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IMPROVEMENT AND OPTIMIZATION OF MACHINE LEARNING ALGORITHMS
BASED ON INTELLIGENT COMPUTING

JINDI FU∗, XIAOJIE LIU†, PENGKAI MA‡, AND CHANGXIN SONG§

Abstract. In this paper, a sensor cloud data intrusion detection framework is proposed. The framework uses parallel discrete
optimization techniques for feature refining and incorporates machine learning principles to improve sensing cloud security. Firstly,
a set of optimal feature evaluation criteria is established, and a parallel discrete optimization feature extraction system is built to
reduce the data dimension and strengthen the stability of feature processing. Then, a widely used discrete optimization algorithm
is developed, proving its global convergence. The optimal feature set is obtained through parallel screening feature subsets. Finally,
using these features and distributed fuzzy cluster analysis, the intrusion behavior of the sensing cloud is accurately detected. This
method incorporates the concept of intelligent iterative evolution and self-regulating clustering strategy, which not only overcomes
the local optimal trap that the conventional fuzzy clustering algorithm may encounter but also realizes the automatic adjustment
of the number of clusters. The experimental data show that the intrusion detection algorithm performs excellently in providing
accurate intrusion determination results. Compared with other detection algorithms, the accuracy of anomaly detection and the
reduction of missing detection rate is significantly improved. In addition, the algorithm shows anti-interference solid ability and
can maintain stable performance in noisy environments.

Key words: Intelligent computing; Sensing cloud data; Discrete optimization algorithm; Machine learning; Algorithm im-
provement; Intrusion detection.

1. Introduction. The purpose of intrusion detection is to detect all kinds of attack intentions quickly and
accurately and to respond to them quickly. Abuse recognition and anomaly detection are two standard attack
methods. Anomaly detection using machine learning technology can effectively identify potential attacks, so it
has received more and more attention. Given the massive perception networks existing in large-scale and high-
dimensional perception networks, feature extraction technology is used in the literature [1] to extract highly
discriminative feature subsets from the perception networks. Scholars maximize the recognition accuracy to
reduce the complexity of the problem. In literature [2], the Markov chain method extracts feature subsets effi-
ciently by combining the maximum information coefficient with the symmetric uncertainty criterion. Literature
[3] proposes a criterion based on information increment. Irrelevant and redundant features are gradually elimi-
nated, and the target classification is realized. The above feature extraction method needs to be completed in
steps, so it is challenging to meet the real-time processing requirements in the processing process. So, scholars
began to use neural networks, rough sets, support vector machines, cluster analysis and other machine learning
features to realize the recognition of intrusion behavior. In the literature [4], the FCM algorithm is applied to
sensor networks, and an improved fuzzy clustering method, AGFCM, is proposed accordingly. Literature [5]
proposes a multi-attribute fusion model based on a genetic algorithm. Literature [6] introduces the learning
technique of eliciting C-means to improve its ability to identify sample sets correctly. However, it is easily
affected by the initial cluster center, local extreme value, cluster number presetting, etc. Literature [7] estab-
lished a graphical signal model according to the directional characteristics of each sensor. The smoothness ratio
of the image is obtained by processing the image with a low-pass filter. It evaluates the anomalies by statistical
inspection of the data in the network and combined with the decision threshold. However, this algorithm needs
to train many samples, which significantly disadvantages improving the algorithm’s operation speed. Literature
[8] uses K-Means to cluster data in the network and uses the K-nearest neighbor algorithm to transmit standard
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Fig. 2.1: Sensor Cloud architecture based on fog computing.

clustering information to lower-level nodes to partition abnormal data. However, this algorithm focuses on the
study of spatial correlation of data and does not effectively combine the statistical characteristics of traffic with
it. This results in low accuracy of anomaly recognition. This paper establishes a new perceptual cloud cluster
model by combining distributed fuzzy clustering and parallel discrete optimal methods to achieve effective and
reliable intrusion detection.

2. Perception-oriented fog source cloud system structure. A cloud-sensing architecture based on
fog computers is established. Cloud computing has enormous computing functions, which can conduct data
mining and analysis for massive data in massive perception networks. This provides a reference for the behavior
of various users [9]. The ”fog” technology is used to realize network computing extending from ”cloud” to ”edge.”
The system comprises multiple mobile nodes with certain computing functions to form a virtual network. It
can process, store and manage data autonomously or assist the cloud. Figure 2.1 is a schematic of a perceptive
cloud architecture based on fog computing.

