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RESEARCH ON IMPROVED RBM RECOMMENDATION ALGORITHM BASED ON
GIBBS SAMPLING

QIAN XIAODONG∗AND LAN JIABAO†

Abstract. Restricted Boltzmann Machine (RBM) is an important tool for personalized recommendation prediction, but it
ignores the power-law distribution of the Restricted Boltzmann Machine data set, the RBM algorithm can not focus on the tail
data sampling of the recommended data set. Therefore, firstly, the recommended data are obtained and the data characteristics
are analyzed, then the random Gibbs Sampling initial value of RBM is changed to random selection in the early iteration and
the last sampling value in the later iteration, the fixed Gibbs sampling steps were replaced by single-step sampling (CD-1) and
multi-step sampling (CD-5),which is Periodic Gibbs Sampling (PGS). The experiment shows that the improved Gibbs sampling
initial value and the changed Gibbs sampling steps can effectively improve the sampling performance, the improved RBM algorithm
is also more accurate than the original RBM algorithm, the cyclic time Restricted Boltzmann Machine (RTRBM) algorithm and
the Probability Matrix Factorization (PMF) algorithm. It shows that the improved RBM algorithm is suitable for the power-law
distribution of recommendation data sets, and effectively improves the accuracy of recommendation.
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1. Introduction. With the rapid development of e-commerce, the scale of consumer behavior data has
been growing exponentially, making it difficult for consumers to locate satisfactory products among the vast
amounts of product data. Recommendation algorithms, known for their simplicity and robustness, have become
indispensable tools for assisting in recommendation decisions. To address the problem of ”information overload”,
many companies use recommendation algorithms to intelligently mine and predict large-scale recommendation
data, thereby increasing user engagement and consumption. However, as the complexity of recommendation
data increases, it becomes challenging to balance the efficiency and accuracy of recommendation algorithms.
Therefore, improvements to the efficiency and accuracy of the algorithms themselves are necessary.

Regarding the necessity for improvements in recommendation algorithms, this study focuses on the Re-
stricted Boltzmann Machine (RBM) recommendation algorithm, based on the theories of complex networks
and Markov chains. Considering the characteristics of recommendation data, the research aims to summarize
and improve the parameter iteration algorithm of RBM, specifically the Gibbs sampling principle, to explore a
more reasonable and efficient RBM algorithm. Comparative experiments between the improved RBM recom-
mendation algorithm and the original RBM will be conducted to provide feasible references for the enhancement
of recommendation algorithms.

2. Literature Review. As a widely used neural network model in practical applications, the RBM algo-
rithm is capable of making effective recommendation predictions in recommendation scenarios. Therefore, it
has been extensively studied by scholars both domestically and internationally. The analysis of improvements
to the RBM recommendation algorithm can be primarily divided into two aspects: recommendation data and
recommendation algorithms. The improvements are further categorized into the characteristics of recommen-
dation data, the integration and enhancement of the RBM algorithm, and the inherent improvements of the
RBM algorithm itself. Each of these aspects will be introduced and evaluated in detail.

2.1. Analysis of Recommendation Data Characteristics. Before conducting research on recommen-
dation algorithms, analyzing the characteristics of recommendation data or the networks they form, and quan-
tifying these features within the recommendation algorithms, can improve the efficiency of algorithm enhance-
ments. Consequently, many scholars have carried out relevant research in this area. Garima and Rahul[1]
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used text mining and sentiment analysis to extract relevant information from the text information of food and
aperitif wine, and concluded the power law characteristics of the data set.Ralph and Patrycja[2] analyse the
characteristics of the data set based on two-dimensional image, the relevant scaling parameters are extracted
accurately, and the power-law distribution is proved. Fang et al [3] proposed a contrastive meta-learning
framework (CM-HIN) based on heterogeneous information networks. This framework utilizes meta-paths and
network motifs to capture both high-order and local structure information of heterogeneous information net-
works, thereby improving the precision of recommendation network construction. Wang et al [4] also noted
the heterogeneity in recommendation data and proposed a commodity recommendation framework based on
self-attention mechanism for attribute heterogeneous information network embedding. This framework learns
the latent information contained in different edge types and attribute embeddings to increase the effective
information in the recommendation network.

Besides focusing on the heterogeneity of recommendation networks, many scholars also delve into the
latent features of these networks. For instance, Ambikesh et al [5] proposed methodology, termed GOA-k-
means, amalgamates the Grasshopper Optimization Algorithm (GOA) with k-means clustering to navigate the
dynamic nature of user preferences. Facilitating real-time calibration, GOA-k-means yields recommendations
that adapt to users’ shifting interests. By combining neural network Doc2vec and word bag BOW, Hafez et al
[6] construct a multi-standard recommendation system.

