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OPTIMIZATION METHOD OF CALIBRATION CYCLE BASED ON STATE EVALUATION
RESULTS OF ELECTRIC ENERGY METERS

YING ZHANG∗, WENJING WANG†, SHI CHEN ‡, ZILIN CHEN §, SHU CAO ¶, AND YINTING GUO∥

Abstract. In order to solve the problems of heavy workload, weak planning, and repetitive maintenance in the periodic
rotation of smart energy meters, the author proposes a verification cycle optimization method based on the evaluation results of
energy meter status. This method first obtains data on six indicators of smart energy meters: regional factors, reliability, full
event, abnormal metering events, battery overload, and clock battery undervoltage; Subsequently, on the one hand, the coefficient
of variation assignment method is used to obtain the status score of each electricity meter, and on the other hand, these six
indicator data are used as input data, and the K � means clustering algorithm is used to classify and obtain the corresponding
categories. Finally, the two algorithms are combined to obtain a new method for evaluating the status of smart energy meters,
and the final evaluation result is output. The experimental results indicate that: The number of electricity meters scored below 80
points obtained by this method accounts for 22.08% of the total number of electricity meters, while electricity meters scored above
80 points account for 77.93% of the total number of electricity meters. This indicates that this method is in line with the actual
situation and objective laws. Constructing a state evaluation model for electric energy meters, using historical data and on-site
calibration data as state variables, analyzing the annual operational quality of electric energy meters, and providing reference basis
for adjusting the calibration cycle of electric energy meters.
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1. Introduction. Electricity meters are a bridge between power supply enterprises and electricity cus-
tomers for billing and settlement, and an important measuring tool for people’s daily electricity consumption
[1]. With the rapid development of smart grids, smart energy meters are widely used due to their powerful func-
tions, high measurement accuracy and sensitivity. The quality of their operation directly affects the economic
benefits of power grid enterprises and the vital interests of users [2]. With the application of new technologies
and methods, the level of power management is also constantly improving. Improving the lean management
level of electricity metering and rational allocation of human, financial and resources have become important
needs in the new era. The following uses big data analysis methods to explore and study the optimization
of the re inspection cycle of electricity meters [3]. Mining data on electricity meter calibration and resource
loss, based on discrete degree analysis and EUAC (equivalent comprehensive cost) analysis method, provides
reference for optimizing calibration cycle, improving management level, assisting departmental decision-making,
and provides ideas for wider applications [4].

Create a state evaluation model to evaluate the status of electricity meters. This model is based on
the current and historical data of the electricity meter, and applies membership function to establish and solve
fuzzy technology to design a state quantity evaluation model. It combines entropy weight method to objectively
evaluate the operation quality of the electricity meter [5]. The state evaluation model includes the selection of
state variables, normalization of state variables, evaluation of state components, and overall state evaluation of
smart energy meters.

With the improvement of the production level of smart energy meters, the drawbacks of the traditional
one size fits all disassembly and calibration method for periodic calibration of energy meters have become
increasingly apparent [6]. In order to solve the problem of dismantling and re calibrating smart energy meters
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Fig. 1.1: Energy meter status evaluation

within an eight year calibration cycle, the author conducted a research on quality supervision and evaluation
of energy meters based on full life cycle testing data. Based on the first inspection data of the electricity meter,
big data analysis technology is used to assess the risk of the electricity meter; Conduct periodic verification
through on-site verification based on risk screening results; Analyze the calibration error of the electric energy
meter based on the first inspection and on-site verification data; Establish a state evaluation model to evaluate
the operational quality of electric energy meters, providing a reference basis for extending the cycle of electric
energy meters. As shown in Figure 1.1.

