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LOAD DEMAND PREDICTION BASED ON IMPROVED ALGORITHM AND DEEP
CONFIDENCE NETWORK

WEI XU∗, YI YU †, YAQIN QIAN ‡, XU HUANG §, MING ZHANG ¶, AND ZHONGPING SHEN ∥

Abstract. To address the issue of inaccurate load forecasting amidst the advancing smart grid technology and the widespread
integration of various demand-side resources like controllable loads, distributed energy sources, and energy storage, the author
proposes a deep confidence network based on improved algorithms for load demand forecasting. Firstly, the VMD algorithm is
used to decompose the load data into different intrinsic mode functions (IMFs), Then combine the DBN network to predict each
IMF, Finally, overlay the prediction results of each part to obtain the prediction results of the VMD-DBN model. The experimental
results indicate that: The PSO-DBN model has good prediction results and fast convergence speed in power load forecasting. The
MAPE is 1.03%, and the RMSE is 9.35MW, which verifies that the method has good prediction accuracy. Compared to the single
use of DBN method and the combination of Empirical Mode Decomposition (EMD) DBN method, the proposed method by the
author has a significant improvement in prediction accuracy.
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1. Introduction. Short term load forecasting, as the foundation of daily power grid planning, is an
indispensable and important part of safe power operation [1]. With the reform and development of electricity,
improving the accuracy of short-term load forecasting has become the primary task of researchers in this field.
It is of great significance for how to arrange scheduling plans, ensure reliable operation of power systems, and
maximize economic benefits [2]. The past is a prophet of the future, and the basic principle of forecasting lies
in fully learning the past. Therefore, the premise of load forecasting is also to predict the historical data of
regional electricity loads. The amount of historical data required varies depending on the prediction period
(the two are usually in a certain positive proportion), and combined with local politics, economy, meteorology,
social events that affect electricity consumption, and other factors that can significantly affect electricity use,
explore the necessary potential connections between changes in electricity loads and these influencing factors,
in order to find a certain future development law and trend of electricity loads [3].

Short term load forecasting is of great significance for the optimal combination of units, economic dispatch,
and optimal power flow of the dispatch department, especially for the current and future electricity market. Pre-
cise load forecasting enables strategic scheduling of power generation units, optimizing their efficiency and the
economic viability of grid operations. This, in turn, fosters stability and security within the power grid. Within
the smart grid framework, the integration of controllable loads, distributed energy sources, energy storage, re-
spond to demand in a flexible and diverse manner, enhancing load transfer capabilities and expanding the time
range for transfer [4]. In the electricity market environment, users adjust controllable loads, distributed power
sources, and energy storage resources reasonably based on different price signals and incentive mechanisms with
the goal of electricity economy, changing load characteristics and changing patterns. In short-term electricity
market forecasting, it’s crucial to factor in diverse demand-side resources to enhance accuracy. As the power
grid expands and information technology advances, smart grid dispatch systems are becoming more adept at
collecting vast amounts of data on loads and related factors, fueling exponential growth in data availability [5].
However, the load forecasting methods in the above literature are mostly shallow three-layer networks, which
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Fig. 3.1: RBM Structure

are difficult to handle the massive load dataset of the power grid today. Deep belief network (DBN) is an
efficient deep learning algorithm composed of several stacked restricted Boltzmann machines (RBMs), which
can be used for unsupervised learning and effectively process large power load data [6,7].

2. Literature Review. The flexible scheduling of controllable loads, distributed power sources, and en-
ergy storage, which are widely connected and participate in the electricity market, will inevitably affect the
changes in electricity demand. Therefore, the author first constructs a contract based generalized demand side
resource optimal scheduling model for three controllable resources: load curtailment (LC), load shift (LS), and
energy storage (ES) [8]. This model aims to maximize the revenue of load aggregator (LA) and, under various
constraints of the contract, solves the optimal scheduling strategy for generalized demand side resource partic-
ipation in the electricity market based on real-time electricity prices. Yu, M. et al. introduced a short-term
load forecasting model merging Fuzzy Exponential Weighting (FEW) with Improved Harmonic Search (IHS)
algorithms. They validated the model’s accuracy using fitness functions as evaluation criteria. Error analysis
showed the model’s effectiveness in predicting short-term electricity load data with strong stability and precision,
offering valuable insights for implementing short-term forecasting in various industrial sectors[9]. To address
data imbalance in ultra-short-term AC load forecasting, Tian, Z. et al. introduced a resistance-capacitance
model featuring a two-phase parameter identification scheme[10]. In terms of short-term load forecasting in the
power system, Jian, L. I. et al. tested a mutation model of RNN-LSTM. It effectively solves the problem of
gradient explosion and disappearance caused by inputting a large amount of data in classical RNN [11]. Gao,
W. et al. crafted a short-term load forecasting framework specifically tailored to accurately predict the cooling
load of office buildings. They validated the framework’s performance by assessing its ability to predict cooling
loads, highlighting the importance of identifying key input features to enhance predictive accuracy[12].