2.2. Integration and Improvement of the RBM Algorithm. In the process of recommendation
prediction, most studies on recommendation systems do not distinctly categorize improvements into recommen-
dation data and recommendation algorithms. For instance, Jha et al [7] proposed a hyper-tuned Restricted
Boltzmann Machine (RBM), using a contrastive divergence learning algorithm to regenerate tabular data mod-
els for enhancing recommendation accuracy. Harshvardhan et al [8] introduced a time-aware recommendation
system based on unsupervised Boltzmann Machines (UBMTR) to detect latent hidden features related to the
time of each rating in user movie rating data. Fachechi et al [9] calculated the relevance of recommendation
data and constructed intra-layer connections for the neurons in the hidden layer of the RBM, thereby creating
the Dream Boltzmann Machine (DBM). Xie et al [10] extracted user and resource features from the recommen-
dation system to construct a multi-layer RBM network, forming a deeply stable personalized recommendation
model using the Restricted Boltzmann Machine to compute recommendation results. Wu et al [11] proposed
an improved hybrid recommendation algorithm based on Gaussian RBM. They used a convolutional neural
network to obtain latent feature vectors of text information and rating information, merged user vectors and
item vectors into a user-item matrix, and input this matrix into the visual layer of the Gaussian RBM to predict
ratings.

From the aforementioned literature, it is evident that most personalized recommendation approaches us-
ing the RBM model have focused on improving the recommendation datasets or combining RBM with other
algorithms, without addressing the intrinsic time costs, accuracy, and other aspects of the RBM model it-
self. Therefore, further research on the RBM recommendation algorithm needs to supplement and refine these
aspects to enhance its overall performance.

2.3. Improvements to the RBM Algorithm. To enhance the performance of the RBM algorithm,
scholars have started focusing on improving its efficiency and accuracy, particularly in two main areas: the
initialization of sampling values and the optimization of parameter gradients. The original Gibbs sampling
initialization uses the initial training sample values, but randomly selected training samples can lead to increased
training time costs and reduced accuracy. Therefore, Tieleman [12], building on the CD algorithm, proposed the
Persistent Contrastive Divergence (PCD) algorithm. PCD used the sampled values from the previous iteration
as the initial values for the next sampling iteration, accelerating the convergence speed of the Gibbs sampling
chain. To further speed up the PCD algorithm, Tieleman [13] introduced the Fast Persistent Contrastive
Divergence (FPCD) algorithm, which includes additional acceleration parameters to enhance sampling speed.

To improve the effectiveness of initial value selection, Li et al [14] proposed the Dynamic Initial Value
Algorithm (DIS), which dynamically improves the initial values for Gibbs sampling. Savitha et al [15] introduced
the Online Restricted Boltzmann Machine (O-RBM), which adjusted the initial values for Gibbs sampling,
constructing a probability distribution of data information to achieve unsupervised learning for recommendation
predictions.
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In the realm of optimizing parameter gradients in Gibbs sampling, Li et al [16] conducted an analysis of the
numerical and directional errors between the approximate gradient and the true gradient of the RBM model.
They devised two algorithms to mitigate these errors: the Gradient Fixed Gibbs Sampling (GFGS) training
algorithm and the Gradient Fixed Parallel Tempering (GFPT) algorithm. These methods aim to adjust the
numerical values and directional aspects of the approximate gradient, thereby reducing errors during training.
Ma and Wang [17] identified biases in the parameter Gibbs sampling of RBM models, which fail to achieve
maximum likelihood parameters. Leveraging the principle that the average of random variables approximates
the expected value, they introduced the Averaged Contrastive Divergence (ACD) algorithm to mitigate the
bias in maximum likelihood parameters. Kirubahari and Amali [18] utilized Bayesian Optimization (BO) to
enhance the hyperparameters of Restricted Boltzmann Machines. By optimizing the number of sampling steps,
they aimed to improve prediction quality. Wang et al [19] proposed the Three-Phase Gibbs Sampling (PGS)
method, which involves training RBMs using different data distributions across phases to achieve more effective
parameter extraction and feature reconstruction.

In addition to these advancements, research on the number of Gibbs sampling steps in RBM algorithms
remains relatively limited. Li et al [14] conducted detailed research on the selection of sampling steps. However,
since the choice of Gibbs sampling steps significantly impacts the time cost and training accuracy of RBM
models, it remains a crucial area requiring further investigation.

2.4. Literature Review Summary. Through the analysis of the aforementioned studies, it is evident
that many scholars analyze recommendation data and then quantify these features into recommendation algo-
rithms to improve recommendation accuracy. However, due to the vastness of recommendation data and the
inherent accuracy limitations of recommendation algorithms, current research still has several shortcomings.
Firstly, most studies on recommendation data construct data networks and then investigate the characteristics
of these networks based on their properties. However, when the characteristics of recommendation data are
difficult to quantify within a network, it becomes challenging to construct a network that accurately reflects
these characteristics to obtain meaningful insights from the recommendation data [1, 2, 3, 4, 5, 6]. And then,
although the RBM model is widely used in the field of recommendations, most research [7, 8, 9, 10, 11]focuses
on improving the data inputted into the RBM model rather than enhancing the operational speed or accuracy
of the RBM model itself. Even within studies aimed at improving the RBM model [16, 17, 18, 19], which tends
to overlook issues such as the problem of important data information not being learned due to the random
initialization of Gibbs sampling, as well as the drawback of fixed sampling steps, which makes it difficult to
improve prediction accuracy in the later stages of algorithm iteration.

