SCALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 8, Number 2, pp. 197-208. http://www.scpe.org © 2007 SWPS

0,..

AN EXPERT SYSTEM FOR ANALYSIS OF CONSISTENCY CRITERIA IN CHECKPOINTING
ALGORITHMS

SHAHRAM RAHIMI, GURUPRASAD NAGARAIJA, LISA GANDY AND BIDYUT GUPTA*

Abstract. In a distributed computing environment, it is vital to maintain the states of the processes involved in order to cater to failures that
are arbitrary in nature. To reach a consistent state among all the processes, checkpoints are taken locally by each process and are combined together
based on uniformity criteria such as consistency, transitlessness, and strong consistency. In this article, first, the necessary and sufficient conditions of
consistency criteria are stated and then an expert system, implemented based on these criteria, is presented. The expert system discovers and illustrates
consistent, transitless, strongly consistent and globally consistent checkpoints in a given distributed system. Moreover, it offers facilities for evaluating
checkpointing algorithms by measuring different quality assessment parameters.

1. INTRODUCTION. A distributed computing environment consists of a number of processes involved in com-
putation and communicating with each other. In such an environment, there is a need for a mechanism to recover and
proceed with the computation, if one or more of the processes fail at any instant of time during computation. Variety
of checkpointing and recovery techniques have been proposed (synchronous, asynchronous, hybrid to name a few), in
order to minimize re-computing involved in the recovery steps [5, 6, 7]. Generally, recovery includes the rollback of the
processes involved in the computation to a point, from where if the computation were to restart, the final result would be
the same as that without the failure(s). This is termed as a globally consistent state or a recovery line. In section 2, some
background regarding checkpointing and its consistency issues are given.

This paper presents an expert system capable of finding all the possible globally consistent states over a fixed time
interval. It also traces consistent, transitless and strongly consistent states between any two or more processes in a
distributed system. With these features, the tool may be used for verification of the correctness and efficiency of other
checkpointing and recovery algorithms. These algorithms can be checked for their correctness in providing/discovering
recovery lines or to see if the consistency criteria are being exposed accurately. Moreover, the system provides facilities for
evaluating different algorithms by comparing their features. Currently, the software calculates the following characteristics
for a given checkpointing algorithm:

e average number of the checkpoints taken by a process in a given time,
number of globally consistent checkpoints in a given time,
average number of checkpoints skipped by a process when rolling back to a recovery line, and
average elapsed time when rolling back to a recovery line.
To our knowledge, there exists no tool with features matching or even close to the proposed system.

Originally, a C++ program, and not an expert system, was implemented with some of the noted features. The program
was extremely slow due to the exhaustive search process for determination of the consistent pairs of the checkpoints.
Moreover, implementation of the consistency criteria (based on the theorems, lemmas and definitions discussed in the
next section), using a sequential/procedural language such as C++ produced a complex and hard to modify code. Because
of these drawbacks, a non-procedural, declarative rule-based engine, Java Expert System Shell (JESS) [4], was employed
to develop the system. Using JESS considerably simplified the code, improved the performance in average over four
times, and eased the maintenance and upgrade of the system. The reason for these improvements lies under the fact that
in a rule-based program, any of the rules may become activated and put on the agenda if its antecedent matches the facts,
while the order that the rules were entered does not affect which rules are activated. Thus, the order of the the program
statements does not specify a rigid control flow which makes it a logical fit for the framework of the consistency criteria.
This is because the consistency criteria are materialized using theorems, lemmas and definitions that could be treated
opportunistically.

In section 2, a brief description of a distributed system is given and definitions of consistency, transitlessness and
strong consistency are stated. Moreover, methods of finding these criteria in a general graph are explained in this section.
In section 3, the architecture of the expert system for the analysis of consistency criteria is presented and its correctness is
verified in section 4, using an example. The paper is concluded with a summery and future work section.

2. CONSISTENCY ISSUES IN DISTRIBUTED CHECKPOINTS. Consider a distributed computing environ-
ment consisting of N processes that interact with each other by exchange of messages. An event occurs each time a
process sends or receives a message. Lamport’s happened-before relationship is used to define these events. If a°b then

*Department of Computer Science, Southern Illinois University, Carbondale, Illinois 62901.

197

198 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

I::11 C1 2
P1 —x X%

% & %
P2 ‘2'1 s 22 ’{ 23
P3 ,.C“

F1G. 1. Local Checkpoints.

it is said that event a caused event b, or a causal path exists between a and b [2]. An example of a happened-before
relationship is where a process, P;, sends a message to another procss, P». Since the "send” event, a, from Process P;
happens before, and is the cause for the “receive” event, b, at process P, it is defined as ahjb If two events a and b do
not have a happened-before relationship between them, then it is said that they are unordered, otherwise they are ordered.