Deep Belief Networks (DBN) are unsupervised learning models that converge faster and have higher pre-
diction accuracy compared to traditional BP neural networks. A load forecasting algorithm based on DBN
was proposed, combined with the fast optimization ability of particle swarm optimization, to achieve fast and
accurate prediction of missing power data. Perform VMD on load data to obtain multiple sub sequences with
distinct features, combine them with DBN prediction, and overlay each prediction result. By comparing the
prediction results of a single DBN method and an EMD DNN prediction method, it was verified that the
proposed method can explore the potential patterns of load data, reduce the computational scale, and reduce
the generation of false IMFs, thereby improving prediction accuracy.

3. Method.

3.1. Restricted Boltzmann Machine. Deep Belief Networks (DBNs) consist of multiple Restricted
Boltzmann Machines (RBMs) stacked together. Each RBM in the model comprises interconnected hidden and
visible layers arranged in a random combination. The connections between units in the hidden and visible
layers are fully linked, facilitating robust unsupervised learning for data. The network structure is depicted in
Figure 3.1, illustrating the absence of connections within individual hidden and visible layers.

If RBM uses v to represent the visible layer and h to represent the hidden layer, then the energy equation
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of the system is

E(v, h|θ) = −
m∑
i=1

aivi −
n∑

j=1

bjhj −
m∑
i=1

n∑
j=1

viwijhj (3.1)

In the formula, vi represents the state of visible layer unit i; hj is the state of hidden layer unit j; ai is the bias
of visible layer unit i; bj is the bias of hidden layer unit j; The number of all units in the visible layer m; n is
the number of all units in the hidden layer; wij is the connection weight between units i in the visible layer and
units j in the hidden layer; θ is the set of all parameters {ai, bi, wij}.

The joint probability distribution of a given state is

P (v, h|θ) = e−E(v,h|θ)

Z(θ)
(3.2)

In the formula: Z(θ) is the partition function, represented as Z(θ) =
∑

v

∑
h e

−E(v,h|θ).
Due to the independence between the units in the visible layer and the units in the hidden layer of RBM,

its conditional probability distribution is:

P (v|θ) =
∑

h e
−E(v,h|θ)

Z(θ)
(3.3)

P (v|θ) =
∑

v e
−E(v,h|θ)

Z(θ)
(3.4)

RBM adopts unsupervised greedy training algorithm for parameter training, with the training objective of
maximizing the logarithmic likelihood function of the model, ai, bj , and lgP (v|θ). By taking partial derivatives
of the likelihood function and combining Gibbs sampling, the updated iteration formulas for the parameters
ai, bi and wij can be obtained as follows:

∆ai = ϵ(< vi >data − < vi >recon) (3.5)

∆bi = ϵ(< hi >data − < hi >recon) (3.6)

∆wij = ϵ(< vihj >data − < vihj >recon) (3.7)

In the formula, < · >data represents the mathematical expected value of the model distribution; represents
the mathematical expected value of the distribution after further reconstruction of the model; < · >recon ϵ is
the learning rate [13,14].

3.2. Deep Confidence Network. DBN consists of multiple RBMs arranged in layers, with each RBM’s
hidden layer serving as the visible layer for the subsequent RBM in the stack. This hierarchical structure,
depicted in Figure 3.2, facilitates the learning of increasingly abstract representations of data as it progresses
through the network [15]. DBN adopts a greedy layer by layer training algorithm to complete the cognitive and
generation process of the model from bottom to top, and then completes backpropagation training and weight
fine-tuning from top to bottom through feedback learning of the classic BP neural network at the top.