2. Literature Review. As a measuring and recording device for power supply and consumption, the
operation status of smart energy meters not only directly affects the development and operational efficiency of
power grid companies, but also affects the fairness and safety of user electricity consumption [7]. At present,
smart energy meters have been widely used in important links such as power generation, transmission, distribu-
tion, and consumption. As a key component of the smart grid, smart energy meters play an important role in
real-time measurement, load control, and response to power demand in power grid companies [8]. The power
grid company vigorously promotes the comprehensive construction of big data technology in the smart grid,
and various emerging technologies are widely applied in the power industry. Among them, the establishment
of databases such as substation data, distribution data, electricity consumption data, and marketing data is
also becoming increasingly perfect, providing a good research environment for the research and development of
big data technology [9].

At present, Power Grid Co., Ltd. has completed the construction and operation of the corresponding data
management platform, gradually leveraging the role of big data technology in electricity data management and
analysis [10]. However, current data analysis techniques cannot fully utilize smart energy meter data to achieve
ideal analysis results, and continuous research and practice are still needed. Therefore, using big data technology
to analyze electricity meter data is the development trend of future smart grid technology, and the increasingly
perfect big data platform and corresponding technology make it have great potential for development. Pazderin,
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A. V. used a state estimation method based on the direct measurement data of EE in watt hours (volt ampere
reactive hours) provided by an electricity meter to determine the EE flow rate. EFP solutions are essential
for a wide range of applications, including instrument data validation, zero imbalance EE billing, and non-
technical EE loss checks [11]. Singh, M. provides a detailed description of some of the challenges faced by
electricity consumption data, including saving large amounts of data, deleting, manipulating, and adjusting
data. Blockchain is a promising technology that can use encryption algorithms to address issues of data integrity
and confidentiality [12]. Dakyen, M. M. et al. used big data technology to analyze the electricity consumption
data of smart energy meters, in order to better evaluate the status of smart energy meters [13]. Jie YANG has
modularized various data, evaluation index systems, and evaluation methods for the current state evaluation
indicators of electric energy metering devices, aiming to address the uncertainty of the evaluation indicators
and the inconsistency of the results of various evaluation methods. He has dynamically built an electric energy
metering device state evaluation system, which provides a comprehensive description of the state indicators,
but does not involve the detailed differences in the state indicators of each component of the electric energy
metering device [14]. The multi-objective comprehensive evaluation method for smart meter suppliers based on
grey correlation degree described in Zhu, X, while retaining the advantages of the multi-objective comprehensive
evaluation model, solves the problems of cumbersome indicators and strong subjectivity in traditional smart
meter supplier comprehensive evaluation [15]. But this method only analyzes the overall batch of electricity
meters, ignoring the evaluation of individual electricity meter states.

A new method for evaluating the status of smart energy meters is proposed by combining the coefficient of
variation assignment method and K-means clustering algorithm. The evaluation results of smart energy meters
are obtained by analyzing six indicators: regional impact index, all events, measurement anomalies, meter
overload, and clock battery undervoltage. The rationality of the method is analyzed based on the results.

3. Method.

3.1. Design Concept. Firstly, based on the previous statistical analysis and research, six indicators that
have a significant impact on the evaluation of the status of smart energy meters were identified, namely meter
reliability, regional factors, all events, measurement anomalies, meter overload, and clock battery undervoltage.
Then, these indicators were analyzed using two methods: One was weighted using the coefficient of variation
method, by analyzing the impact of different indicators on the operating status of electricity meters, assign
corresponding weights to each indicator, and finally reflect the operating status of each electricity meter in
the form of a score; Another approach is to use these indicators as features of the electricity meter, treating
the meter as points in space, where these indicators are the coordinates of the points. Clustering methods
are used to classify these points and obtain different evaluation states of the electricity meter [16]. Combine
the evaluation results of these two methods to obtain the final evaluation result of the operating status of the
electricity meter. The process is shown in Figure 3.1.

3.2. Indicator data.
1) Reliability of electric energy meters. The reliability calculation formula for electric energy meters is:

Mr = 1−
∑t

1 f(1)

N
(3.1)

In the formula: Mr is the reliability index of the electric energy meter; f(i) is the number of faulty meters
in the i-th month of the current batch of electricity meters; N is the total number of electricity meters in the
current batch; t is the current month.

