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THE APPLICATION OF ARTIFICIAL INTELLIGENCE TECHNOLOGY IN HUMAN
CENTERED MANUFACTURING IN INDUSTRY 5.0

JIAWEI ZHANG∗

Abstract. In order to clarify the cognitive process of human beings and the influencing factors of human errors in the process of
manufacturing capability evaluation, quantitatively analyze the reliability of human beings in the manufacturing process, and more
accurately evaluate the manufacturing capability of production lines, the author proposes the application of artificial intelligence
technology in human centered manufacturing in Industry 5.0. In response to the dynamic nature of data in the operation process
of manufacturing production units and the varying importance of indicators to evaluation objects at different times, the author
proposes an objective weighting method that combines indicator sensitivity with entropy weight method to solve the problem of
existing weighting methods only considering the fluctuation of indicator data and ignoring the importance of evaluation indicators
to all evaluated objects. The combination of subjective weights established by the Analytic Hierarchy Process (AHP) is used to
obtain the final combination weight of indicators. At the same time, evaluate and analyze the factors that contribute to human
error behavior to obtain the human reliability of the unit, and introduce it into the comprehensive evaluation of unit manufacturing
capability. Based on the time series data in the evaluation, a time dimension factor combined with grey correlation analysis is
introduced to conduct a dynamic comprehensive evaluation of unit manufacturing capacity in time series, and the production unit
manufacturing capacity index is obtained. The example results show that 10 indicator data from the past 10 time periods were
selected for evaluation, and the closer the time period, the more important the data is. The time factor for each time period is
(0.0048, 0.0068, 0.0126, 0.0266, 0.0582, 0.0704, 0.1232, 0.1685, 0.2212, 0.3070). The unit capability value obtained through dynamic
horizontal and vertical comprehensive evaluation is most consistent with the capability value obtained by the author’s method.
Under the four methods, although there are differences in the capacity values of each unit, the fluctuation is within a reasonable
range, indicating that the author’s evaluation method is reasonable and feasible. The feasibility and effectiveness of the evaluation
method have been validated.
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1. Introduction. Human centric/centered manufacturing, also known as people-oriented manufacturing,
abbreviated as human-centered manufacturing, mainly involves two subjects - humans and machines, as well
as their relationship - human-machine relationship . With the emergence and development of new generation
information and communication technology (ICT)/artificial intelligence (AI) technologies such as the Internet
of Things, cloud computing, Cyber physical systems (CPS), big data, and deep learning, the arrival of Industry
5.0, which mainly relies on intelligent manufacturing, has been promoted. New types of operators - operator
5.0 and holographic perception intelligent connected autonomous intelligent machines have emerged. The
human-machine relationship (especially human-machine interaction) has evolved from the initial physical direct
interaction between a single person and a single machine to the system collaboration of virtual and real fusion
between humans and objects. Human in the loop (HiL) is no longer limited to the physical loop, and concepts
such as Human on the loop (HoL) and Human out of the loop (HofL) have emerged [1,2]. In fact, HiL, HoL, and
HofL correspond to the physical space, information space, and social (community) space of human intelligent
manufacturing, ultimately forming a trinity of autonomous social cyber physical production system (SCPPS);
Especially the development of intelligent manufacturing in Human CPS (H-CPS) promotes the development of
people-oriented intelligent manufacturing [3].

Compared with the world’s advanced level, the manufacturing industry has problems such as being large
but not strong. The gap in independent innovation ability, resource utilization efficiency, industrial structure
level, informatization level, quality and efficiency is particularly obvious. The task of industrial intelligence
transformation and upgrading and leapfrog development is urgent and arduous [4]. The continuous development
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Fig. 1.1: Artificial Intelligence Technology

of new generation Internet, artificial intelligence, digital twins and other technologies has continuously injected
strong power into the development of intelligent manufacturing. The excessive pursuit of informatization and
digitization in production models can no longer meet the needs of complex operations such as flexible production
workshops and personalized customization of users. The difficulties in intelligent manufacturing are becoming
more prominent, so the production trend urgently needs to be changed, and human beings as a key factor
cannot be ignored anymore [5]. The concept of Industry 5.0 has gradually attracted people’s attention. As a
continuation and supplement to Industry 5.0, Industry 5.0 not only focuses on optimizing industrial structure
and improving automation levels, but also places people at the center of the manufacturing industry, allowing
technology to actively serve and adapt to people, and paying more attention to human values and feelings.
Human centered intelligent manufacturing should consider the safety and happiness of workers, dispel their
concerns and concerns about the ”machine replacement” brought about by the industrial revolution, and allow
labor to return to the factory [6] (Figure 1.1).

2. Literature Review. In the blueprint of intelligent manufacturing, human-machine collaboration has
become the mainstream mode of production and service. Due to the deep collaboration between humans and
machines, the tasks and requirements of humans in intelligent manufacturing systems have undergone significant
changes. Although humans no longer bear repetitive tasks, they remain the central link of the decision-making
loop system and always occupy a dominant position. The deep connotation of human-machine collaboration is
the integration of human-machine intelligence, which represents the need for humans and machines to jointly
complete designated tasks. In the process of completing dynamic job tasks, the manufacturing system needs
to keep pace with the staff, face dynamic job requirements, adapt resources and cooperate autonomously to
achieve coordinated production. The intelligent manufacturing development theory of human cyber physical
system (HCPS) proposed by Rannertshauser, P., clarifies a technological system dominated by physical systems
(machines, robots, processing processes), information systems, and human decision-making [7]. By transferring
part of human perception, analysis, and control functions through information systems, it can replace most of
human physical and mental labor.

