated for different file size and for all existing
and the proposed methods and the same is shown in the Table 6.3. The compression ratio for the file size of
1MB for FRSAR is 1024/747 = 1.371, for LRSAR is 1024/731 = 1.401 and that of for the proposed PRSAR
method is 1024/727 = 1.408. Similarly, the compression ratio for FDRSAR is 1024/758=1.35, for LDRSAR is
1024/733=1.397 and finally the compression ratio for the proposed methodology PDRSAR is 1024/717=1.428.



1100 Amruta Gadad, Devi A

Conventional RSA after Dynamic RSA after Compression
Compression 70000
70000 60000
» 60000 £ 50000
g 50000 = 40000
2 40000 o
@ 30000 g 2w
£ 20000 i~ 20000
| | w ol I
el we it |l po— | w1l
- o8 o = W ® (=) - rl ] (ol -
$383gz3gsg $285§:2288%
= e = =
File Size in KB File Size in KB File Size in KB File Size in KB
Encryption Time Decryption Time Encryption Time Decryption Time
=FRSAR ®LRSAR =PRSAR = FDRSAR sLDRSAR =PDRSAR

(a) (b)

Fig. 6.2: (a) Encryption and decryption time for Conventional RSA after compression; (b) Encryption and
decryption time for Dynamic RSA after compression

Table 6.3: Compression rate for Conventional RSA and Dynamic RSA after compression

Compression Ratio for Conventional RSA
METHOD File Size in KB

1024 2048 4096 8192 16384
FRSAR | 1371 | 1356 | 1374 | 1.375 1.373
LRSAR | 1401 | 1.382 | 1.383 | 1.406 1.391
PRSAR | 1408 | 1413 | 1.422 1.42 1.417
Compression Ratio for Dynamic RSA
METHOD File Size in KB
1024 2048 4096 8192 16384
FDRSAR | 135 | 1.353 | 1.361 1.35 1.374
LDRSAR | 1397 | 1.395 | 1.394 | 1406 1.389
PDRSAR | 1428 | 1428 | 1.428 | 1428 1.428

Compression Ratio for Compression Ratio for Dynamic
Conventional RSA RSA
1.4 14
2
210 £ 142
& i @ L4
S g g 13
B 213
8136 3134
S1u I ER K
Yim C 13
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
File Sizein KB File Size in KB
EFRSAR ®IRSAR #sPRSAR EFDRSAR ®LDRSAR sPDRSAR

(a) (b)

Fig. 6.3: (a) Compression for Conventional RSA after compression; (b) Compression ratio for Dynamic RSA
after compression

This analysis clears that the compression ratio is comparatively better for the proposed methods PRSAR and
PDRSAR than that of the existing methods.

The security level is analysed for the proposed and existing methods and the comparison analysis is made



Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1101

Table 6.4: Security level for Conventional RSA and Dynamic RSA before compression

Security Level (%) for Conventional RSA
METHOD File Size in KB

1024 | 2048 | 4096 | 8192 | 16384
FRSA 93.59 | 92.17 | 91.49 | 90.51 | 89.09
LRSA 95.6 | 94.755 | 9348 | 92.675 | 91.98

PRSA 97.89 | 9692 | 9559 | 9496 | 93.11
Security Level (%) for Dynamic RSA

METHOD File Size in KB
1024 | 2048 | 4096 | 8192 | 16384
FDRSA | 9425 | 9365 | 92.66 | 91.65 | 91.13
LDRSA | 96.69 954 | 9449 | 93.79 | 92.93
PDRSA 98.47 | 9847 | 98.47 | 9847 | 9847

Security Level (%) for Security Level (%) for Dynamic
Conventional RSA RSA
100 . 100

98

- 96 |
0 i M | - il .,
5 1 | | 92 ] R
: 0 0000l
R | I« 88 | | |
84 | | H n | 86 L} | | | | n
1024 2048 409 8192 16384

1024 2048 4096 8192 16384
File Size in KB File Size in KB

Security Level in %
o
=

Security Level in %

EFRSA mLRSA sPRSA EFDRSA ®LDRSA ®PDRSA

(a) (b)

Fig. 6.4: (a) Security level (%) for Conventional RSA before compression; (b) Security level (%) for Dynamic
RSA before compression

Table 6.5: Security level for Conventional RSA and Dynamic RSA after compression

Security Level (%) for Conventional RSA
METHOD File Size in KB

1024 2048 4096 8192 16384
FRSAR 94.15 92.79 | 92.13 90.81 90.36
LRSAR 9545 | 94.475 | 93.22 | 92.865 | 91.92
PRSAR 98.97 97.72 97.45 96.41 94.94
Security Level (%) for Dynamic RSA
METHOD File Size in KB
1024 2048 4096 8192 16384
FDRSAR | 94.67 9393 93.01 92.79 91.7
LDRSAR 96.6 96.24 | 95.83 94.32 93.82
PDRSAR | 99.25 98.67 | 97.67 96.32 95.54

before using compression and after using compression algorithm.