2) Regional factors. The formula for calculating regional factor indicators is:

Mt = 1 +
Hx

H
× lg(

Hx

H
· J

Jx
) (3.2)

In the formula: Mt is the regional factor indicator; Hx is the number of electricity meters installed in the x-th
city; Jx is the total number of installed energy meters; J is the number of faulty energy meters in the x-th city;
is the total number of faulty energy meters.
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Fig. 3.1: Design process of state evaluation method

3) Full event. The calculation formula for all event indicators is:

Mq =

{
100×

∑11
i=1 P (A2|Ci),

∑11
i=1 P (A2|Ci ⩽ 1)

100,
∑11

i=1 P (A2|Ci > 1)
(3.3)

In the formula, Mq represents the overall event indicator; A2 indicates that the calibration result of the electric
energy meter is faulty; Ci (i = 1, 2, · · · , 11) refers to 11 events, including meter shutdown, meter runaway,
meter deviation, meter reverse connection, meter time deviation, meter power outage frequency change, meter
phase failure frequency, magnetic field anomaly, meter transformer rate change, cover opening recording, and
time synchronization; P (A2|Ci) represents the probability of Ci occurring under A2 conditions.

4) Abnormal measurement. The formula for calculating abnormal measurement indicators is:

Ma =

{
100× (

∑6
i=1 P (A2|Bj) +

∑5
k=1 yk),

∑6
i=1 P (A2|Bj) +

∑5
k=1 yk ⩽ 1

100,
∑6

i=1 P (A2|Bj) +
∑5

k=1 yk > 1
(3.4)

In the formula, Ma represents the measurement anomaly indicator; Bj(j = 1, 2, · · · , 6) refers to uneven en-
ergy representation, meter flying, meter reversing, meter stopping, abnormal reverse power and clock; yk(k =
1, 2, · · · , 5) represents the correlation between voltage exceeding limits, voltage loss, current overcurrent, volt-
age disconnection, and reverse flow events and anomalies; P (A2|Bj) represents the probability of A2 occurring
under Bj conditions.
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5) The electricity meter is overloaded. The formula for calculating the overload index of an electric energy
meter is:

M1 =

{
100Kw × log2(

W0

WN
),KW > 0

0,KW = 0
(3.5)

In the formula: M1 is the overload indicator of the electric energy meter; WN is the amount of electricity
measured within 24 hours of normal rated operation of the energy meter; KW is the proportion of days in
which the daily electricity consumption exceeds the standard metering electricity of the electricity meter within
6 months; W0 is the average daily electricity consumption of the portion of electricity consumption that exceeds
the standard measurement of the electricity meter within 6 months.

6) Clock battery undervoltage. The formula for calculating the undervoltage index of the clock battery is:

Mc =
100− 100e−x

1 + e−z
(3.6)

In the formula, Mc represents the undervoltage indicator of the clock battery; Z is the number of clock under-
voltages that occur within 6 months.

3.3. Principle of coefficient of variation method. The coefficient of variation assignment method
directly utilizes the information contained in various indicators to calculate the weights of the indicators, and is
an objective weighting method [17]. Based on the impact of changes in indicator data on the evaluation results
of electricity meters, further analyze the importance of this indicator in the evaluation of results [18]. Reflected
in numerical terms, the greater the degree of variation of the indicator data, the greater the assigned value to
the indicator.

The coefficient of variation chosen by the author is the standard deviation, and its main calculation steps
are as follows.

1). Assuming there are m objects to be evaluated and a total of n evaluation indicators, the evaluation
matrix X of the indicators can be expressed as:

X =


x11 x12 · · · x1m

x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 (3.7)

In the formula, xab represents the characteristic data of the a(a = 1, 2, · · · , n) evaluation indicator for the b
(b=1,2, m) th evaluation object.