In a multi-process system, a global state is recorded by combining local checkpoints (periodical snapshots of the
processes involved in the computation), one per participating process. In order to group the local checkpoints into a
global checkpoint, the necessary and sufficient conditions, proved in [1] are used. A local checkpoint might be taken
synchronously [5, 11], enabling easy recovery, or asynchronously [6], which reduces the number of message exchanges
among processes, depending on the preferred algorithm. In this paper, the notation C}; is interpreted as the 4 local
checkpoint of process P;. In Fig.1, local checkpoints labeled as C11, C11, Ca1, Cag and C'3y record corresponding local
states of the processes Py, P» and Ps respectively. If C1, Cy; and C'3; are combined together then they define a global
checkpoint [2].

These global states play a vital role when one of the processes involved in computation fails and the entire system has
to be restored to a state from where the computation can resume without affecting the final result. Therefore the choice
of a consistent global state has to be carefully made. In Fig.1, C12, C2s and Csq, if combined together, constitute a safe
global checkpoint in case of the failure of P;, P» and/or Ps. However, Cy1, Co; and Cls1, if grouped together, do not yield
a globally consistent state for recovery. This is because any message sent after the checkpoint C'; from Ps, before the
checkpoint C'3; to process Ps, will be lost and produce an incorrect final result.

In [1], Helary describes the transformation of a happened-before relationship to a Z-graph. If a Z-graph exists between
two checkpoints, belonging to two different processes, then the checkpoints are not consistent with each other. Another
possible transformation of a happened-before relationship could be to a 7-graph used to decide the transitlessness of two
checkpoints belonging to two different processes. An S-graph is defined as a union of a 7-graph and a Z-graph and is used
to find strongly consistent checkpoints. Z-graph, T-graph, and S-graph are discussed in detail later in this section.

In this section, the definitions of consistency, transitlessness and strong consistency are reviewed and the necessary
and sufficient conditions are stated. However, proofs are considered beyond the scope of this paper.

2.1. Consistency Criterion. A pair of consistent checkpoints [10, 12] should not have any causal path between
them. In other words, consistent checkpoints cannot exhibit messages received but not yet sent. That is there cannot be an
orphan message between any pair of consistent checkpoints. A message m sent by a process, I;, to a process, P, is called
orphan with respect to the ordered pair of local checkpoints (C,, Cjy,) if and only if the delivery of m belongs to Cy,
(deliver(m) € C;,) while its sending event does not belong to C;,, (send(m) ¢ Ci;). In Fig 2, message m; is an orphan
message because the sending of message m; is not recorded by C7; but the receiving of m; is recorded by checkpoint
(5. Therefore, the ordered pair of local checkpoints (C1, C21) is not consistent. However, the ordered pair of local
checkpoints (C2, Co2) is consistent due to the absence of any orphan messages. Similarly, the pair of checkpoints (Cs,
C31) and (C2, C51) are consistent. Together they constitute globally consistent checkpoints (C2,Co2, and Csq).

We can thus define a consistent global checkpoint as follows:

DEFINITION 1: A global checkpoint is consistent if all its pairs of local checkpoints are consistent.

2.1.1. Z - Path Instantiation. Definition 1 can be used to transform the graph displayed in Fig. 2 into a Z-graph that
helps to detect the Z-paths and therefore eliminate those checkpoints that cannot be considered for global consistency. As
[1] enunciates, a graph (as shown in Fig. 2) is said to have a Z-path between two checkpoints C; and C};, taken before an
event ¢; in process F; and after an event ¢; in process P; respectively, if e; and e; are communication events between P;
and P; and concern the same orphan message m.

199

An Expert System for Analysis of Consistency Criteria in Checkpointing Algorithms

I::11 C12
Pl —x X

m m3

|::21 c22 |::23

P2

m2 mel

P3 "CS1 CSE' f

FI1G. 2. ml is an orphan message between C11 and Ca2 and in-transit between C12 and Ca;.

F1G. 3. A Z-Path between ordered pair of local checkpoints (C11, C22) and (C12, Ca3).

Fig. 3 modifies Fig. 2 to demonstrate the existence of the Z paths, which are represented by dotted lines. Since the
checkpoints C7; and Cy, have a Z-Path between them, they cannot participate in a globally consistent checkpoint. For
similar reasons, C3 and C'sy cannot participate in a globally consistent checkpoint either.