2.1. Optimal feature extraction method based on parallel discretization.

2.1.1. Extracting feature subsets. There are n samples {ui}ni=1 in the data set S, and each sample
ui can be interpreted by m samples of Gi = (gi1, gi1, · · · , gim). And divide the data set S into z categories
Z = {zj}zj=1. The goal of feature extraction is to extract a subspace composed of t features from m feature
sets, so that it has similar recognition performance to the original data. The feature extraction vector P is:

P = (p1, · · · , pj , · · · , pm)

pj ∈ {0, 1}, PT 1 = t
(2.1)

pj = 1 means that the corresponding feature is extracted. If not, pj = 0. GiP
T =

∑t
j=1 ĝij is obtained after the

feature of vector P of ui is extracted, where E is the corresponding characteristic description after the feature
of ui is extracted [10]. The feature extraction matrix (ĝi1, ĝi2, · · · , ĝit) is determined. There is a corresponding
relationship between the extraction matrix E and P, and the element containing only t lines in the extraction
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Fig. 2.2: Schematic diagram of feature subset extraction.

matrix E is set to 1 :

Em×Σ =
(
PT , PT , · · · , PT

)
=


p1 p1 · · · p1
p2 p2 · · · p2
...

...
...

pm pm · · · pm

 =


0 0 · · · 0
1 1 · · · 1
...

...
...

0 0 · · · 0

 , ∥E∥2,0 = t (2.2)

The eigensubset Ĝ = {ĝ1, ĝ2, · · · , ĝt} is extracted by the feature extraction matrix E. Figure 2.2 depicts a
specific graph of the E extraction S feature (image cited in Low-latency and energy-efficient scheduling in fog-
based IoT applications). Visualization Ĝ = {ĝ1, ĝ2, · · · , ĝt} reflects the non-o elements of vector P corresponding
to the characteristic value of the sample, then the characteristic subset of the data sample can be extracted [11].
To better evaluate the feature subset G, the evaluation index ϕ(S) of the best feature subset is determined.

The best feature subset evaluation index ϕ(S) is:

ϕ(S) = min
P

∥∥∥∥φT (ΛE)(ΛE)Tφ

n2
− C

∥∥∥∥2
G

(2.3)

where C = (cij)z×x is a similar matrix between groups. Λ is a matrix of n × m. Where φ = (λij)n×x is the
association coefficient between the attribute and the class. λij ∈ [0, 1] represents the correlation between sample
ui and class zj . Use the method of maximum information to solve the λij problem. Variables are expressed in
terms of U = {ui, i = 1, 2, · · · , N} and V = {vi, i = 1, 2, · · · , N}, and defined in terms of mutual information
about U and V

MI(U, V ) =
∑
u∈U

∑
v∈V

p(u, v) lg
p(u, v)

p(u)p(v)
(2.4)

where p(u, v) is the combination possibility of U and V.p(u), p(v) is a function of the marginal probability. The
value range of U and V is divided into two parts: c and d. The combined space of U and V is divided into
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c×d grids, and then the histogram is used to estimate p(u), p(v), and the estimate MI(U, V )c,d of MI(U, V ) is
obtained. According to the different types of class c× d grid, the maximum mutual information MI(U, V )max

c,d

is introduced in Class c× d grid division. The maximum information factor is defined as:

MI(U, V ) = max
c×d≤D(N)

{
MI(U, V )max

c,d

log(c, d)

}
(2.5)

D(N) represents the maximum value of the grid, which is generally represented by D(N) = N0.6. Select
λij = MIC (ui, zj) when determining the more significant amount of information.

Proof that all the features in Λn×m are composed of a standardized central program, namely
∑n

i=1 gij =
0,
∑n

i=1 g
2ij = 1. If C ′ = n2C,D = φT (ΛE)(ΛE)Tφ, then:

ϕ(S) = min
P

1

n2
∥D − C ′∥2G =

min
P

1

n2
tr [(D − C ′) (D − C)] ⇒

ϕ(S) = min
P

1

n2
tr
(
DTD + C ′TC ′ − 2C ′D

) (2.6)

Since C ′TC ′ is a constant matrix, the minimum of ϕ(S) requires both minP tr
(
DTD

)
and minP tr

(
CTD

)
·

minP tr
(
DTD

)
is represented as follows:

min
P

tr
(
DTD

)
=

t∑
i,j=1

[(
ĝTi φ

) (
ĝTj φ

)]2
=

t∑
i,j=1

(
ĝTi
(
φφT

)
ĝj
)
⇒ min

P
tr
(
DTD

)
=

t∑
i,j=1

z∑
h

(⟨ĝi, Rh⟩ × ⟨ĝj , Rh⟩)2 ⇒

min
P

tr
(
DTD

)
=

t∑
i,j=1

=∑
h

n4δ4Rh
ξ2gi,Rh

ξ2ĝj ,Rh

(2.7)

Rh(h = 1, 2, · · · , z) is the element of the h line corresponding to the matrix φnx = of class zh; δ2Rh
is the standard

deviation of zh; ξĝi,Rh

(
ξĝj ,Rh

)
is the Pearson correlation between ĝi (ĝj) and zh.