2). Calculate the average value xa of the a-th indicator as follows:

xa =
1

m

m∑
b=1

xab (3.8)

3). Calculate the standard deviation σa of the a-th indicator as:

σa =

√√√√ 1

m

m∑
b=1

(xab − xa)2 (3.9)

4). Calculate the coefficient of variation for the a-th indicator as:

va =
σa

xa
(3.10)
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5). Normalize the obtained coefficient of variation and calculate the objective weight βa of the a-th indicator
as follows:

βa =
va∑n
a=1 va

(3.11)

3.4. K-means clustering principle. The core idea of the K � means algorithm is to randomly select
data from the dataset as the initial clustering center, and calculate the distance from other data points to these
data points. These data points are divided into the closest clustering centers. After traversing all the data, the
average value of each class of data is used as the new clustering center, and the above operation is repeated
again until a certain threshold is met or a predetermined number of iterations are reached before stopping [19].

The specific steps of the K-means algorithm are mainly divided into the following steps:
1. Based on a known dataset, use k data points as the initial cluster center C, where these k data points

are arbitrarily selected;
2. Calculate the Euclidean distance between data samples other than the cluster center and the cluster

center;
3. Using Euclidean distance as the basis for judgment, divide the data samples into clusters belonging to

the cluster center closest to them;
4. Calculate the mean of the data samples in each cluster and use it as the new cluster center for each

cluster to calculate the sum of squared errors for this dataset;
5. Determine whether the total sum of squared errors of the entire dataset remains unchanged or fluctuates

within a small range. If so, end the clustering and output the final clustering result; Otherwise, go back
to step 2) and loop in the order of steps until the requirements are met or the set number of iterations
is reached.

In practical calculations, all events, measurement anomalies, meter overload, and clock battery undervoltage
are converted into indicator data of 1-100 using equations 3.3-3.6 to achieve unity of magnitude, and then
clustering algorithm calculations are performed [20]. The Euclidean distance formula is:

D(z, Ep) =

√√√√ Q∑
q=1

(zq − Epq)2 (3.12)

In the formula: z is the data sample; Ep is the p-th cluster center; Q is the dimension of the data sample; zq,
Epq is the qth feature of z and Ep.

4. Results and Discussion. Select the operating data of all dismantled and calibrated electricity meters
in a certain area for the 6 months before the evaluation time, and analyze and process these data to obtain the
indicator data for the evaluation of smart electricity meters, this includes the reliability of smart energy meters,
regional factors, all events, metering anomalies, meter overload, and clock battery undervoltage. The reliability
indicators and regional factors are obtained based on the data analysis of the entire province’s electricity meters
from installation to evaluation time, while the weights of each indicator are obtained using the coefficient of
variation assignment method based on the average indicator data of each batch of electricity meters in each
month throughout the year, including all events, measurement anomalies, meter overload, and clock battery
undervoltage. And based on the data from the 6 months before the evaluation time, obtain the indicator data
of the current status of each smart energy meter, and finally calculate the current operating status of each
smart energy meter by combining reliability indicators and regional factors.

The state evaluation of smart energy meters is defined as:

R = (100− w1Mq − w2Mq − w3Mq − w4Mq)×Mr ×Mt (4.1)

In the formula, R represents the evaluation result of each energy meter; w1−w4 is its corresponding weight,
obtained by the coefficient of variation assignment method.

The experimental case analysis is based on data from 12 batches of electricity meters evaluated in July 2021,
each batch including disassembled and still running electricity meters. The weight of the indicators is calculated
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Table 4.1: Energy meter status evaluation Table

Number of Predicted Predicted Normal quantity/block
Score electricity Proportion/% number of proportion of in the predicted number

meters/piece faults/block faults/% of faults
0∼60 4250 5.15 808 29.22 0
60∼70 11050 13.34 877 31.67 0
70∼80 2967 3.59 342 12.34 0
80∼90 12867 15.55 526 18.94 19
90∼100 51587 62.37 235 7.83 198
amount 69854 100.00 2788 100.00 217

Fig. 4.1: Distribution of Energy Meter State Evaluation

based on the average monthly indicator data of the batch of electricity meters in 2021. As the dismantling of
smart electricity meters requires a certain process and time, the quality of the evaluation results is evaluated
based on the dismantling of the meters within 3 months after the evaluation results. The evaluation results are
shown in Table 3.1, Figure 4.1, and Figure 4.2.