2.1.2. Necessary and Sufficient Conditions for Consistent Checkpoints. Lemma [states that) can be a globally
consistent checkpoint if and only if there exists no Z-Path between any two ordered pair of local checkpoints that are in
>". Similar inferences for a set of local checkpoints M and a local checkpoint C follows. Note the direction of the arrows
decide the nature of the path. In Fig. 3, Z-path exists between C11 and C2 and is depicted using dotted lines.

LEMMA 1. A global checkpoint 3" is consistent if and only if ~(3>7 7).

THEOREM 1. Let M be a set of local checkpoints from different processes. M can be extended to a consistent global
checkpoint if an only if ~(MZ M).

COROLLARY 1. Let C be a local checkpoint. C can be a member of consistent global checkpoint if an only if
—(CZC).

2.2. Transitless Criterion. Transitless checkpoints cannot exhibit messages sent but not yet received and therefore
are the dual opposites of the consistent checkpoints explained in section 2.1. As we can see, this condition suggests that
there cannot be any message in-transit for an ordered pair of checkpoints to be transitless. It may include messages re-
ceived but not yet sent; in such cases, the checkpoints can be only transitless and not strongly consistent. This is explained
further in section 2.3. Message m sent by process P; to process P; is said to be in-transit with respect to the ordered pair
of checkpoints (Cjz, Cj,) if and only if the sending of m belongs to Cj, (send(m) € C;;) while the receiving of m does
not belong to C,, (receive(m) ¢ Cl,,). In Figure 2, the ordered pair (Ct2, Ca1) is an ordered pair of checkpoints that have
message m/ in-transit. This is because the checkpoint C5 records the sending of message m1 while Co; does not record
the receiving of the message m/. However the ordered pair (C2, Ca2) is transitless as it does not involve any messages

in-transit.

DEFINITION 2: A global checkpoint is transitless if all its pairs of local checkpoints are transitless.

200 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

C1 3
I —
m3
C23
mé
CS?

F1G. 4. T-path exists between ordered pair of checkpoints (C12, C21).

C1 1 C1 2 C1 3
P1 S P —
m3
CQS
e
C32

FIG. 5. An S- Path between C'12, Ca2, C31.

In Fig. 2, Checkpoints C'2, Ca2, and C3; constitute a globally transitless checkpoint since the ordered pairs (C'2,
(59), (Ca9, C371), and (C12,C31) are all transitless.

2.2.1. 7 - Path Instantiation. The idea of having no in-transit messages can be extended to a 7-Path. Assuming
that a checkpoint Cj is taken before event e; in process P; and checkpoint C; is taken after event e; in process P;, where
e; and e; are communication events between P; and P; and concern the same message, m, which is in-transit between
P; and P; (i. e., events e; and e; yield a happened-before relationship which is also called a c-edge), then the graph (as
shown in Fig. 2) is said to have a 7-path between the two checkpoints C; and C;. In other words, a T-path exists if there
is any in-transit message between two checkpoints. Fig. 4 modifies Fig. 2 to show the existence of 7-path using dotted
lines.

2.2.2. Necessary and Sufficient Conditions for Transitless Global Checkpoint. Theorem 2 states that M can be
a transitless global checkpoint if and only if there exists no 7-path between any two ordered pair of local checkpoints that
are in M.

THEOREM 2. Let M be a set of local checkpoints that belong to different processes. M can be extended to a transitless
global checkpoint if an only if ~(M7™ M).

2.3. Strong Consistency Criterion. A strongly consistent global checkpoint is made up of local checkpoints that
are both consistent and transitless [1]. For example in Fig. 2 local checkpoints C'2, C2 and C'3; make up a global check-
point that is both consistent and transitless; therefore, C'2, Ca2, and C'3; are strongly consistent.

DEFINITION 3: A global checkpoint is strongly consistent if all its pairs of local checkpoints are consistent and
transitless.

2.3.1. S-Path Instantiation. An S-path is the union of a Z-path and a 7-path [1]. Fig. 5 displays an S-path that exists
between C12, C21 and C3y and therefore, do not form a strongly consistent global checkpoint. However, C'2, C22 and
(31 constitute a strongly consistent checkpoint due to the absence of a S path between them.

2.3.2. Necessary and Sufficient Conditions for Strongly Consistent Global Checkpoint. Theorem 3 states that
M can be a strongly consistent global checkpoint if and only if there exists no S-path between any two ordered pair of
local checkpoints existing in M.