To address the first issue, user social attention information is statistically analyzed to obtain the power-
law distribution characteristics of the recommendation data. To tackle the second issue, the Gibbs sampling
approach is adjusted by incorporating these power-law distribution characteristics. Specifically, the initial
values of Gibbs sampling are set to be random in the early stages of iteration and are replaced by the previous
sampling results in the later stages. Additionally, fixed Gibbs sampling steps are replaced with periodic Gibbs
sampling (PGS).

3. Analysis of RBM Algorithm Improvements. Most recommendation datasets exhibit a power-law
distribution, indicating that the recommendation data is primarily concentrated in the tail [20, 21]. The main
algorithm in RBM (Restricted Boltzmann Machine) is Gibbs sampling, where the initial values are randomly
selected from the recommendation data. This random selection fails to focus on tail data, lacking deep iterative
analysis of tail data and not aligning with the long-tail characteristics of recommendation networks. Similarly,
Gibbs’ fixed number of sampling steps processes both the head and tail of the recommendation dataset with
the same number of steps, collecting an equal amount of recommendation data. This approach does not allow
for concentrated learning of tail information, resulting in insufficient learning and representation of tail user
information.

Therefore, the Gibbs sampling method will be improved in terms of sampling initial values and sampling
steps to enhance the recommendation performance of the RBM algorithm. The process will be as follows:

1. Provide a brief overview of the RBM algorithm principles.
2. Perform a characteristic analysis of the recommendation data in conjunction with the relevant theories

of power-law distribution.
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Fig. 3.1: The structure of the RBM Algorithm

3. Modify the Gibbs sampling initial values in the algorithm according to the power-law distribution
characteristics of the data. Specifically, in the early stages of iteration, the initial values will be selected
randomly, while in the later stages, the initial values will be the results of the previous sampling step.

4. Change the fixed number of Gibbs sampling steps to Periodic Gibbs Sampling (PGS). These improve-
ments aim to offer a reference for enhancing the accuracy of the RBM recommendation algorithm.

3.1. Improvement of Initial Values in Gibbs Sampling for RBM.
3.1.1. Selection of Initial Values in Gibbs Sampling for RBM. Before improving the selection of

initial values in the RBM algorithm, it is necessary to briefly introduce the working principles of the RBM
algorithm. RBM (Restricted Boltzmann Machine) is a generative stochastic neural network based on an energy
function. It is capable of transferring data through visible and hidden layers, deeply learning the latent features
of users and items, making it suitable for recommendation problems. The structure of the RBM algorithm is
illustrated in Fig. 3.1.

As shown in figure 3.1, v and h represent the visible and hidden units in the visible layer V and the hidden
layer H, respectively. a denotes the biases of the visible units, b denotes the biases of the hidden units, and W
represents the weights connecting the visible and hidden layers. In the visible layer, a node xi is multiplied by
a weight Wi,j ,then a bias term b is added. The result is then passed through an activation function σ (the
sigmoid function) to produce the output of the node xi.

The energy function for each unit is:

E(ν, h) = −
∑
i

aiνi −
∑
j

bjhj −
∑
i

∑
j

hjwi,jνi (3.1)

Using this energy function, the joint probability distribution between the visible layer and the hidden layer
can be obtained:

P (ν, h) =
1

Z
e−E(ν,h) (3.2)

In equation 3.2, Z is the normalization function that ensures the sum of probabilities over all possible states
of the node set e−E(ν,h) equals 1.

The units within the visible layer and the hidden layer are mutually independent. With the joint probability
distribution defined, we can derive the marginal probability distribution, thereby obtaining the activation
probabilities of the nodes in the visible layer and the hidden layer.

The units within the visible layer and the hidden layer are mutually independent. With the joint probability
distribution defined, we can derive the marginal probability distribution, thereby obtaining the activation
probabilities of the nodes in the visible layer and the hidden layer.

p(hj = 1 | v) = σ(bj +

m∑
i=1

wi,jvi) (3.3)

p(vi = 1 | h) = σ(ai +

n∑
j=1

wi,jhj) (3.4)



Research on Improved RBM Recommendation Algorithm Based on Gibbs Sampling 1021

In equation 3.3 and 3.4, σ represents the sigmoid function. The phase where the hidden layer is computed
based on visible layer data during training is referred to as the Positive phase, while the reverse is termed the
Negative phase.

Using the visible layer input data again as the starting point, with K (K ≥ 1) iterations of Gibbs sampling
from the visible layer data known, randomly initialize wi,j , randomly select the sampling initial value, iterate
between the visible and hidden layers using equation 3.3 and 3.4, loop iterate K times, and stop the iteration.
The parameter iteration formula is:

∇Wij = P (hj = 1 | v(0))v(0)i − P (hj = 1 | v(k))v(k)i

∇ai = v
(0)
i − v

(k)
i

∇bj = P (hj = 1 | v(0))− P (hj = 1 | v(k))
(3.5)

In equation 3.5, ν(0)i denotes the sample value, ν(k)i represents the sample value obtained after K sampling
steps.