Table 4.1 shows the specific quantity of each score segment, where the number of faults is based on the
number of fault tables obtained through disassembly and detection within three months after the current
evaluation time point, and the normal number is based on the number of normal tables obtained through
disassembly and detection within three months after the current evaluation time point. Figures 3.2 and 3.3 are
visualizations of the distribution of all meter quantities and the distribution of fault meter quantities for the
evaluation of the energy meter status in Table 4.1, respectively.

From Table 4.1 and Figure 4.1, it can be seen that 22.08% of the total number of electricity meters are
scored below 80 points according to this method, and 77.93% are scored above 80 points. At the same time,
it can be seen from Table 4.1 and Figure 4.2 that the number of faults in electricity meters scored below 80
points accounts for 73.26% of the total number of faulty electricity meters. This indicates that the method is
in line with the actual situation and objective laws.

4.1. K-means algorithm analysis. This evaluation method considers smart energy meters as points in
space, and considers the reliability, regional factors, all events, measurement anomalies, meter overload, and
clock battery undervoltage as the coordinates of points in the space. These coordinates are used as inputs
to the K-means algorithm, and points with similar distances can be clustered in the same area based on the
distance between points to achieve classification results.
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Fig. 4.2: Distribution of the number of faulty energy meters

Table 4.2: Energy meter status evaluation Table

Number of number Fault Normal quantity/block
Score electricity Proportion/% of proportion of in the predicted number

meters/piece faults/block faults/% of faults
Class I 63905 77.26 798 28.18 215
Class II 207 0.26 12 0.35 0
Class III 867 1.06 62 2.23 1
Class IV 2437 2.96 291 10.47 0
Class V 15303 18.46 1625 58.77 0
total 82719 100.00 2788 100.00 216

Using the data from the smart electricity meter batch mentioned above for analysis, referring to the analysis
results of the coefficient of variation method, based on data characteristics and the principle of facilitating result
comparison and analysis, this method determines that the K-means clustering algorithm has 5 categories. The
clustering results are shown in Table4.2, Figure 4.3, and Figure 4.4.

Table 4.2 shows the specific quantity of each score segment, where the number of faults is based on the
number of fault Tables detected by dismantling within 3 months after the current evaluation time point, and
the normal number is based on the number of normal Tables detected by dismantling within 3 months after
the current evaluation time point. Figures 4.4 and 4.5 visualize the distribution of the number of all meters
and the distribution of the number of faulty meters in the state classification of electricity meters in Table 4.2,
respectively.

From Table 4.2 and Figure 4.5, it can be seen that Class I electricity meters have the most data, as
the analysis includes both disassembled and still running smart electricity meters, so normal electricity meters
account for the majority. Obviously, Class I should be considered as a normal energy meter category, while Class
II-V should be considered as an abnormal energy meter category. The classification here is for comparison with
the coefficient of variation method. According to the K-means clustering algorithm, 77.26% of energy meters
are classified as normal energy meters, and 71.82% of actual faulty energy meters are included in the category
of abnormal energy meters. The abnormal energy meters analyzed in the K-means algorithm’s energy meter
status evaluation include most of the actual faulty energy meters, which is consistent with the actual situation,
indicating that the evaluation result has a certain degree of scientific and rationality.
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Fig. 4.3: K-means clustering distribution of all electricity meters

Fig. 4.4: K-means clustering distribution of fault Table

5. Conclusion. The author proposes a study on the optimization method of calibration cycle based on
the evaluation results of electricity meter status, introduces the principles of coefficient of variation algorithm
and K-means algorithm, and evaluates the status of electricity meters based on these two algorithms. After
comparing the evaluation results of coefficient of variation method and K-means algorithm, combined with
the characteristics of electricity meter evaluation parameters, a new state evaluation method is constructed
by integrating the coefficient of variation method and K-means algorithm, prove its scientific and feasibility
through data analysis, providing new ideas for the state evaluation of smart meters. This method has been
recognized by the power supply company in practical experiments.
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