∑z
h ξ

2
ĝi,Rh

ξ2ĝj ,Rh
reflects the

redundancy of the corresponding characteristics of ĝi and ĝj , and the minimum of minP
∑z

h ξ
2
ĝi,Rh

ξ2ĝj ,Rh
is

required for minP tr
(
DTD

)
=
∑t

i,j=1

∑z
h n

4δ4Rk
ξ2ĝi,Ri

ξ2ĝj ,Rh
to be optimal. That is, each element has the least

redundancy. Where maxP tr (C ′T ) is:

max
p

tr (CτD) = (ΛE)TφC ′ϕT (ΛE) =

t∑
i=1

ĝTi (φC ′φτ ) ĝi ⇒ max
p

tr
(
C−TD

)
=

t∑
i=1

ĝTi

(
2∑

i=1

2∑
i=1

RecoR
T
i

)
ĝi

(2.8)

∑2
i=1

∑2
l=1 RecerR

T
i fully embodies the similarity between attributes and the correlation between attributes

and categories. This preserves the original category associations to a maximum extent. The feature extraction
vector P and matrix E correspond [12]. After all the positions of pj = 1 in P are determined, a specific
representation of E can be obtained. Then, feature extraction is carried out.
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2.1.2. Construct the model of feature subset extraction. The iterative, evolutionary algorithm
is adopted to solve the optimal problem by imitating the life activity of organisms or the physical property
change of materials. This project proposes a discrete optimization method suitable for the existing intelligent
optimization methods [13]. It is used to solve ϕ(S) to obtain the optimal feature extraction vector P . This
project intends to use the parallel algorithm and Q-value discrete optimal method to classify Q − Pi, i =
1, 2, · · · , Q multidimensional data to obtain more robust and better classification effect. This can improve the
robustness and reliability of the algorithm. This paper adopts Pbost language and distributed fuzzy clustering
method. An initial particle population H = {Ui}Ni=1 with N scales is randomly generated in the solution space
Lm. Each particle Ui = (unl, ui2, · · · , uim) is a possible solution that evolves repeatedly until it reaches an
optimal solution.

In this discrete optimization algorithm, the correction method for particle Ui(t) is as follows:

Ui(t+ 1) =

{
Ui(t) + ∆, l1 ≥ κ
Ui(t), l1 < κ

∆ =


η1 ⊗ (Ui(t) ↔ Ui(t)) , l2 ≤ α1

η2 ⊗ (Ui(t) ↔ Ub=2(t)) + l2⊗
(Ui(t) ↔ U8(t)) , α1 < l2 ≤ α2

η3 ⊗ (Ui(t) ↔ Uj(t)) , α2 < l2 < 1, i ̸= j

(2.9)

where κ, α1, α2 is the Update control probability. l1, l2 is any random number in the interval (0, 1);C ↔ D
stands for individual C research on D; Where η1 ⊗ (↔) represents the size of the degree of learning, and the
larger the value of η1, the more significant the role of particle D on the evolution direction of C. To improve
the algorithm’s convergence, this project plans to divide H into several subgroups Hj , j = 1, 2, · · · , O. Each
subpopulation adaptively sets the size of α1, α2 and η1, η2, η3 according to the fitness of particles, and then
automatically adjusts the size of particle swarm to realize the real-time adjustment of learning objectives and
learning intensity of particles [14]. About the existence of subgroups Hj :

 α1 (η1) ∝ ln
(

max g(Ui(t))
g(Uk=α(t))

t
Tmax

+ 1
)

α2 (η2, η3) ∝ ln
(
2− maxUeHi

g(Ui(t))

g(Ubai (t))
t

Tmax

) (2.10)

where g(·) is the objective function value. Tmax is the maximum number of iterations. For Hj with better
fitness, the particle has a higher self-learning ability. That is, it evolves through its mutations, thus effectively
expanding the deep optimization space of the algorithm. For Hj with poor fitness, the particle will tend to the
optimal value of the population and the historical optimal value with a greater probability of accelerating the
evolution.

2.2. Implementation of sensing cloud intrusion detection. Test case ubul
i selects cluster centers

closer to itself as categories, and obtains Z sample categories S
(∞)
z , z = 1, 2, · · · , Z after all sample sets are

classified [15]. Because there is usually very little data for this to happen, it is very vulnerable when there is
only a small amount of data Snot

z . To further determine the data anomalies, the categories of suspected Ssax
=

and ordinary correction data sets are compared sequentially. If the following conditions are met:

min
H→Z

∣∣∣∣∑= (uvax
i − vvaxs )

|Slom
= |

−
∑

H∈SSN
(uj − vH)

|SH |
≤ θ

∣∣∣∣ (2.11)

Then it is inevitable that something abnormal has occurred in Stext
z . Where Z ′ is the number of classes

in the standard correction data set; vtext
z , vH is the cluster center of detection data classification Stext

z and
normal data classification SH respectively. |SH | represents the internal data size of the class.
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Fig. 3.1: Changes in carbon dioxide concentration values.