An Expert System for Analysis of Consistency Criteria in Checkpointing Algorithms 201

plisend, p2, ml, Sirecy,p2,m2, 9:send,p2, m3, 9irecy,p3,m7, 20
p2irecy,pl,ml,7:send,pl,m2, Sirecy,pd,ma3,3ieend,p3,md, 6:recy,p1,m3, 7 send,p 3, mo,
p3:eend, p2, m3, 10recy, p2,m4, 14 recy p2,mo, 11 send,p1,m7,5

FIG. 6. Example of an input file.

Process Marme @< sendfrecy », < Other Process », < Message Mame Tage, < Time Elapsed =

F1G. 7. Structure of a single line of the input file.

THEOREM 3. Let M be a set of local checkpoints from different processes. M can be extended to a strongly consistent
global checkpoint if an only if ~(M?S M) [1].

3. THE EXPERT SYSTEM IMPLEMENTATION. Based on the definitions and theorems as well as the neces-
sary and sufficient conditions described in section 2, an expert system was implemented to determine consistent, transit-
less, strongly consistent, and globally consistent checkpoints in a distributed environment. Moreover, some features for
evaluation purposes were included, such as determining the average number of checkpoints taken by a process, the num-
ber of globally consistent checkpoints in a time interval, and the number of messages sent and received for checkpointing
purposes.

The application is implemented in Java using the Java Expert System Shell (JESS) [4]. JESS is the Java version
of CLIPS (C Language Integrated Production System) [8]. The rule base of the expert system is created from rules
that determine various consistency criteria. A snapshot of the distributed system containing the time of the sent and the
received messages and the times of the checkpoints taken by each process involved in the computation is fed to the expert
system as a set of facts (input). On execution, the facts are evaluated against the rule base to determine the consistency
criteria. This section presents the structure of the expert system by discussing its various components at a greater detail.

3.1. Input and Display of Events. The presented expert system takes an ordered set of events, with respect to each
process, as its input. Fig. 6 illustrates a sample input file while Fig. 7 describes the generic structure of the contents of the
file consisting of send and receive events for a single process.

Each process’s event, presented in the input file, has four elements. The first element of each event is the event type
denoted by send, for a sent message, and recv, for a received message. The second element is the name of the process to
which a message is sent or from which a message is received; the third element is the name tag of the message. Finally,
the estimated time at which the send or receive events occurs is given. Time is represented by generic unit and it is up to
the user to decide the representation that is most useful; time is calculated not from the initiation of a process but from the
execution of the last event.

The file is then parsed and a graphical display of the communication events between the processes, as specified in the
input file, is demonstrated with arrows indicating the send and the recv events (Figure 8). Also, as the input file is parsed,
the local checkpoints are depicted based on the checkpointing scheme employed in the system. This is done through the
use of another input file called checkpointing file, which is formed either manually by the user or by the processes involved
in the distributed computation. Each line of this file represents the estimated time of checkpoints taken by a particular
process. In this paper, we have assumed that the checkpoints are taken before the send and after the recv events.

The Java implementation consists of several classes, but the most important ones are All_Processes and Process. The
All_Processes class has a java defined Vector of Process object. When the program begins execution the main method
of the class Checkpoints’ is called. The main method instantiates a CheckpointFrame object which then instantiates a
DrawingPanel object. The DrawingPanel object overrides the paintComponent method of the JPanel class. The paint-
Component method is where all the drawing to the JPanel is done. Inside the paintComponent method the parseFile
method of the All_Processes class is called. This is an important method that parses through the given input files and
builds N process objects, where N is the number of user defined Processes. Each Process object has an events’ vector, an
eventCoords vector, and a name. The name is taken from the input file (i. e. for Fig. 6 the names of the processes would
be P, P>, and P3). The events are also taken from the given input file, and each event is added to the Process class’s

202 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

= Global Checkpoint Application

File
p ; ; i i :
1 2 [T I
p2 g % L
3 fmd]
pd o E: vk
q] Il | #]
[] Consistent
[] Glabally Consistent
[] Transitless

FIG. 8. Illustration of the events and checkpoints of a distributed system consisting of three processes.

vector. Once the events are read in, then the coordinates of each event are defined (discussed later in this section) and
then are added to the Process class’s vector. Currently ten pixels are drawn for every time unit that the user defines. So if
the user puts in a 7 then 70 pixels are drawn from the last event to the current event. Moreover, as the input file is parsed,
local checkpoints are added to the events and eventCoords vector, by reading in the checkpointing file.