Compared with the automotive industry, manufacturing tasks and processes in fields such as aerospace,
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shipbuilding, and construction are too complex and require high assembly accuracy. Currently, manual oper-
ations are still relied upon, so it is necessary to conduct research on human-machine collaboration. Assisting
humans with collaborative robots to complete complex tasks, maintaining optimal levels of mental and physical
strength, and balancing the demand for cognitive resources in the brain with the supply of cognitive resources
to the task, avoiding the negative impact of overload and underload on operators, reducing human burden,
improving task execution efficiency and production safety. Froschauer, R. studied the relevant algorithms for
controlling cooperative robots using electromyographic signals [8]. Romero, D. explored the effectiveness of
guiding gestures in human-machine collaboration scenarios in the industrial field [9]. The ”Intelligent Unit Pro-
duction Line for Human Machine Collaboration” launched by Romero D integrates advanced technologies such
as artificial intelligence, Internet of Things, and big data analysis. It aims to improve production efficiency, flex-
ibility, and quality for multi variety and small batch production modes. Through mutual perception between
humans and machines, ultra flexible production can be achieved on the same site through complementarity
and assistance [10]. The ”Intelligent Flexible Production Line Using Robots to Produce Robots” launched by
Zhang R provides a stable and efficient reference sample for the human-machine cooperation application of
collaborative robots in the industrial production field through modular design and collaborative production
methods [11].

The author studies a dynamic evaluation method for unit level manufacturing capability based on infor-
mation sensitivity at the unit level. Firstly, a production unit manufacturing capability evaluation model is
established, and then human reliability issues are considered in the unit capability evaluation. Static grey
correlation analysis is extended to dynamic decision-making, and indicator sensitivity weights are used to mod-
ify and assign weights, time dimension factors are introduced to obtain the unit’s various capability values
and comprehensive manufacturing capability values at each time step, based on time series data, the total
manufacturing capability of each unit is obtained.

3. Research Methods.
3.1. Dynamic evaluation model for manufacturing capacity at the production unit level. Dur-

ing the production process of manufacturing system production units, each processing state will change with
time, and the evaluation index values are also constantly changing. Therefore, the capacity value of the unit is
dynamically changing at different times [12]. The static evaluation method mainly involves a two-dimensional
evaluation of the decision object at a single moment, which only includes the decision space and the target
space, and cannot reflect the characteristics over a period of time. Therefore, in addition to evaluating the
decision space and target space dimensions, the production unit level manufacturing capacity also needs to be
extended to consider time and space, that is, to dynamically evaluate the production unit level manufacturing
capacity from the three dimensions of time, indicators, and goals [13].

In the process of evaluating unit capabilities, the focus is on the establishment of evaluation indicators
and the generation of manufacturing capability evaluation results. In order to dynamically evaluate unit
level capabilities, it is necessary to consider the indicator data of the entire time series. Let the decision
solution set U = {u1, u2, · · · , un} consist of n manufacturing unit objects to be evaluated, the indicator set
P = {p1, p2, · · · , pm} consists of m evaluation indicators. The manufacturing indicator data from nearly N
time points in the unit manufacturing process is used as the evaluation basis data. If the jth attribute value of
the evaluation unit ui at time point tk(k = 1, 2, · · · , N) (or stage) is pij(tk), then the unit evaluation indicator
data chronological list can be formed as shown in Table 3.1.

In the process of dynamically evaluating the manufacturing capacity of production units, it is necessary to
first conduct a two-dimensional static evaluation at a fixed time, and then comprehensively evaluate the static
evaluation results in the time dimension. For the evaluation of dynamic 3D space, commonly used 3D evaluation
operators include Time Order Weight Average operator (TOWA) and Time Order Weighted Geometric Average
operator (TOWGA) [14]. The time-series weighted average operator first evaluates at each time step, and then
evaluates the time dimension; The temporal geometric mean operator evaluates the time dimension and then
reduces it to evaluate the indicator dimension. The author uses a time-series weighted average operator to
evaluate the manufacturing capacity of production units in three-dimensional space.

Based on the index time sequence list established in Table 3.1, at time yi(tk) =
∑m

j=1 ajpij(tk), k =
1, 2, · · · , n, the comprehensive evaluation function of production unit iu based on the weighted model can be
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Table 3.1: List of Index Time Series

unit t1 t2 · · · tN
p1, p2, · · · , pm p1, p2, · · · , pm · · · p1, p2, · · · , pm

u1

u2

...
un

p11(t1) p12(t1) · · · p1m(t1)
p20(t1) p21(t1) · · · p2m(t1)

...
...