Based on the operational process of the RBM algorithm described above, it is evident that Gibbs sampling
is the primary iterative algorithm used for recommendation computation in the RBM algorithm. Specifically,
the initial values for Gibbs sampling are randomly selected variables from the sample data, and subsequent
Gibbs sampling iterations are also based on these initial values, without including updates from the previous
iteration steps.

However, the Yelp dataset, after preprocessing using the GRU model to enhance temporal characteristics,
indicates that the improved dataset includes contextual feature information. On the other hand, Gibbs sampling
parameter updates only consider the parameter update values from the previous step and do not incorporate
earlier parameter updates. Consequently, within a limited number of iterations, it is unable to consider the
effective information contained in previous parameters.

Therefore, there is a need to enhance the iterative updating method and utilization of information contained
in Gibbs sampling parameters.

3.1.2. Improvement of Gibbs Sampling Initialization in RBM. Before improving the Gibbs sam-
pling initialization in RBM, it is necessary to analyze the recommendation data and then refine the initialization
based on its characteristics to enhance the accuracy of the CD algorithm.

Analysis of Recommendation Data Characteristics. When making recommendations, users recommend
products to other users directly or indirectly based on social relationships. It is necessary to study the char-
acteristics of recommendation data. Using the Yelp dataset, we examine whether there are inherent patterns
such as power-law distribution, whose probability distribution is shown in equation 3.6.

p(x) = Cx−a (3.6)

Power-law distribution refers to a phenomenon where a small number of key items in any given entity
contribute to the majority of outcomes or benefits, while the vast majority of items contribute minimally. If
recommendation data exhibits power-law distribution characteristics, it indicates that only a small portion
of the data contains substantial information, whereas the majority contains minimal information. Therefore,
following the approach proposed by Víctor Navas-Portella et al [22], using maximum likelihood estimation to
assess the cumulative degree of networks under power-law is recommended. Specifically, for practical datasets,
formula 3.7 is employed to estimate the power-law distribution.

α ≃ 1 + n[

n∑
i=1

ln
xi

xmin − 0.5
]−1 (3.7)

In equation 3.7, α represents the power law exponent, and xi represents the sample data.
Using the user social information from the Yelp dataset, user a following user b is defined as out-degree,

and user a being followed by user b is defined as in-degree. Then, the power-law distribution of the frequency
of user following and being followed is judged by maximum likelihood estimation. After obtaining and filtering
the Yelp dataset, the power-law distribution results are shown in Fig. 3.2.
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Fig. 3.2: The degree distribution of user attention

From Fig. 3.2, it can be observed that when the number of users is small, there is a higher probability
of users following and being followed. As the number of users increases, the frequencies of out-degree and
in-degree decrease, and a ’long tail phenomenon’ appears at the distribution’s tail. This is because when users
make hotel choices, the majority of users only follow unfamiliar users who provide more valuable information or
reciprocate with friends. Specifically, users with many followers do not necessarily follow all those who follow
them. Hence, a small number of users have a high degree of followers, while the probabilities of following and
being followed for the majority of users are low. Therefore, the user social information in the Yelp dataset
exhibits a power-law distribution.

In summary, the user engagement data in the Yelp recommendation dataset exhibits a long-tail distribution,
indicating that a small number of top users have limited social connections, while the majority of users in the
tail contribute significantly to the dataset. However, in Gibbs sampling, the random selection of initial values
means that if the initial value at time t is sampled from the head of the distribution, the sample at time t+1
could be from either the head or the tail. This randomness across iterations prevents Gibbs sampling from
concentrating on gathering data from the tail, thereby limiting the thorough extraction of information from
tail-end users.

Similarly, fixed Gibbs sampling steps treat the head and tail segments of the dataset equally, preventing
deeper learning from tail-end data. Therefore, when applying the RBM model to predict recommendations from
this dataset, it is essential to enhance the parameter iteration and sampling methods of the RBM algorithm to
account for the dataset’s long-tail characteristics effectively.

Improved Strategy for Gibbs Sampling Initialization in RBM. Due to the long-tail nature of recommenda-
tion data, it is evident that the majority of recommendations are concentrated towards the tail end. However,
the current method of initializing Gibbs sampling involves randomly selecting training data from the recommen-
dation network. This random selection could pick either head or tail data as initial values, failing to concentrate
on tail data and thereby lacking in-depth analysis of this segment, which contradicts the long-tail characteristic
of recommendation networks.

Therefore, it is necessary to enhance the strategy for randomly selecting initial values in Gibbs sampling as
follows: during the initial training phase, use the original training data as initial values, and during subsequent
phases, use the previous Gibbs sampling values as initial values. When the initial value is the original training
data, the update method for Gibbs sampling initialization is shown in equation 3.8. When the original data is
the previous training data, the Gibbs sampling initialization update method is shown in equation 3.9.

ν(0) → ν(k) (3.8)

v(k−1) → ν(k) (3.9)
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Fig. 3.3: Comparison of CD-K iterative reconstruction error

In equation 3.8 and 3.9, V (0) represents the randomly selected initial training value, and V (k) represents
the training value after K steps of Gibbs sampling.