3.3. Training models and learning algorithms. The time series prediction model adopted by the
author is based on the DBN neural network algorithm. The model uses a DBN algorithm composed of multiple
RBMs stacked together to perform forward unsupervised learning on the initial weights and thresholds. The
greedy layer by layer training algorithm iteratively optimizes the various initial parameters of the training
model, and then fine tunes the model parameters through classical feedback learning, so that the training
results converge to the optimal. The model training process is shown in Figure 3.3.
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Fig. 3.2: DBN Model Structure

Fig. 3.3: DBN model training process

According to the temporal characteristics of load data, the experimental data is treated as a set of temporal
data for model training. Assuming that the algorithm model has the i#-th input variable x∗

i and the i∗-th
output variable y∗i =x(t) at time t, among them, x(t) represents the timing value of the current time t, which
is to use the value of that time as the output and the value of the previous t̂ time periods as the input for
prediction, that is

x∗
i = [x(t− t̂), x(t− t̂+ 1), · · · , x(t− 2), x(t− 1)] (3.8)

The specific training steps for the prediction model are as follows:
Step 1: Analyze and process the original power load data, and use the standard score formula to normalize the

data to the [0,1] interval, as shown in equation 3.9. The normalized data can to some extent accelerate
the convergence speed of the model and improve its accuracy.

x∗ =
x− x

σ
(3.9)
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In the formula, x∗ represents the normalized data; x is the original experimental data; σ is a vector
where each element represents the mean of the original data; � is the standard deviation of the original
experimental data.

Step 2: Use a DBN model stacked from multiple RBM models for data training, set the number of hidden
layers n, and the learning rate of the BP neural network model during backpropagation training ϵbp and
momentum factor α, and provide the number of DBN training times and the number of backpropagation
algorithm training times. The condition for exiting the model iteration is to reach the maximum number
of iterations or the expected error.

Step 3: To accomplish the unsupervised learning process in the DBN model, a greedy layer-by-layer training
algorithm is employed. As the efficiency of Gibbs sampling diminishes with more sampling steps, the
author opts for the Contrastive Divergence (CD) algorithm, introduced by Hinton, for swift parameter
estimation.

The CD algorithm can obtain sufficiently good training model parameters through a one-step sampling
method [16]. Based on the symmetric structure and independence of the model, the activation probability
P (h|v0) and the initial state h0 of the hidden layer are obtained by using the initial state v0 of the visible layer.
After a step of Gibbs sampling, v1 and h1 can be obtained based on the initial state of the model. The specific
sampling process is as follows.

The sigmoid function is used as the excitation function between the neurons in the hidden layer of the
model to standardize the data. The formula for the processed function is

σ̂(ẏ) =
1

1 + e−y
(3.10)

In the formula, ẏ represents the data to be subjected to sigmoid standardization processing.
From this, we can obtain the activation probability distribution of the visible layer and the hidden layer

when they are turned on:

P (hj = 1|v, θ) = σ̂(bj +
∑
i

viwij) (3.11)

P (vj = 1|h, θ) = σ̂(aj +
∑
i

wijhj) (3.12)

Finally, the various training parameters of the model can be updated according to equations 3.5-3.7 and
3.13-3.15 as follows:

wk+1
ij = wk

ij +∆wij (3.13)

ak+1
ij = aki +∆ai (3.14)

bk+1
ij = bkj +∆bj (3.15)

In the formula, k represents the number of iterations.
3.4. Prediction Model Based on Particle Swarm Optimization. The Particle Swarm Optimization

(PSO) algorithm finds wide application in power data prediction tasks. It enhances the convergence speed
and accuracy of training models by ensuring they reach global optimal solutions. PSO optimizes and updates
model parameters, simulating the collective foraging behavior of birds. In this analogy, each particle in the
PSO model represents an individual bird, navigating the solution space by adjusting its position and move-
ment speed to find local optimal solutions. The particle swarm obtains a global optimal solution by sharing
information between each particle. Assuming that the position of the k-th iteration of the particle swarm is
Zk
i = (Zk

b1, Z
k
b2, · · · , Zk

bd), the speed of movement is Uk
b = (Uk

b1, U
k
b2, · · · , Uk

bd), the optimal position of each
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particle is represented as P k
b = (P k

g1, P
k
g2, · · · , P k

gd), and the optimal position of the entire particle swarm is rep-
resented as P k

b = (Pb1, Pb2, · · · , Pbd), the update formula for the position and movement speed of each particle
can be obtained as follows:

Zk+1
bd = Zk

bd + Uk+1
bd (3.16)

Uk+1
bd = ωUk

bd + c1r1(Pbd − Zk
bd) + c2r2(Pgd − Zk

bd) (3.17)
Building on the characteristics of the PSO algorithm, the author introduces the PSO-DBN model. This

model optimizes the parameters further following the unsupervised training of DBN. The formula involves
model weights, learning factor constants (c1 and c2), random numbers (r1 and r2) within [0,1], the number
of particles (d), and the number of iterations (k). Through this approach, the PSO-DBN model refines the
parameter settings, enhancing the overall performance of the system. The initial particle swarm position of the
PSO model is trained using DBN parameters, and then PSO iteratively optimizes the regression training layer
of the model. The training parameters are the connection weight w1 and bias of the first layer, respectively
�1, as well as the connection weight w2 and bias θ2 of the second layer, the update formula for the training
parameters is:

wk+1
1 =

 Zk
b1 · · · Zk

bs1... . . . ...
Zk
b(s1s2+s1−1) · · · Zk

b(s1s2+2s1)

 (3.18)

θk+1
1 =

[
Zk
b(s1s2+2s1+1) · · ·Z

k
b(s1s2+3s1)

]
(3.19)

wk+1
2 =

[
Zk
b(s1s2+2s1+1) · · ·Z

k
b(s1s2+3s1)

]
(3.20)

θk+1
2 = Zk

b(s1s2+3s1+1) (3.21)
In the formula: k is the number of iterations; s1 is the number of units in the first layer of DBN; s2 is the
number of units in the second layer of DBN [17,18]. The PSO-DBN model training flow is shown in Figure 3.4.

4. Results and Discussion. Modeling and analyzing the distribution network load data obtained from
the project, mainly focusing on model training and prediction of historical values of distribution network load
detection values. Due to the differences in data between different equipment points in substations, in order to
make the prediction model universal for different point data in substations, the measurement data of a point
in the database is selected as the experimental object, and the experimental data is normalized to improve
the training speed and accuracy of the training model. In order to better evaluate the predictive accuracy of
the prediction model in power load forecasting, two indicators, Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE), were used to analyze the accuracy of the experimental results[19-20]. The
specific indicators are calculated as follows:

ÊRMSE =

√∑
(xe − x′

e)
2

ne
(4.1)

ÊRMSE =
1

ne

∑
|xe − x′

e

xe
| (4.2)

In the formula, xe represents the real data; x′
e is the predicted data; ne is the total number of data.

The simulation comparison results between two prediction models proposed by the author and the BP
neural network model are shown in Table 4.1.

Figure 4.1 shows the convergence curves of three models. Based on the simulation results in Table 1 and
the time complexity of the three models, it can be seen that the PSO-DBN model has good prediction results
and fast convergence speed in power load forecasting. The MAPE is 1.03%, and the RMSE is 9.35MW, which
verifies that the method has good prediction accuracy.
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Fig. 3.4: PSO-DBN model training process

Table 4.1: Simulation Results

training model RMSE MAPE
BP 2.2338 0.0052

DBN 1.3063 0.0031
PSO-DBN 1.2763 0.0028

5. Conclusion. The author proposes a load demand prediction based on an improved algorithm using deep
confidence networks. The participation of a large number of generalized demand side resources in the electricity
market has higher requirements for short-term load prediction accuracy. At the same time, the massive dataset
generated by the smart grid dispatch system provides a data foundation for the use of deep learning. Hence,
the author initially integrates generalized demand side resources into market operations via load aggregation
merchants, establishing a contract-based scheduling model for generalized demand side resources to derive
optimal scheduling strategies. Then, the optimal scheduling scheme for generalized demand side resources is
used as input for a load prediction model. In this paper, a DBN short term load forecasting model, which
includes generalized demand side resources, is developed and compared with the BP neural network and the
DBN model. The empirical results demonstrate the efficacy of the demand response resource scheduling model,
centered on electricity price contracts, in maximizing revenue for load aggregators. It effectively adapts to
real-time market electricity prices, determining optimal participation times for various resources. Moreover,
integrating the optimal scheduling plan for generalized demand side resources into the prediction model proves
advantageous, enhancing prediction accuracy and reducing errors.
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Fig. 4.1: Convergence curves of three models
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