...
...

pn1(t1) pn2(t1) · · · pnm(t1)

p11(t2) p12(t2) · · · p1m(t2)
p20(t2) p21(t2) · · · p2m(t2)

...
...

...
...

pn1(t2) pn2(t2) · · · pnm(t2)

· · ·

p11(tN ) p12(tN ) · · · p1m(tN )
p20(tN ) p21(tN ) · · · p2m(tN )

...
...

...
...

pn1(tN ) pn2(tN ) · · · pnm(tN )

described as follows 3.1:

yi(tk) =

m∑
j=1

αjpij(tk), k = 1, 2, · · · , N ; i = 1, 2, · · · , n (3.1)

In the formula, α = {α1, α2, · · · , αm} is the weight corresponding to each evaluation indicator, and it
satisfies the following equation 3.2:

m∑
j=1

αj = 1, 0 ⩽ αj ⩽ 1 (3.2)

For the calculation of indicator weights, it is usually necessary to pay attention to both people’s subjective
experience information and the information brought by objective data itself. Therefore, a combination of
subjective weight and objective weight is used to assign weights to the indicators. If the subjective weight value
is w′ and the objective weight value is w”, the combination weight of the indicators is as follows 3.3:

αj =
w′

j ∗ wj”∑m
j=1 w

′
j ∗ wj”

(j = 1, 2, · · · , n) (3.3)

The author uses the sensitivity weight of indicators to adjust the objective weight, as the commonly used
objective weighting method often only focuses on the fluctuation of the indicator’s own data and does not pay
attention to the impact of indicator changes on the overall indicator set. In order to more accurately reflect
the weight of indicators, the author uses the sensitivity weight of indicators to adjust the objective weight. If
the sensitivity weight of indicators is , the modified objective weight is as follows 3.4:

wj” =
wj ∗ wr∑m
j=1 wj ∗ wr

(3.4)

Due to the fact that the value of unit manufacturing capacity varies at different times in the time sequence,
and the proportion of unit manufacturing capacity to the total manufacturing capacity of the production
unit at different times in the time sequence is not the same [15]. Due to the influence of interference factors
at certain times, the unit evaluation index data may experience abnormal mutations. In this case, the unit
manufacturing capacity evaluation results obtained do not match the actual situation. Therefore, in order to
avoid this situation, after conducting a two-dimensional static evaluation, different time factors can be assigned
to the evaluation values at different times for comprehensive consideration, by using a time factor, the ability
values at each time step are integrated into the total ability value at the time step. If the time factor at each
moment is set to v = {v1, v2, · · · , vn}, then v should satisfy the following equation 3.5:

N∑
j=1

vj = 1, 0 ⩽ vj ⩽ 1 (3.5)
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Therefore, the manufacturing capacity value of production unit vi in the time sequence can be expressed
as equation 3.6:

yi =

N∑
k=1

yi(tk) ∗ vk (3.6)

Based on the above research content, it can be concluded that for the dynamic evaluation of manufacturing
capacity of production units, a two-dimensional evaluation should be conducted first in the time series table, and
then a comprehensive manufacturing capacity evaluation of the unit should be conducted in the time dimension.
In this process, the production data of the unit in the manufacturing process is updated in real-time in the
time series table, which is used as a new data source for evaluating the manufacturing capacity of the unit.
Therefore, the manufacturing capacity of the unit can be evaluated in real-time and dynamically. In order to
establish a dynamic evaluation model for the manufacturing capacity of production units, providing support
for subsequent dynamic evaluation methods.

The principle of the dynamic evaluation model for manufacturing capacity of production units is to first
study and analyze the state change information during the manufacturing process of production units, including
the status information of processing personnel during the manufacturing process of units. Based on the historical
manufacturing task data of units, the evaluation data is standardized to form a unit capacity evaluation matrix
[16]. The unit manufacturing data changes dynamically over time, and the importance of each indicator data
to the overall evaluation indicator set may vary at different times, which may result in information redundancy.
Therefore, the sensitivity of the indicator information is used to reflect the degree of influence of each indicator
on the original indicator set information. Based on this, the indicator set is reduced in dimensionality, reducing
redundant information, making the evaluation indicators more accurate, and further obtaining the sensitivity
weight of the indicators. The sensitivity weight is used to correct the indicator weight, so that when assigning
weights to indicators, not only the fluctuation of the indicator’s own data is considered, but also the degree
of influence of each indicator on the original indicator set information, at the same time, pay attention to the
impact of indicator changes on the overall indicator set, obtain indicator weights, and combine grey correlation
analysis to obtain the capability values of each unit’s time series. Further introduce time factors, and finally
obtain the total manufacturing capability values of each unit.

3.2. Optimization and weighting of evaluation indicators based on information sensitivity.

3.2.1. Optimization of evaluation indicators based on information sensitivity. In the evaluation
of manufacturing capacity of production units, the data of evaluation indicators is constantly changing. During
the evaluation process, a large amount of historical data needs to be combined for evaluation. The importance
of each indicator data to the evaluation object may change at different times, and different indicator data
may reflect the same information. That is, there may be information overlap between indicators, resulting
in information redundancy. Some data information may be repeatedly emphasized during the evaluation,
which may distort the evaluation results. Therefore, in the evaluation process, in order to avoid wasting
calculation time on unnecessary data and make the evaluation results more accurate, it is necessary to reduce
the dimensionality of the indicators.