To determine the threshold for changing the Gibbs initial value sampling method, it is necessary to analyze
the reconstruction error line chart of CD-K. From Fig.3.3, it can be observed that CD-1, CD-5, CD-10, and
CD-100 algorithms show a gradual increase in reconstruction error after approximately 2000 iterations, followed
by a slow decrease. This indicates that randomly selecting training data as initial values in the early iterations
can lead to rapid convergence of the Gibbs sampling network. However, after about 2000 iterations, the training
effectiveness of the RBM model decreases due to slower network convergence. Therefore, the threshold for the
number of Gibbs sampling iterations is set at 2000. During iterations 1-2000, random training data is selected
as the initial value for sampling, and from 2001 to 10000 iterations, the initial value for sampling is selected as
the parameter sampled from the previous Gibbs sampling, ensuring rapid convergence in the early iterations
and higher precision convergence in the later iterations.

3.1.3. Analysis of Improvements in Gibbs Sampling Initialization in RBM. Previous sections
provided both theoretical and experimental analyses of the characteristics of recommendation data and the
improvement strategy for Gibbs sampling initialization in RBM. It was demonstrated that the initial sampling
values should be changed from purely random selection to using random values in the early stages of iteration
and using the previous step’s sampling results in the later stages. This section will validate the effectiveness of
the improved Gibbs sampling initialization strategy through parameter gradient verification.

Based on the energy function of the RBM in Equation 3.1 and the marginal probability distributions of
the visible and hidden layers in Equations (3.3-3.4), the parameter gradient for iterative parameter updating
in the RBM network using Gibbs sampling is given by:

∇
∧
θ1 = −

∑
h

P (h | ν(0) ∂E(ν(0), h)

∂θ
) + EP (ν(k)|ν(0))[

∑
h

P (h | ν(k) ∂E(ν(k), h)

∂θ
)] (3.10)

In Equation 3.10,θ represents the general term for the parameters of the RBM.
According to the strategy for improving Gibbs sampling initialization, the updated parameter gradient is

given by:

∇
∧
θ2 = −

∑
h

P (h | v(0) ∂E(v(0), h)

∂θ
) + EP (v(i)|v(0))[

∑
h

P (h | v(i) ∂E(v(i), h)

∂θ
)]

−
∑
h

P (h | ν(i) ∂E(ν(i), h)

∂θ
) + EP (ν(i+1)|ν(i))[

∑
h

P (h | ν(i+1) ∂E(ν(i+1), h)

∂θ
)]

(3.11)
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According to Equation 3.11,−
∑
h

P (h | ν(0) ∂E(ν(0),h)
∂θ ) + EP (ν(i)|ν(0))[

∑
h

P (h | ν(i) ∂E(ν(i),h)
∂θ )]represents the

Gibbs sampling initialization as the original random sampling data v(0), with i steps of iteration, where i denotes
the number of iterations and 0 < i+1 ≤ k.On the other hand, −

∑
h

P (h | ν(i) ∂E(ν(i),h)
∂θ )+EP (ν(i+1)|ν(i))[

∑
h

P (h |

ν(i+1) ∂E(ν(i+1),h)
∂θ )] represents the Gibbs sampling initialization as the sampling result from the previous step

v(i), with k − 1 steps of iteration. When Gibbs sampling reaches the i-th step, the initialization value is
transformed from v(0) to v(i).

The optimization of the RBM model is achieved by finding the optimal parameters through gradient
descent.Persistent Contrastive Divergence (PCD) is one of the benchmark algorithms used in RBM training.
PCD is proved to be able to approach the network distribution with a small enough learning rate of network
parameters. Therefore, using the result of the last parameter iteration as the initial value of the next iteration
can make the training parameters change little, and make the parameter gradient decline faster and stabilize
in a smaller interval.

Therefore, the parameter gradient of the improved method is smaller than the original randomly selected
initial values:

−
∑
h

P (h | ν(i)
∂E(ν(i), h)

∂θ
) + EP (ν(i)|ν(0))[

∑
h

P (h | ν(i)
∂E(ν(i), h)

∂θ
)] + EP (ν(i+1)|ν(i))[

∑
h

P (h | ν(i+1) ∂E(ν(i+1), h)

∂θ
)] <

−
∑
h

P (h | ν(0)
∂E(ν(0), h)

∂θ
) + EP (ν(i)|ν(0))[

∑
h

P (h | ν(i)
∂E(ν(i), h)

∂θ
)] + EP (ν(i+1)|ν(0))[

∑
h

P (h | ν(i+1) ∂E(ν(i+1), h)

∂θ
)], i+ 1 ≤ k

(3.12)

In Equation (12),

EP (ν(i)|ν(0))[
∑
h

P (h|ν(i)
∂E(ν(i), h)

∂θ
)] + EP (ν(i+1)|ν(0))[

∑
h

P (h|ν(i+1) ∂E(ν(i+1), h)

∂θ
)] = EP (ν(k)|ν(0))[

∑
h

P (h|ν(k)
∂E(ν(k), h)

∂θ
)]

That is ∇
∧
θ2 < ∇

∧
θ1.