Once the All_Processes’ parseFile method is completed, the control returns to the paintComponent method of the
DrawingPanel class. The paintComponent method then uses the methods of All_Processes to examine each Process
object and its events and eventsCoords vector. The directed graph is drawn from the information given in the events and
eventsCoords methods of each Process object. The display depicted from the input file, shown in Fig. 6, is exhibited in
Fig. 8.

3.2. Converting the Events to JESS Facts. The input file is further interpreted in Java to produce vector points,
one vector point for each process. For instance, process P; is assigned vector point V; which consists of N coordinates for
N processes involved in the distributed system. The concept of vector clocks [9] is modified and utilized to assign values
to these vector points. The modified vector clock algorithm facilitates tracking concurrent events among processes and
therefore helps the expert system to apply the consistency criteria.

To further describe the vector points, a system with three processes involved in mutual communication is considered
in the following example. Since there are three processes involved, the vector point of process P;, V;, consists of three
coordinates, (V;1, Via, Vi3). Coordinate V;; acts as a counter that keeps track of the number of send and recv events of
process P; for process P;. Following are the rules used to assign values to each vector point, which, as was mentioned
before, is a modified version of vector clock algorithm.

VCI: Initially, all clocks are O on all components. VC2: P; sets V;[i] := Vj [i] + 1 just before time stamping an event.
VC3: P; includes t = V; in every message it sends to the other processes. VC4: P; receives a timestamp t from P;, and
then computes: Vi[j] := max(V;[j], t[j])

The only modification to vector clock algorithm is done for rule VC4. In the original vector clock algorithm, Vifj] :=
max(Vi[j], t[j]) is executed for j = I to N. However, in the modified version, it is executed only for process P; coordinate
from which P; is receiving the message. This is because of the importance of the pair wise evaluation of the checkpoints
for consistency and transitless evaluations in the rule base, which makes the foundation for other evaluations as well.
Fig. 9 displays the vector points for the events displayed in Fig. 8.

The vector points then are asserted directly as facts to JESS to be used to determine the pairs of consistent and tran-
sitless checkpoints. Fig. 10 illustrates the code that accomplishes the assertion task. These facts are the direct translations
of the vector points displayed in Fig. 9. They are then executed against JESS consistency and transitlessness rules that
are explained in sections 3.2 and 3.3. As an example, the fact for the vector point (100) in process P, would be (point
(process 1)(coordinates 1 0 0)(index 0)).

An Expert System for Analysis of Consistency Criteria in Checkpointing Algorithms 203

= Crz Cys Cia
P1 IV A
100 20 30 424
10 120 131 141 Cas Cus
P2 X% *—¥ H—%
£ Cn 31 361
Can Ca
P3 X % X X
001 042 063 084

FIG. 9. Vector points formed using a modified vector clock algorithm.

Rete r = new Rete();

r.clear();

String command = "(batch \™ + myPath3 + [prirules/consistent.CLP\")";

r.executeCommand{command);

Deftemplate template = r.findDeftemplate("point");

int I;

for (i=0;i<this.getMumProcesses(};i++){

Process p = this.getProcessAt{i);
Vector eventVector = p.getVectorEvents();
for (int j=0;j=eventVector.size(};j++)
1
Fact myFact = new Fact{template);
nt name = Integer.parseInt{p.qetMame().sub5tring(1});
myFact.setSlotValue("process", new Value (name, RU.INTEGER));
String eventString = (String)eventVector.elementAt{j);
ring[] eventSiringArr = eventString.split{":");
Integer triallnt = Integer.valueOf{eventSiringArr[1]);
yFact.setSlotValue["x",new Vaue(triallnt.intvalue(), RU.INTEGER));
ValueVector vv = new ValueVectar(); //set multislat points value
for (int k=1; k=eventStringArr.length; k++) {
vv.add(new Value(Inte ger.parselnt{eventStringArr[k]), RU.INTEGER));

}
myFact.setSlotValue("coordinates ", new Value(wv, RU.LIST));
myFact.setSlotValue("index",new Value(j,RU.INTEGER));
r.assertFact{myFact, r.getGlobalContext());

¥
}+//end of for loop to assert facts

FI1G. 10. Asserting vector points as facts into the expert system.