The results of Table 6.4 shows that the security level is improved in both cases of conventional and dynamic
RSA for the proposed methods of PRSA and PDRSA compared to that of existing methods of FRSA, FDRSA
and LRSA, LDRSA and the same is graphically represented in Fig. 6.4. The results analysis also depicts that
there is a decrease in security level as the size of the file increases for the conventional RSA but that of the
proposed methodology of PDRSA the security level remains same for the varying file sizes.

Similarly, the results of Table 6.5. shows the security level which is again compared for the proposed and all
the existing methods after applying the RLE compression algorithm which intern is graphically represented in



1102 Amruta Gadad, Devi A

Security Level (%) for Security Level (%) for Dynamic
Conventional RSA RSA
_ 1o . loo
> 98 S 98
= 9% — = % —J
E il to il Wl '
e | I 1 ‘ B l | .| I
o0 MR- AN | Z 9 @ | | | %
N || i I g s ‘ i
86 . I " 86 - |
1024 2048 4096 8192 16384 1024 2048 4096 8192 16384
File Size in KB File Sizein KB
EFRSAR ®LRSAR =PRSAR EFDRSAR ®LDRSAR =PDRSAR
(a) (b)

Fig. 6.5: (a) Security level (%) for Conventional RSA after compression; (b) Security level (%) for Dynamic
RSA after compression

Fig. 6.5. The security level is proved to be improved for the proposed PRSAR and PDRSAR compared to that
of the existing LRSAR, LDRSAR and FRSAR, FDRSAR. The encryption and decryption time is compromised
for the proposed methodology as the major aim was to achieve the security level which intern is proved by
achieving the results of 99.25%for 1MB file obtained finding multiple intermediate messages.

The encryption time and decryption time is always more when process the plain text through the compressed
cryptosystems along with encoding i.e., as in here the plain text is first converted to M1, then moved for
compression and lastly it is encrypted. But during this entire process the security level is increased compared
to the conventional RSA algorithm applied without any intermediate message like M1 and M2.

Even though the encryption time and decryption time are more for PF compared to Fibonacci and Lucas,
the results showed a good progress in the security level and also in the compression ratio. The security level of
the plain text is more for the proposed Dynamic RSA Prime factorization compared to the existing Dynamic
RSA Fibonacci and Dynamic RSA Lucas which is as shown in the Table 6.5. Along with increase in the security
level the concentration is also given for the compression ratio which found to be more efficient for the proposed
methodology.

7. Conclusion. The proposed method could be applied for the text data of any cloud-based application
and the implementation of the prime factorization to enhance the security level of the cloud data proved to be
95.54% for 16 MB files for the proposed PDRSAR which is improved than LDRSAR that resulted with security
level of 93.82% and that for FDRSAR achieving the results of 91.7%. The compression ratio for the proposed
method proved to be 1.428 which is improved than that of the existing methods of LDRSAR with 1.389 and
that for FDRSAR with 1.374. The compression algorithm helped to improve the compression ratio and also
helped to increase the security level by developing the intermediate messages at each stage. The complete work
is implemented for the text of the cloud and hence in future it is assured to work the process for the images
and then with that of the combined approach wherein in all the three approaches the concentration will be on
enhancing the security for the cloud data irrespective of the type of data.

Acknowledgement. I extend my sincere gratitude to REVA University for their invaluable support and
guidance throughout the course of this research, which greatly facilitated its successful completion.

REFERENCES

[1] Mohammed Aamir Ali, Muhammad Ajmal Azad, Mario Parreno Centeno, Feng Hao, Aad van Moorsel, “Consumer-facing
technology fraud: Economics, attack methods and potential solutions”, Future Generation Computer Systems,Volume
100,2019, Pages 408-427,ISSN 0167-739X.

[2] V. Pavani, P. S. Krishna, A. P. Gopi, and V. L. Narayana, “Secure data storage and accessing in cloud computing
using enhanced group based cryptography mechanism,” in Materials Today: Proceedings, Dec. 2020, pp. 1-5, doi:
10.1016/j.matpr.2020.10.262.