Currently, principal component analysis, factor analysis, and other dimensionality reduction methods are
still widely used in various fields such as comprehensive evaluation and pattern recognition. However, these
methods still have some problems, such as difficulty in determining the economic meaning of principal compo-
nents and non unique factor loading matrices. Moreover, most of these dimensionality reduction methods have
not taken into account the degree of influence of indicators on the overall indicator set information, and may
lose some information that has a significant impact on the overall indicator set during the dimensionality re-
duction process [17]. Therefore, based on the information sensitivity of the indicators, the author optimizes the
dimensionality of the evaluation indicators to ensure that the retained indicator information has a significant
impact on the original indicator set information and the degree of information overlap between the evaluation
indicator sets is relatively low. Information sensitivity reflects the degree to which a certain indicator affects
the information of the original indicator set. The greater the information sensitivity, the more important the
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indicator is in the original indicator system, and correspondingly, the more significant its impact on the evalu-
ation results; On the contrary, it indicates that changes in indicators have a smaller impact on the evaluation
results.

The dimensionality reduction of indicator data based on the information sensitivity of indicators is devel-
oped on the basis of principal component analysis dimensionality reduction method. The standardized data
matrix of indicators is set as X = (xij)n×m, among them, n represents the amount of indicator data, m repre-
sents the number of indicators, andamong them, n represents the amount of indicator data, m represents the
number of indicators, and xij is the i-th data of the j-th indicator. The steps to reduce the dimensionality of
the indicator using information sensitivity are as follows.

(1). Solve the principal component Zi as follows 3.7:

Zi = ui1X1 + ui2X2 + · · ·+ uijXj + · · ·+ uimXm (3.7)

In the formula, Zi represents the i-th principal component, Xj = (x1j , x2j , · · · , xij , · · · , xnj) is the value of
the j-th indicator after Z-normalization of the indicator data, and uij is the j-th component of the orthogonal
unitary eigenvector uT

i = (ui1, ui2, · · · , uim) of the indicator correlation coefficient matrix XTX.
(2). Calculate the variance contribution rate ωi of principal component Zi, as shown in equations 3.8 and

3.9:

|XTX − λiEm| = 0 (3.8)

ωi = λi/

m∑
i=1

λi (3.9)

Obtain the eigenvalues λi of the correlation coefficient matrix XTX through equation 3.9, and the variance
contribution rate ωi reflects the proportion of the information content of the i-th principal component Zi to
the information content of all original indicators.

(3). Calculate the cumulative variance contribution rate Ωk as follows 3.10:

Ωk =

k∑
i=1

ωi (3.10)

In equation 3.10, k represents the number of retained principal components. Usually, in principal component
analysis, several principal components with a cumulative variance contribution rate of 70%∼90% and higher
information content are retained. In order to approximate the original indicator set information, the author
selects the relatively higher proportion of 90%, therefore, if the cumulative variance contribution rate of the
first k principal components is ⩾ Ωk90%, the top k principal components with the highest variance contribution
rate are retained.

(4). Solve the information sensitivity βj of the jth indicator as follows 3.11:

βj =

k∑
i=1

ωi|∂Zi/∂Xj | (3.11)

In the formula, |∂Zi/∂Xj | represents the sensitivity of the i-th principal component to changes in the size of
the j-th indicator, that is, the magnitude of the change in information content of the i-th principal component
caused by a small change in the j-th indicator, while the size of other indicators remains unchanged.

(5). Calculate the cumulative information content Γs, which reflects the cumulative content of the reduced
indicators in the original indicator set. Assuming that the sensitivity of indicator information is arranged in
descending order, the result is β∗

1 > β∗
2 > · · · > β∗

m >, then s Γ solution is shown in formula 3.12:

Γs =

s∑
j=1

β∗
j /

m∑
j=1

βj (3.12)
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Table 3.2: Description of Priority Relationship Matrix

A B1 B2 · · · Bm

B1 B11 B12 · · · B1m

B2 B20 B21 · · · B2m

· · · · · · · · · · · · · · ·
Bm Bm1 Bm2 · · · Bmm

Generally, selecting to retain indicator information that can reach a cumulative information content of 70%
to 90% for dimensionality reduction of the indicator set.

Reducing the dimensionality of indicators by determining their information sensitivity can compensate for
the problem in principal component analysis where the load coefficient cannot reflect the importance of the
indicators to the original indicator set, and reducing the dimensionality of information solely based on the load
coefficient may be unreasonable [18]. By performing dimensionality reduction on indicator data, the pressure
of evaluation calculations can be reduced without losing the original indicator set information, while further
improving the final evaluation results.