From the perspective of parameter gradients, the improvements to Gibbs sampling initialization are demon-
strated to be effective.

3.2. Improving Gibbs Sampling Steps in RBM. Section 3.1.2 analysis highlighted the foundational
characteristics of power-law distribution in the Yelp dataset’s complex network. However, fixed Gibbs sampling
steps collect an equal amount of data from both the head and tail of the dataset, failing to concentrate
on learning tail-end information. This results in insufficient characterization of user information in the tail.
Therefore, there is a need to improve and adjust the Gibbs sampling steps.

3.2.1. Comparison of Single-step and Multi-step Gibbs Sampling. Section 3.1 has already intro-
duced and analyzed the principles of Gibbs sampling and the long-tail characteristics of recommendation data.
Therefore, this section compares single-step Gibbs sampling with multi-step Gibbs sampling to assess their
performance advantages and disadvantages. Additionally, leveraging the classical momentum algorithm (CM)
to determine decision points for varying Gibbs sampling steps and formulate Gibbs sampling strategies. Finally,
from the perspective of Markov chain theory, analyze and justify the rationality of improving Gibbs sampling
steps.

Comparison of training errors between single-step Gibbs sampling (CD-1) and various multi-step Gibbs
samplings (CD-5, CD-10, CD-100, CD-500) at epochs 1-100 and 991-1000. Utilizing the concept of reconstruc-
tion, original data is obtained from trained data, and reconstruction error serves as the evaluation metric to
compare CD-K sampling results, thereby assessing the performance of the RBM network at different iteration
steps. The comparison results are shown in Fig.3.4.

As shown in Figures 3.4(a) and (b), during the early stages of RBM parameter iteration, the reconstruction
error of single-step Gibbs sampling (CD-1) decreases rapidly and vertically, outperforming the training error
of multi-step sampling (CD-K, where (K > 1). This indicates that single-step sampling provides better fitting
of the training data. In the initial stages of RBM training, with fewer iterations and larger recommendation
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(a) Gibbs pre-sampling error (b) Gibbs post-sampling error

Fig. 3.4: Gibbs sampling error comparison

errors, simple single-step sampling can quickly reduce the recommendation error without the need for time-
consuming multi-step sampling. On the other hand, multi-step Gibbs sampling exhibits higher and oscillating
reconstruction errors, suggesting larger errors during the early iteration stages. In the later stages of RBM
parameter iteration, both single-step and multi-step sampling errors stabilize. However, the training error of
single-step sampling is higher compared to multi-step sampling, indicating that random sampling alone can
no longer significantly improve recommendation accuracy and emphasizes the need to focus on sampling the
tail-end data.

Therefore, Gibbs sampling exhibits strong training capabilities for the RBM model, but its sampling steps
significantly impact the algorithm’s performance. So the following sections will analyze the influence of Gibbs
sampling steps on algorithm performance, combining theoretical analysis with the characteristics of recommen-
dation networks to improve Gibbs sampling.

3.2.2. Improvement Strategies for Gibbs Sampling Steps in RBM. The primary distinction be-
tween CD-1 and CD-K lies in their iteration steps, which result in different parameter iteration gradients.
Specifically, CD-1 sampling concludes after Gibbs sampling step 1, while CD-K sampling involves K Gibbs
sampling steps before terminating the CD algorithm. This leads to the following analysis: CD-1 exhibits good
early-stage effectiveness but lacks high precision in later stages, whereas CD-K shows initial error oscillation
but achieves higher accuracy in the later stages.

The magnitude of parameter gradients can measure the effectiveness of training methods for parameters.
How to divide the sampling steps within the iteration interval can be judged based on the magnitude of
gradient ascent to determine the Gibbs sampling steps, thus the classic momentum algorithm (CM) can be
used to determine the decision points for Gibbs sampling step changes. CM adjusts the difference between
accumulated velocity and current gradient ∇g(θt) to decrease the target gradient, thereby accelerating the
convergence speed of parameter learning. The RBM model is trained based on gradient ascent, hence CM’s
gradient update formula under the RBM model is shown in equation 3.13 and equation3.14.

νt+1 = µνt + ε∇g(θt) (3.13)

θt+1 = θt + νt+1 (3.14)

In equation 3.13 and equation 3.14, vt represents the accumulated velocity, ∇g(θt) denotes the gradient of
the objective function at the current point, θ denotes the parameters of the model, µ represents the accumulated
velocity parameter, and ε represents the learning rate.
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When performing single-step Gibbs sampling in the initial training stages of the RBM model, as the number
of iterations increases, the numerical values of the network weights also increase. As the network weights expand,
denoted by

∣∣w∣∣ → +∞, according to equation (3.3-3.4).

bj +

m∑
i=1

wi,jvi → ∞ (3.15)

ai +

n∑
j=1

wi,jhj → ∞ (3.16)

Therefore, the corresponding probabilities for the hidden layer nodes and visible layer nodes change to:

P (hk = 1 | ν) → 0or1 (3.17)

P (vk = 1 | h) → 0or1 (3.18)

As the number of iterations increases, the sampling probabilities of the Gibbs sampling chain gradually
approach 0 or 1. That is, during each sampling, the values at each point are either 0 or 1. At this point,
the transition operator of the sampling chain loses its randomness, indicating that the parameter gradient
optimization direction is not the fastest. Moreover, the mixing rate of the Gibbs sampling chain decreases as
the randomness of its transition operator decreases[23]. This means that as the number of iterations increases
and the network weights grow, the mixing rate of the single-step Gibbs sampling chain gradually decreases,
leading to reduced accuracy in later stages. Similarly, multi-step Gibbs sampling involves K repetitions of
single-step Gibbs sampling, which confirms that multi-step Gibbs sampling may experience slower convergence
in the early iterations.

Based on the analysis above and the results in Fig. 3.3, it is evident that improving the parameter iteration
method of the RBM model in conjunction with the characteristics of the recommendation data can enhance the
efficiency of the recommendation algorithm[24, 25]. Specifically, reducing the number of sampling steps in the
sparse head of the data and increasing the sampling steps in the tail can yield more accurate data information.

Comparing the Gibbs sampling of CD-1, CD-5, CD-10, and CD-100 as shown in Fig.3.3, CD-1 exhibits
better reconstruction error during the early iterations (1-2000 iterations) compared to multi-step Gibbs sampling.
However, beyond this range, CD-10 consistently outperforms other step sizes in sampling.Therefore, the strategy
for improving Gibbs sampling steps is as follows.

1. For iterations 1 to 2000, set Gibbs sampling steps K1 = 1. Execute single-step Gibbs sampling, using
equation3.3 and equation 3.4, to compute the probability distributions of visible and hidden layers.

2. For iterations 2001 to 10000, set Gibbs sampling steps K2 = 5. Execute 5-step Gibbs sampling, using
equation3.3 and equation 3.4, to compute the probability distributions of visible and hidden layers.

3.2.3. Analysis of the Improvement Characteristics of Gibbs Sampling Steps in RBM. Gibbs
sampling is a type of Markov Chain Monte Carlo (MCMC) sampling algorithm. This section analyzes the
number of Gibbs sampling steps using relevant theories from Markov chains, providing a theoretical justification
for the improvement in the number of sampling steps.

In RBM model training, hidden layer nodes and input layer nodes are sampled alternately, as described in
Equations 3.3 and 3.4. According to the Markov chain convergence theorem, if the number of possible states
for the parameters is finite, the transition probabilities of the chain are fixed, and the parameter states can
transition from any state to any other state. Therefore, when the number of steps n → +∞, the Gibbs sampling
chain will converge to a stationary distribution:

πi(x) = πi−1(x)P = π0P
n, i ∈ S (3.19)

In Equation 3.19, πi(x) represents the stationary distribution of the sample x. i denotes an arbitrary state,
and S is the state space.
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Furthermore, according to the detailed balance criterion of Markov chains, it can obtain:

π(xi)Pij = π(xj)Pji,∀i, j ∈ S (3.20)

In Equation 3.20,xi and xj represent the training data. Pij and Pji denote the Markov transition proba-
bilities.

According to Equation 3.20, the stationary distribution achieved by Gibbs sampling is independent of the
initial sampling values and depends only on the Markov transition probabilities. Combining this with the
alternating sampling probability formulas for the visible and hidden layers in the RBM algorithm (Equations
3.3 and 3.4), it can be seen that when using Gibbs sampling for iterative training of RBM model parameters,
the stationary distribution is a function of the network parameters:

π(x) = f(a, b, w) (3.21)

In Equation 3.21, π(x)represents the stationary distribution of the sample x. f(θ) denotes the distribution
of the parameters as a function.

The trained parameter values are denoted as θ̂ = (â, b̂, ŵ) , while the true parameter values are θ = (a, b, w)
. The goal of training the RBM is to adjust the network parameters such that the trained parameter values
are as close as possible to the true parameter values.



∆a = â− a

∆b = b̂− b

∆w = ŵ − w

(3.22)

Therefore, in the early stages of RBM iterative learning, when the trained parameter values are significantly
different from the true values, multiple steps of Gibbs sampling can cause the sampled values to deviate further
from the true values, resulting in multiple oscillations in the parameter values during early iterations. Single-
step sampling, however, allows for faster convergence of the parameters to the true values. In the later stages
of sampling, as the trained parameter values approach the true values, multiple-step sampling can more deeply
capture the latent features of the recommendation data, thereby improving the accuracy of parameter training.
On the other hand, single-step sampling may lead to a path with significant deviation from the true values,
making CD-1 susceptible to local minima and resulting in lower parameter accuracy in the later stages of
single-step sampling.

From the above analysis, it is evident that both single-step Gibbs sampling and multi-step Gibbs sampling
have limitations in the RBM network training process, as demonstrated by MCMC algorithms. The experimen-
tal results, as shown in Figure 3.4, further validate this from the perspective of Markov chains. This highlights
the necessity of changing the fixed sampling step size in Gibbs sampling to a phase-based variable step size.