3.3. Mechanism for Consistency Criterion. Once the vector points are asserted as facts, the expert system checks
them against the rule-base and forms sets of consistent checkpoints. For instance, while dealing with processes P; and P,
our rule states that if the first coordinate for P; vector point is greater than that of P, and the 2nd coordinate for P, vector
point is greater than that of P; then the vector points are consistent. Likewise for processes P> and Ps, we test to see if
the 2nd coordinate for P, vector point is greater than that of P; and the 3rd coordinate for P; vector point is greater than
that of P, then the two points are consistent. The pattern for processes n and m is that if the n*" coordinate for process
n is greater than that of process m and the m*" coordinate of process m is greater than that of process n then the n'" and
mt" processes share consistent checkpoints. The consistent vector points are asserted as a new fact in the form of:
(deftemplate consistent (slot processl) (slot indexl) (slot process2) (slot index2))

204 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

{defrule consistent-rule
(point {process 7pl) {elements $7pointsl) (ndex Fidx1ln
(point (process ?p2) (elements $2points2) (ndex 7idx2)
==

(if (= 7pl 7p2) then

(bind PtempPtla (nthf 7pl £Fpoints1))

(bind MempPa (nthE 7pl £Ppoints2))

tbind PEmpPtlB {nthf 7p2 £Fpoints1))

(bind MempPEE (nthE 7p2 EFpoints2y)

(if {and{>= tempPtla PtempPt2A) (< e mpPtlE tempPt2B)) then
(assert (consistent (processl Ppl) (indexl Pidxl)
(process2 Pp2) (index2 Pid=230000

FIG. 11. The expert system rule for finding consistent local checkpoints developed in JESS.

= Global Checkpoint Application
File

q] I |
Consistent

[] Globally Consistent

[] Transitless

FI1G. 12. Locally consistent checkpoints; different colors indicate consistency between checkpoints of different process pairs.

Interpretation of the above fact template for consistency rules is as follows: Vector points of Process 1 and Process 2,
determined by index1 and index2 respectively, constitute a pair of consistent checkpoints. The expert system rule for
determining a pair of consistent checkpoints between any pair of processes in a distributed environment of n processes is
given in Fig. 11.

A snapshot of the output of the application, displaying the consistent checkpoints between every ordered pair of
participating processes, is given in Fig. 12. The program utilizes a color convention for assigning different colors for
different pairs of processes. In Fig. 12, system has selected green for consistent pairs between process 1 and process 2,
blue for consistent pairs between process 2 and process 3, and red for ordered pairs between process 1 and process 3.

3.4. Mechanism for Transitlessness Evaluation. Once the vector points are asserted as facts, the expert system
transitlessness evaluation rule forms sets of transitless checkpoints. When dealing with processes P, and P, the rule
states that if the 1st coordinate for PP; vector point is greater than that of P, then the vector points are transitless. Likewise
for processes P, and P the rule tests to see if the 2" coordinate for process P is greater than that of process Ps, and if
s0, then the two points are transitless. The pattern for any process n and process m is that if the nt" coordinate of process
n vector point is greater than the m‘" coordinate for process m then process n and m share a transitless checkpoint. The
transitless vector points are then asserted as a new fact in the form of:

(deftemplate transitless (slot processl) (slot indexl) (slot process2) (slot index2))

The rule for transitlessness between any two processes’ checkpoints among N processes is given in Fig. 13. A

snapshot of the Java application displaying the resulting transitless checkpoints is given in Fig. 14.

3.5. Mechanism for Strong Consistency Evaluation. Based on DEFINITION 3, strong consistency occurs when
checkpoints satisfy both the transitless and consistency criteria. The algorithms to find transitless and consistent check-

An Expert System for Analysis of Consistency Criteria in Checkpointing Algorithms 205

(defrule ransitless-rule
{point {process 7pl) (elements $7pointsl) {index Pidxl))
{point {process ?p2) (elements £7points2) (ndex 2idx2))
==
{if {= 7p1 7p2) then
{hind ?lEmpPtla (nthE 7pl $7points 1))
thind ?tempPt2a (nthE 7pl £7points2))
(if (== ?tempPtla ?tempPiea)
then
{assert (fransitless (processl 7pl) (ndexl ?idx1)
{process2 7p2) (index2 Pid«2)000

FIG. 13. The expert system rule for finding transitless local checkpoints.

= Global Checkpoint Application
File

[4

(] I | L]
[] Consistent

["] Globally Consistent

Transitless

FI1G. 14. Locally transitless checkpoints.

points are executed and then matching checkpoints are searched for. If the algorithms for transitlessness and consistent
checkpoints have the same checkpoints then those checkpoints are considered strongly consistent. Therefore, all check-
points that are found to be consistent and transitless will be displayed as strongly consistent. An example of the application
finding strongly consistent checkpoints is shown in Fig. 15.