3.2.2. Weighting of Evaluation Indicator Combination for Sensitivity Correction.
(1) Determination of subjective weight. In the process of weighting indicators, it is necessary to

consider the importance of each indicator to the evaluation objectives based on the actual situation. Although
subjective weighting carries a significant personal subjective color and the given weights may not conform to the
changes in objective data, the evaluation process cannot ignore the decision-maker’s view on the importance of
the indicators. The subjective weighting method can effectively avoid the phenomenon of ”important indicators
having smaller weights and unimportant indicators having larger weights” that may occur in absolute objective
weighting based on actual subjective conditions. Therefore, subjective weighting is crucial in the process of
weighting indicators. The Analytic Hierarchy Process (AHP) is widely used in decision weighting, which is a
weighting method that quantifies qualitative analysis problems by mathematizing people’s thinking processes
about complex systems [19]. The author subjectively assigns weights to unit capability evaluation indicators
using the Analytic Hierarchy Process.

The Analytic Hierarchy Process (AHP) can transform a complex decision-making problem into a ranking
problem of the evaluated object relative to the evaluation target. It first refines a complex decision-making
problem into some constituent factors, and then further subdivides these factors until they cannot or do not
need further subdivision. By doing so, a hierarchical structure can be established between various factors based
on their subordinate relationships.

It can be specifically divided into the following steps:
Step 1: Establish a hierarchical structure. Based on the evaluation of unit manufacturing capability, the

various factors that affect manufacturing capability are subdivided, and a hierarchical structure is formed based
on the subordinate relationship between the factors [20].

In a hierarchical structure, there are generally three layers: target layer, criterion layer, and indicator layer.
The targets of the two layers of indicators are often only related to some indicators in the lower layer, and the
weights between indicators that do not have a connection between the upper and lower layers are 0.

Step 2: Establish a priority relationship matrix. Based on the established indicator hierarchy, establish
the priority relationship matrix, also known as the judgment matrix, for the evaluation system. Compare the
corresponding indicators in the upper and lower layers in sequence. The priority relationship matrix formed by
the target layer and the criterion layer can be described in Table 3.2.

In the Table, Bij represents the importance ratio scale of the indicators in criterion layer B relative to target
layer A. Its value is generally determined using the 1-9 scale method based on people’s intuitive judgment, as
shown in Table 3.3, which shows the value pattern of Bij . When Bij takes numbers such as 2, 4, 6, and 8, it
indicates that its importance is the middle value of adjacent levels.

Step 3: Consistency verification. After obtaining the judgment matrix, in order to make the final evaluation
result reasonable, it is necessary to perform consistency judgment on it, and the judgment formula is shown in
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Table 3.3: Proportional Scale of Relative Importance

Importance Level Bij value Importance Level Bij value
i,j both elements 2are equally important
Element is slightly The i element
more important than 4 is slightly 1/4
element j than the j element
The i element is The i element is
significantly more important 6 significantly less important 1/6
than the j element than the j element
The element i is much The element i is much
more important than 8 less important than 1/8
the element j the element j
The element i is The element i is less
extremely important 10 important than 1/10
than the element j the element j

Table 3.4: Average Random Consistency Index

Matrix order 1 2 3 4 5 6 7 8
RI 0 0 0.53 0.88 1.13 1.25 1.35 1.43
Matrix order 9 10 11 12 13 14 15
RI 1.45 1.48 1.53 1.55 1.57 1.59 1.60

equation 3.13.

CI =
λmax −m

m− 1
(3.13)

λmax represents the maximum eigenvalue of the judgment matrix. If λmax = m, that is CI=0, it indicates that
the judgment matrix is completely consistent; On the contrary, if CI ̸= 0, it indicates poor consistency. But
this calculation process will become increasingly complex as the order of the judgment matrix increases. In
order to make the calculation process relatively easy, the concept of random consistency ratio is introduced, it
is the ratio of CI to RI, denoted as CR. The RI values of the 15th to 1st order judgment matrix are shown in
Table 3.4. The following equation 3.14:

CR =
CI

RI
(3.14)

If CR>1.0, then certain modifications should be made to the judgment matrix, and the above steps should
be repeated until CR<0.10 is met, so there is no need to modify the judgment matrix.

Step 4: Sort by level. If CR<0.10, it is necessary to calculate the weight values of the relative importance
order between the indicators in this layer and those in the previous layer in the judgment matrix.

Step 5: Overall hierarchical sorting. Repeat the operations from step 1 to step 4, from the top layer to
the bottom layer, and calculate the eigenvalues and eigenvectors of each judgment matrix for each layer in
turn, following the hierarchical structure. Then calculate the overall ranking of the hierarchy and calculate the
relative weights of all indicators in the lowest layer relative to the target layer.

When the total ranking of all indicators B1, B2, · · · , Bm in the criterion layer is completed, the weights
obtained are b1, b2, · · · , bm, if the single ranking result of a certain indicator cj in layer C with respect to a
certain indicator Bi in layer B is ci1, c

i
2, · · · , cij , · · · , cin, then the total ranking in layer C can be expressed as
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follows 3.15:

cj =

m∑
i=1

bic
i
j(j = 1, 2, · · · , n) (3.15)

The overall hierarchical sorting still requires consistency testing. By following these steps and following the
calculation steps above, the subjective weight value of the evaluation index can be obtained, which is denoted
as W ′.