Enhancing Security of Cloud Data Using Cryptographic Algorithm Based on PFECCRS 1103

[3] A. Devi and K. Mani, “CSEIT1831152 | Enhancing Security in RSA Cryptosystem Using Burrows-Wheeler Transformation
and Run Length Encoding,” 2018. [Online]. Available: www.ijsrcseit.com.

[4] Luluk Anjar Fitriya, Tito Waluyo Purboyo, Anggunmeka Luhur Prasasti, “A Review of Data Compression Techniques”,
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 19 (2017) pp. 8956-8963.

[5] I. Sandhya Rani and Bondu Venkateswarlu, “A Systematic Review of Different Data Compression Technique of Cloud Big
Sensing Data” ICCNCT 2019, LNDECT 44, pp. 222-228, 2020. doi.org/10.1007/978-3-030-37051-0-25

[6] K. Mani and A. Devi, “Enhancing security in cryptographic algorithm based on LECCRS,” 2017. [Online]. Available:
http://en.wikipedia.org/wiki/

[7] M. Tajammul and R. Parveen, “Auto encryption algorithm for uploading data on cloud storage,” International Journal of
Information Technology (Singapore), vol. 12, no. 3, pp. 831-837, Sep. 2020, doi: 10.1007/s41870-020-00441-9.

[8] P. William, A. Choubey, G. S. Chhabra, R. Bhattacharya, K. Vengatesan, and S. Choubey, “Assessment of Hybrid Crypto-
graphic Algorithm for Secure Sharing of Textual and Pictorial Content,” in Proceedings of the International Conference
on Electronics and Renewable Systems, ICEARS 2022, 2022, pp. 918-922. doi: 10.1109/ICEARS53579.2022.9751932.

[9] K. Mani and A. Devi, “Modified DES using Different Keystreams Based On Primitive Pythagorean Triples,” International
Journal of Mathematical Sciences and Computing, vol. 3, no. 1, pp. 38-48, Jan. 2017, doi: 10.5815/ijmsc.2017.01.04.

[10] Amruta Gadad, Devi Anbusezhiyan, “Cloud security: literature survey”, International Journal of Electrical and Computer
Engineering (IJECE), Vol. 13, No. 4, August 2023, pp. 4734 4742, ISSN: 2088-8708, DOI: 10.11591 /ijece.v13i4.pp4734-
4742

[11] J. Zalaket and J. Hajj-Boutros, “Prime factorization using square root approximation,” Computers and Mathematics with
Applications, vol. 61, no. 9, pp. 2463-2467, May 2011, doi: 10.1016/j.camwa.2011.02.027.

[12] R. Jakimczuk, “Sums of Prime Factors in the Prime Factorization of Smooth Numbers Diophantine equations View project
Prime Numbers View project Sums of Prime Factors in the Prime Factorization of Smooth Numbers”.

[13] Wid Akeel Awadh, Ali Salah Alasady, Mohammed S. Hashim, “A multilayer model to enhance data security in cloud comput-
ing”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 32, No. 2, November 2023, pp. 1105 1114,
ISSN: 2502-4752, DOI: 10.11591 /ijeecs.v32.i2.pp1105-1114.

[14] Sunday Adeola Ajagbe, Oluwashola David Adeniji, Adedayo Amos Olayiwola, Seun Femi Abiona, “Advanced Encryption Stan-
dard (AES)-Based Text Encryption for Near Field Communication (NFC) Using Hufman Compression”, SN Computer
Science (2024) 5:156, https://doi.org/10.1007/s42979-023-02486-6.

[15] Shiladitya Bhattacharjee, Himanshi Sharma, Tanupriya Choudhury, Ahmed M. Abdelmoniem, “Leveraging chaos for enhanc-
ing encryption and compression in large cloud data transfers”, The Journal of Supercomputing.

[16] N. Sugirtham, R. Sherine Jenny, B. Thiyaneswaran, S. Kumarganesh, C. Venkatesan, K. Martin Sagayam, Lam
Dang, Linh Dinh, Hien Dang, “Modifed Playfair for Text File Encryption and Meticulous Decryption with Ar-
bitrary Fillers by Septenary Quadrate Pattern”, International Journal of Networked and Distributed Computing,
https://doi.org/10.1007/s44227-023-00019-4.

Edited by: Dhilip Kumar V

Special issue on: Unleashing the power of Edge Al for Scalable Image and Video Processing
Received: Jun 8, 2024

Accepted: Aug 29, 2024