3.6. Mechanism for Global Consistency. Globally Consistent checkpoints are composed of local consistent check-
points (DEFINITION 1). Once the vector points are asserted as facts, the expert system determines the locally consistent
checkpoints, as explained in section 3.3, and then checks the set of locally consistent checkpoints against the rule base to
determine globally consistent checkpoints. Only the complete sets of local checkpoints that include one local checkpoint
per process and in which every pair of the local checkpoints is consistent are retained (THEOREM 1). The rule respon-
sible for finding global consistent checkpoint is assigned a lower salience and therefore is executed after the execution of
the rule for consistent local checkpoints. Fig 16 displays the global consistencies in the given distributed system.

4. VERIFICATION. Since the presented expert system was developed based on the thermos, definitions and lem-
mas presented in section 2 and proven in [1]; therefore, theoretically, it should perform accurately. However, to further
verify the accuracy of the system, one hundred randomly formed distributed systems, with 50 processes in each, were
generated to evaluate the correctness of the expert system. In these randomly generated distributed systems, the average
number of messages set by each process, during the lifetime of the systems, was set to 20 messages, while the aver-
age number of the processes that each process communicated with was set to 10 (20 percent of the total number of the
processes in each system). The expert system produced accurate results for all of these cases.

In the rest of this section, we consider the example shown in Fig. 9 to verify the expert system capability to trace
consistent, transitless and strongly consistent global checkpoints.

206 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

= Global Checkpoint Application
File

1] Il |
Consistent

[] Glabally Consistent

Transitless

FI1G. 15. Strongly Consistent Checkpoints.

= Global Checkpaoint Application

File

pi : . Y

il 2 mes
i i S P
4 rmd

o 4
4] I
[] Consistent
Glohally Consistent
[] Transitless

F1G. 16. Globally Consistent Checkpoints.

4.1. Consistent Checkpoints. In this subsection, using Fig. 9, we examine the values assigned to the vector points,
corresponding to every local checkpoint, and observe the way these values influence the determination of consistent
checkpoints. Consider the ordered pair of local checkpoints (C11, Co1), with coordinates ({1,0,0},{1,1,0}), correspond-
ing to process P; vector point (V11, Via, Vis) and process P vector point (Va1, Vag, Va3) respectively. The JESS
rule for consistent checkpoints compares the V;; and V2 coordinates as was described before. Since the Vi; coor-
dinate of C7; is not less than the V51 coordinate of Cs, the ordered pair (C11, Cs1) is not asserted as consistent
checkpoint. For the ordered pair of local checkpoints (C;, C31), the rule in JESS will compare the V2, V;3 coor-
dinates of ({1,2,0}, {0,0,1}). This satisfies the conditions of the rule for consistent checkpoints because the Vas co-
ordinate of C'5; is greater than that of C'5; and the V53 coordinate of Co; is less than that of C5;; therefore, a fact
that says the ordered pair (Co1, C31) is consistent is asserted. Fig. 12 is a screen shot of all possible consistent lo-
cal checkpoints. Finding such pairs for all the processes will yield to the globally consistent checkpoints described in
section 3.5.

An Expert System for Analysis of Consistency Criteria in Checkpointing Algorithms 207

The assignment of the coordinate values (vector points) for each checkpoint is done in such a way that it eliminates
all the checkpoints that are not consistent and mark only those that are consistent. This satisfies the necessary condition
that no ordered pair of checkpoints in a globally consistent checkpoint should have a Z-path between them.

4.2. Transitless Checkpoints. For the determination of transitless checkpoints, a similar procedure of comparing
the respective coordinates of checkpoints in an ordered pair is followed, depending on which pair of processes is chosen.
In the ordered pair of local checkpoints (C11, Ca1), the coordinates are ({1,0,0},{1,1,0}). Since the receiving of message
my is recorded in Cy, the ordered pair is transitless. The transitless rule will now check for the V77 coordinate of C1 to
be greater than V51 of Cyq, since this is satisfied, (C71, Co1) is identified as transitless.

The assignment of the coordinate values for each checkpoint is done is such a way that JESS rules filters the pairs
that are not transitless. Finding such pairs to cover all the processes involved in the computation results in a globally
transitless checkpoint. Checkpoints that are consistent and transitless are determined as strongly consistent checkpoints
by the system.

4.3. Globally Consistent Checkpoints. The determination of globally consistent checkpoints is carried out in two
steps; firstly, determination of locally consistent checkpoints, and secondly, looking for sets of locally consistent check-
points that include at least one checkpoint per participating process. Extending the verification procedure explained in
sections 4.1 determines that the ordered pairs of local checkpoints namely (C14, Cas5), (Cas, Cs2) and (Csa, Ch4) are
locally consistent. Now from DEFINITION 1, we know that a set of checkpoints, if all of its pairs are consistent, becomes
a globally consistent checkpoint given that there exists a single checkpoint in the set for every process in the system. In the
above example, the three checkpoint pairs are consistent, and every process in the system has a checkpoint participated in
the pairs. Therefore, they form a global checkpoint as the expert system accurately detects. Following a similar procedure
the expert system traces all possible globally consistent checkpoints.