(2) Sensitivity correction objective weight. Subjective weights often reflect the subjective preferences
of decision-makers and cannot reflect the changes in objective data of indicators. If a certain indicator is very
important but its data changes in each period are minimal, the impact on the evaluation object is relatively
small; If a certain indicator has a low level of importance but has significant differences in data changes across
different periods, it may have a significant impact on the evaluation results, therefore it needs to be given a
higher weight. As an objective weighting method, the entropy weighting method determines the weight of each
indicator based on the amount of information provided by its entropy value. The core idea is to reflect the
importance of a certain indicator based on the degree of difference between its observed values. If the data
difference of a certain indicator of each evaluated object is not too large, it indicates that the indicator has
little effect on the evaluation system [21]. So it is inversely correlated with entropy value, while the importance
of an indicator is positively correlated with entropy weight, that is, the larger the entropy weight, the more
important the indicator is; On the contrary, the smaller the entropy weight, the less important the indicator
is. Compared with other evaluation methods, entropy weighting method can avoid the interference of human
factors in the weighting process of indicators, making the evaluation results more realistic.

Using the entropy weight method to assign weights to indicators, the specific steps are as follows:
Let X = (xij)n×m be the data matrix of n evaluation sequences and m preprocessed evaluation indicators.

Let Hj be the entropy value of the jth evaluation indicator, and then the entropy value Hj is as follows 3.16,
3.17:

Hj = − 1

ln(n)
(

n∑
i=1

fij lnfij)(i = 1, 2, · · · , n, j = 1, 2, · · · ,m) (3.16)

fij =
uij∑n
i=1 uij

(3.17)

According to the entropy value obtained above, the weight value of the indicator can be obtained as follows
3.18:

wj =
1−Hj∑m

j=1(1−Hj)
(j = 1, 2, · · · ,m) (3.18)

The entropy weight method focuses on the magnitude of the fluctuation of the indicator’s own data, with
large data fluctuations indicating a greater impact on the evaluation results and small data fluctuations in-
dicating a smaller impact on the evaluation results. However, it often overlooks the degree of influence of a
certain indicator on the entire evaluation indicator set. The sensitivity of indicator information mentioned in
the previous section reflects the degree of impact of indicator changes on the overall evaluation indicator set.
Therefore, the weighting of indicators is based on their information sensitivity, and the calculation formula is
shown in equation 3.19.

wr = βr/

m∑
j=1

βj (3.19)

After obtaining the sensitivity weights of the indicators, the weights obtained by the entropy weight method
are modified to obtain more accurate objective weights of the indicators, significantly improving the accuracy
of the evaluation results. Using the multiplication integration normalization method to combine the two, the
calculation formula is as follows 3.20:

wj” =
wj ∗ wr∑m
j=1 wj ∗ wr

(3.20)
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(3) Combination weighting. In the evaluation of manufacturing capacity in production units, the weight
of indicators mainly includes two aspects: On the one hand, it is subjective weighting, which assigns weights to
indicators by quantifying the decision-maker’s subjective preference for the indicators; On the other hand, the
weighting of indicators is based on their objective data, reflecting the usefulness of the amount of information
that the objective data can provide during the evaluation process. Therefore, when assigning weights to
indicators, one should not only consider one aspect of the weight, but should combine subjective and objective
factors for combined weighting. The author uses a aggregation method with multiplication characteristics
to aggregate subjective and objective weights, and obtains the final weight of the aggregated indicators as
w = (w1, w2, · · · , wm). Among them, equation 3.21 is as follows:

wj = w′
j ∗ wj”/

m∑
j=1

w′
j ∗ wj”(j = 1, 2, · · · , n) (3.21)

4. Result analysis.

4.1. Example verification. A certain manufacturing workshop has six production and processing units
u1, u2, u3, u4, u5, and u6 responsible for the production and processing of workshop tasks. The production unit
evaluation index system established earlier evaluates the manufacturing capacity of production units from the
aspects of processing quality Q, processing flexibility F, manufacturing time T, processing cost C, environmental
protection E, and human reliability P, selecting production and manufacturing data from nearly ten time periods
of each unit to form the original unit evaluation index time series data Table, according to the author’s proposed
unit manufacturing capability evaluation method, the specific evaluation steps for its manufacturing capability
are as follows.

Step 1. In the unit capability evaluation, the evaluation indicators are both benefit indicators and cost
indicators. Formulas 3.1 and 3.2 are used to preprocess the original indicator data to obtain a standardized
temporal decision matrix, which provides data support for subsequent evaluations [22].

Step 2. For the preprocessed indicator data, the impact of each indicator on the overall evaluation indicator
set varies at different times, taking the most recent 10t as an example, calculate the information sensitivity Bj

of each indicator according to formulas 3.7 to 3.11, and obtain the cumulative information content Γs of each
indicator from formula 3.12. Then, perform dimensionality reduction on the indicators. The calculation results
are shown in Table 4.1.

Generally, retaining indicator information with a cumulative information content of 65% to 95% can be
achieved. The author chooses to retain information with a cumulative information content of 95%. According to
Table 4.2, after sorting by sensitivity, the cumulative information content at indicator E3 reaches 88%. There-
fore, at 10t, retaining indicator E3 and its previous indicator information is used to reduce the dimensionality
of the indicator set.