3. Simulation experiment.
3.1. Experimental environment. A greenhouse is taken as an example for experimental study. Con-

ventional multi-station environmental parameter measurement system adopts cable transmission mode, which
requires cable transmission when transmitting data, which increases the cost of system design, installation and
later maintenance [16]. Combine discrete optimization algorithms with machine learning to optimize the wiring
of communication and power supply to improve the facility’s operational efficiency. The system has important
theoretical and practical significance. A wireless sensor network of CO2 concentration in the greenhouse was
established using a discrete optimization algorithm and machine learning algorithm to realize online adjust-
ment of greenhouse gas concentration. The following is the dynamic function model of wireless sensor network
monitoring system:

xCO1
= RC −B(u) (3.1)

RC is the original CO2 content in the greenhouse and B(u) is the direct effect of photosynthetic efficiency
of crops in the greenhouse on soil carbon content. The content of CO2 showed a dynamic change with the
experiment. The content of CO2 was detected within 2 hours, and the corresponding results were obtained.
Figure 3.1 shows the change in C content in the greenhouse. The greenhouse covers an area of 300 m *1000 m
and is evenly arranged with 30x100 sensors in different directions. Then MATLAB is used as the test platform.
Image signal processing in reference [1] is compared with hierarchical clustering in reference [2].

3.2. Analysis of experimental results. The detection rate refers to the probability of accurately de-
tecting an anomaly, while the false alarm refers to the probability of being detected. A good anomaly detection
algorithm should have high and small false favorable rates to ensure the final result’s accuracy [17]. The dis-
creteness of a node is the probability of finding an anomaly when a node is in a good state. This project takes
the abnormal ratio of nodes in the network as the test target. The abnormal rate ranges from 5% to 25%. The
effect of the anomaly ratio of the three algorithms on anomaly detection is shown in FIG. 3.2 and FIG. 3.3.

It can be seen from Figure 3.2 and Figure 3.3 that when the number of detection rates is 25, the method of
the invention can obtain a detection rate of 94.48%. The detection rate of graph signal processing was 89.17%.
The stratified polymerization method was 84.58%. The detection rate of the three algorithms decreases grad-
ually with the increase of the node dispersion rate, while the false alarm increases continuously [18]. However,
the accuracy of the proposed algorithm is significantly higher than that of graph processing and hierarchical
clustering because the algorithm uses the discrete optimization algorithm in the cloud computing environment
to remove excess information in the data and thus improve the accuracy of anomaly detection. Next, the
amount of node energy lost when three methods are used to detect data anomalies is analyzed. As shown in
Figure 3.4, node power consumption gradually increases with test times [19]. The proposed algorithm requires
the lowest power consumption, followed by hierarchical clustering, and the last is graph signal processing. It is
proved that the algorithm proposed in this paper can complete real-time monitoring of sensing data with the
lowest power consumption.

Figure 3.5 compares the data anomaly detection time of the three methods. The number of tests is 300,
and the comparison of abnormal data detected by the three methods is shown in Figure 3.5 as the average time
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Fig. 3.2: Comparison of data anomaly calculation detection rates.

Fig. 3.3: Comparison of false alarm rates of data anomaly detection.

Fig. 3.4: Comparison of energy consumption of abnormal detection nodes.

of each cycle. The algorithm in this paper does not change the anomaly detection time of data and has good
stability. Its detection time is minimal and it has a good application prospect.
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Fig. 3.5: Comparison of data anomaly detection time.

4. Conclusion. In this paper, an innovative sensor cloud intrusion detection algorithm is proposed, which
cleverly combines the characteristics of discrete optimization algorithm (DOA) and machine learning technology
and effectively copes with the challenges of large data scale, high dimension and variable intrusion behavior
in the sensor cloud environment. The optimal feature combination is extracted by parallel feature subset
screening, which further enhances the detection ability of the algorithm. Finally, using distributed fuzzy
clustering technology and intelligent iterative evolution ideas, the algorithm realizes the automatic partition
of cluster numbers while avoiding local optimization, thus significantly improving the efficiency and accuracy
of intrusion detection. By defining the optimal feature evaluation index and constructing the parallel discrete
optimization feature extraction framework, this paper successfully reduces the data dimension and improves
the robustness of feature extraction, thus laying a solid foundation for subsequent intrusion detection.
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