5. Conclusion and Future Work. The importance of fault-tolerant distributed and grid computing has attracted
many researchers to this area. Different checkpointing methodologies, as cost effective solutions for system recovery,
have been introduced for many year. This work presents an expert system that could be utilized for evaluating the correct-
ness of various checkpointing algorithms by detecting consistent, transitless, strongly consistent and globally consistent
checkpoints produced by recovery algorithms. Moreover, the expert system is capable of comparing features of check-
pointing algorithms by calculating, in a given time window, the average number of the checkpoints taken by a process, the
number of globally consistent checkpoints, the average number of checkpoints skipped by a process when rolling back
to a recovery line, and the average elapsed time when rolling back to a recovery line. It can also help to discover if a
checkpointing algorithm is suffering from domino Effect.

Currently new features are being added to the system one of which is to allow processes to supply their checkpointing
and message transmission data, in real time, so the determination of the consistency criteria is performed dynamically.
The expert system would also need to accommodate dynamic inclusion and exclusion of participating processes in the
distributed environment. We claim the presented expert system makes a considerable contribution to research in fault-
tolerant distributed computing by serving as an evaluator and a test-bed for checkpointing algorithms.

REFERENCES

[1] HELARY, J. M., AND NETZER, R. H. B., Consistency Issues in Distributed Checkpoints, IEEE Transactions on Software Engineering, vol. 25,
no. 2, pp 274-281, March/April 1999.

[2] MANIVANNAN, D. ET AL., Finding Consistent Global Checkpoints in a Distributed Computation, IEEE Transactions on Parallel and Distributed
Systems, vol. 8, no. 6, (June 1997), pp. 623-627.

[3] NETZER, R. H. B, AND XU, JIAN, Necessary and Sufficient Conditions for Consistent Global Snapshots, IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 2, Feburary 1995, pp 165-169.

[4] JESSTM, the Rule Engine for JavaTM Platform, http://herzberg.ca.sandia.gov/jess/docs/70/tableof_contents.html
Retrieved November 2004.

[51 CAo, J., J1A, W., JIA, X., AND CHEUNG, T, Design and Analysis of an Efficient Algorithm for Coordinated Checkpointing in Distributed
Systems, Advances in Parallel and Distributed Computing, Proceedings, (19-21 March 1997), pp 261-268.

[6] MANIVANNAN, D., AND SINGHAL, M, Quasi-Synchronous Checkpointing: Models, Characterization, and Classification, IEEE Transactions
on Parallel and Distributed Systems, vol. 10, no. 7, July 1999, pp. 703-713.

[7] Avrvisi, L., ELNOZAHY, E., RAO, S., HUSAIN, S. A., AND DE MEL, A., An Analysis of Communication Induced Checkpointing, Fault-Tolerant
Computing, Digest of Papers. Twenty-Ninth Annual International Symposium, 15-18 June 1999, pp 242-249.

[8] GIRRATANO, J. AND RILEY, G., Expert Systems Principles and Programming (Third Edition), Boston: Course Technology, Inc.

[91 BALDONI, R. AND RAYNAL, M., Fundamentals of distributed computing: A practical tour of vector clock systems, IEEE Distributed Systems
Online, vol. 3, no. 2, Feburary 2002.

208 Shahram Rahimi, Guruprasad Nagaraja, Lisa Gandy and Bidyut Gupta

[10] ELNOZAHY, E. N.; JOHNSON, D. B. AND ZWAENEPOEL, W., The performance of consistent checkpointing, IEEE Proceedings on Reliable
Distributed Systems, 5-7 October 1992, pp 39-47.

[11] NEOGY, S., SINHA, A. AND DAS, P. K., Checkpoint processing in distributed systems software using synchronized clocks, IEEE Proceedings
on Information Technology: Coding and Computing, 2—4 April 2001, pp 555 - 559.

[12] MANABE, Y.,A distributed consistent global checkpoint algorithm with a minimum number of checkpoints, IEEE Proceedings of the Twelfth
International Conference on Information Networking, 21-23 January 1998, pp 549-554.

Edited by: Marcin Paprzycki
Received: December 14, 2005
Accepted: October 24, 2006