Step 3. For the dimensionality reduction processed indicators, calculate the sensitivity weights of each
indicator according to formula 3.19 as shown in Table 4.2.

Step 4. Based on the Analytic Hierarchy Process, subjectively assign weights to each indicator, and use
formulas 3.16 to 3.20 to modify the entropy weights of each indicator using sensitivity weights to obtain the
objective weights of the indicators. Finally, according to formula 3.21, obtain the combined weights of each
indicator in indicator layer C relative to criterion layer B and relative to target layer A, as shown in Table 4.3.

Step 5. During the evaluation process, 10 indicator data from the past 10 time periods were selected for
evaluation. The closer the time period, the more important the data is often, taking λ=0.4 here, we can obtain
the time factor for each time step as v=(0.0048,0.00680.0126,0.0266,0.0582,0.0704,0.1232,0.1685,0.2212,0.3070)

Step 6. Determine the target sequence of each indicator, in order to obtain the capability values of each
unit in terms of quality, time, and comprehensive manufacturing capability at each time step [23].

After obtaining the capability values at each moment, combined with the time factors obtained earlier,
the total capability values in terms of unit processing quality, manufacturing time, etc., as well as the total
manufacturing capability values, are shown in Table 4.4.
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Table 4.1: Sensitivity of Indicator Information

Index Sensitivity Bj Sort by Bj Accumulated information content Γs

Q1 0.297 Q1(0.299) 6.32%
Q2 0.16 F3(0.286) 12.32%
Q3 0.218 T2(0.274) 19%
Q4 0.224 T3(0.265) 23.61%
C1 0.255 C1(0.255) 28%
C2 0.156 T1(0.243) 35%
C3 0.172 Q4(0.225) 38.75%
F1 0.186 Q3(0.218) 43.32%
F2 0.208 P6(0.214) 47.81%
F3 0.286 F2(0.208) 52.11%
T1 0.242 P3(0.202) 56.41%
T2 0.275 P4(0.197) 60.51%
T3 0.267 E2(0.193) 64.51%
El 0.182 P2(0.188) 68.41%
E2 0.192 F1(0.186) 72.31%
E3 0.168 E1(0.183) 76.11%
P1 0.164 PS(0.175) 79.81%
P2 0.188 C3(0.175) 83.41%
P3 0.202 E3(0.167) 88%
P4 0.197 P1(0.164) 90.41%
P5 0.176 C2(0.157) 93.71%
P6 0.214 P7(0.153) 96.81%
P7 0.153 Q2(0.152) 100%

Table 4.2: Indicator Sensitivity Weights

Index Q1 Q2 Q3 C1 C2 F1 F2

Sensitivity weight 0. 404 0. 295 0.302 0. 598 0. 403 0. 274 0. 307
index F3 T1 T2 T3 E1 E3 E2

Sensitivity weight 0. 423 0. 308 0. 352 0. 343 0.337 0. 423 0.354
index E3 P2 P3 P4 P5 P6

Sensitivity weight 0. 313 0. 193 0. 208 0. 203 181 0. 218

4.2. Result Analysis. The author first optimized the dimensionality of indicators based on their infor-
mation sensitivity. The degree of influence of indicator data on the overall evaluation object may change at
different times, and different indicator data may also reflect the same information. Repeated emphasis on the
same information can generate redundancy and affect the evaluation results, reducing the dimensionality of
indicator data based on indicator sensitivity can avoid problems such as difficulty in determining the economic
meaning of principal components and non unique factor loading matrices compared to commonly used principal
component analysis methods [24]. Compare the evaluation results of indicators after dimensionality reduction
optimization with those without dimensionality reduction treatment, as shown in Figure 4.1.

From Figure 4.1, it can be seen that there is a certain difference between the unit capability evaluation
results after dimensionality reduction and the evaluation results without dimensionality reduction, but the
difference is not significant. The reason for the certain difference is that after dimensionality reduction of the
indicator data, some redundant information is reduced, avoiding the same information from being repeatedly
emphasized. The evaluation results of the two are basically consistent, which can prove that the author’s
dimensionality reduction processing of indicator data based on indicator sensitivity is reasonable and effective.
The reduced data information can represent the overall data information and accurately evaluate manufacturing
capabilities.
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Table 4.3: Weight values of various indicator combinations

Criterion Indicator Subjective Objective C-B combination C-A combination
layer layer power rights weight weight

Processing qualification rate 0.0702 0.553 0.628 0.1186
Processing Shape machining accuracy 0.0582 0.255 0.25 0.0453
quality Q Dimensional machining accuracy 0.0413 0.196 0.135 0.0245

Raw material consumption cost 0.0745 0.556 0.645 0.1267
Processing Labor management fee 0.0515 0.446 0.355 0.0702
cost C Arrival of raw materials 0.0607 0.238 0.295 0.0438
Manufacturing Equipment utilization rate 0.0476 0.18 0.186 0.0275
flexible F Equipment failure handling 0.0443 0.574 0.53 0.0775

response time 0.0575 0.303 0.294 0.0533
Manufacturing Processing time 0.0658 0.434 0.483 0.0868
time T Auxiliary processing time 0.0499 0.266 0.226 0.0405

Solid waste pollution 0.0536 0.446 0.508 0.0727
Environmental Waste gas pollution 0.0447 0.32 0.297 0.0426
Protection E Waste liquid pollution 0.0368 0.246 0.192 0.0276

Assignment difficulty 0.0535 0.165 0.187 0.0267
Human Homework guidance 0.0447 0.192 0.185 0.0268
reliability Work skills 0.0367 0.158 0.127 0.0178

physiological function 0.0535 0.18 0.198 0.0279
Assignment time 0.0447 0.316 0.305 0.0433

Table 4.4: Total Capacity Values of Each Unit

u1 u2 u3 u4 u5 u6

Processing quality 0.567 0.705 0.574 0.668 0.565 0.588
Processing cost 0.64 0.546 0.585 0.66 0.694 0.648
Manufacturing flexibility 0.558 0.658 0.677 0.64 0.689 0.558
Manufacturing time 0.534 0.667 0.605 0.594 0.588 0.68
environmental protection 0.465 0.458 0.585 0.557 0.420 0.633
Human reliability 0.593 0.623 0.575 0.67 0.567 0.574
Manufacturing capability value 0.563 0.586 0.58 0.607 0.570 0.645

At the same time, the author uses the sensitivity weight of the indicators to modify the indicator weight
obtained by the entropy weight method, which can solve the problem of existing weighting methods only
considering the fluctuation of the indicator’s own data and ignoring the importance of the evaluation indicator
to the entire evaluated object. After weighting the indicators, considering the temporal dynamics of unit
indicator values, the time factor combined with grey correlation analysis method is finally introduced to obtain
the capacity values of each unit. Compare the evaluation results of the method adopted by the author with those
obtained from three methods: fuzzy analytic hierarchy process, rough set theory, and dynamic comprehensive
evaluation, as shown in Figure 4.2.

From Figure 4.2, it can be seen that among the four methods, the unit capacity values obtained through
dynamic horizontal and vertical comprehensive evaluation are most consistent with the capacity values obtained
by the author’s method. The capacity values obtained under rough set theory and fuzzy analytic hierarchy
process have significant differences compared to these two methods, this is because rough set theory is a static
evaluation method, while the method adopted by the author considers the temporal nature of the evaluation
data. At the same time, fuzzy analytic hierarchy process is a subjective evaluation method, which has strong
subjectivity and less attention to objective weights. Under the four methods, although there are differences
in the capacity values of each unit, the fluctuation is within a reasonable range, indicating that the author’s
evaluation method is reasonable and feasible.
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Fig. 4.1: Evaluation results of total manufacturing capacity of units before and after dimensionality reduction

Fig. 4.2: Comparison of total manufacturing capacity values of units under different evaluation methods

In the evaluation process of unit manufacturing capability, the author analyzed the behavioral factors that
affect human behavior in the manufacturing process, taking into account the role of human factors in the unit
manufacturing process. By analyzing and evaluating the formation factors of each human factor behavior,
the size of the unit’s human reliability was obtained, and the unit manufacturing capability value was finally
obtained by integrating factors such as unit time and quality. As shown in Figure 4.3, the figure reflects the
ability values of each unit in processing quality, manufacturing flexibility, and other aspects. It can be seen
from the figure that for production units with high human reliability, their ability in processing quality and
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Fig. 4.3: Capability values of each unit in various aspects

manufacturing time is often higher, and the trend of change in the three is generally the same. In production
and manufacturing, unreliable human behavior often leads to human error. Once a person makes an error, it
often reduces their work efficiency and may also lower the production quality of the product to a certain extent.
That is to say, human factors also have a certain impact on the unit manufacturing capacity. In the evaluation
process of manufacturing capacity, the human factors in the production process cannot be ignored in order to
obtain more accurate manufacturing capacity.

Evaluating the manufacturing capacity of production units can obtain the capability values of each unit
in terms of processing quality, manufacturing flexibility, and other aspects. Therefore, workshop managers can
timely grasp the production information of units, respond to weak links in unit production in a timely manner,
and achieve optimal scheduling and complete production tasks on time.

5. Conclusion. The author established a manufacturing capacity evaluation model for production units.
In response to the dynamic nature of data in the operation process of manufacturing production units and the
varying importance of indicators to evaluation objects at different times, a combination of indicator sensitivity
and entropy weighting method is proposed to objectively weight indicators, solving the problem of existing
weighting methods only considering the fluctuation of indicator data and ignoring the importance of evaluation
indicators to all evaluated objects. At the same time, in the process of unit manufacturing, humans are also an
important component of the production unit, which can have a certain impact on the manufacturing capacity
of the unit. Therefore, human reliability issues were considered in the unit capacity evaluation. Finally, the
grey relational analysis method was used to obtain the various capabilities and comprehensive manufacturing
capabilities of the unit at different times. Time dimension factors were introduced for time series data to obtain
the total manufacturing value capabilities of each unit. Finally, the feasibility and effectiveness of the proposed
evaluation method were verified through case analysis.
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