4. The whole process of improving RBM algorithm is introduced. The improvements made to
the RBM model itself primarily focus on refining the initial values and sampling steps of Gibbs sampling.
Specifically, the random selection of Gibbs sampling initial values has been adjusted to a combination of
random selection and the previous sampling value, and the fixed Gibbs sampling steps have been changed to
staged Gibbs sampling steps. The specific improvement process is as follows: First, determine a model iteration
of 10,000 steps. Then, during iterations 1-2,000, initialize sampling with randomly selected training data from
the recommendation set and set the sampling step to 1. For iterations 2,001-10,000, use the previous Gibbs
sampling result as the sampling value and set the sampling step to 5. The algorithm process is illustrated in
Algorithm 1.

Combined with the Data pre-processing analysis, the overall process of the recommender system improve-
ment is shown in Fig.4.1.
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Algorithm 1
Step 1: Set initial values for RBM model parameters.
Step 2: Input the Yelp dataset into the visible layer of the RBM model, randomly select initial sampling values,

and adjust the fixed sampling steps to staged sampling steps, setting the staged sampling step to 1.
Step 3: Within iterations 1-2000, perform interactive sampling between the RBM visible and hidden layers

using equations 3.3 and 3.4, and update parameters using equation 3.5 with the sampled values.
Step 4: Repeat steps 2-3 for 2000 times to complete single-step Gibbs sampling with a sampling step of 1.
Step 5: Within iterations 2001-10000, change the randomly selected initial sampling value to the previous

sampling value, and adjust the 1-step Gibbs sampling step from step 2 to 5.
Step 6: Repeat steps 3 and 5 for 8000 times. Stop parameter training at iteration 10000, completing Gibbs

sampling with a step of 5.

Fig. 4.1: Personalize the recommendation process

5. Experimental analysis. The previous section analyzed the power-law characteristics of the Yelp
dataset and improved the Gibbs sampling’s random initial values and the number of sampling steps based
on the characteristics of the recommendation data. The characteristics of the improved initial values and
sampling steps were analyzed, and the effectiveness of the improved RBM algorithm was discussed from a
theoretical perspective. Therefore, this section aims to conduct an empirical analysis of the Gibbs sampling
and RBM recommendation algorithms before and after the improvements, to further explore the effectiveness
of the improved RBM recommendation algorithm.

The dataset selected for the empirical analysis is the improved Yelp dataset, which has been refined ac-
cording to the data preprocessing steps shown on the left side of Figure 4.1. This includes GRU sequential
processing of the textual information in the dataset, quantifying the different contributions of the text data
using the attention mechanism, and integrating the text data with the rating data based on user preferences.
The details of the improved Yelp dataset are shown in Table5.1.

Compare the reconstruction error metrics of the initial values and sampling steps of Gibbs sampling before
and after the improvements. Additionally, analyze the recall@K, MAE, and RMSE metrics using classical rec-
ommendation algorithms such as RBM, RTRBM, PMF, and the improved RBM algorithm. Finally, analyze the
experimental results to determine the effectiveness of the improved RBM recommendation algorithm strategy.
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Table 5.1: Features of the improved Yelp data set

Features Improved Yelp dataset
number of users 15328
number of items 37335
number of ratings 106821
number of comments 13796
number of mutual attention 4626

5.1. Introduction to the Dataset, Metrics, and Comparison Algorithms.
5.1.1. Introduction to the Dataset. The Yelp dataset is an online service and business review platform

where users can post reviews and ratings for businesses. It includes a wealth of data such as user reviews, ratings,
user information, and business information. The details of the improved Yelp dataset are shown in Table 5.1.

5.1.2. Introduction to Metrics. The effectiveness of the improvements to the RBM algorithm is mea-
sured using the following three metrics. recall@K indicates the proportion of correctly predicted positive samples
out of all positive samples.

recall@k =
TP@k

TP@k + FN@k
(5.1)

In Equation 5.1,TP@k represents the number of correctly recommended items in the top-K recommendation
list, and FN@k represents the number of incorrectly recommended items in the top-K recommendation list. A
higher recall@K value indicates better performance of the model’s recommendations.

MAE stands for Mean Absolute Error, and RMSE stands for Root Mean Squared Error. Both metrics are
used to measure the difference between predicted values and observed values in recommendation algorithms.

MAE =
1

T

∑
(u,i)∈T

| rui − r∧ui | (5.2)

RMSE =

√√√√ 1

T

∑
(u,i)∈T

(rui − r∧ui)
2 (5.3)

In Equations 5.2 and 5.3, T represents the test set, rui and r∧ui denote the true rating and the predicted
rating for item by user, respectively. Generally, smaller MAE and RMSE values on the test set indicate better
accuracy in the rating predictions of the recommendation algorithm.

5.1.3. Introduction to Comparison Algorithms.
(1) Restricted Boltzmann Machine (RBM) Algorithm. Using the Yelp recommendation dataset, RBM pro-

cesses data through visible and hidden layers, employing Gibbs sampling to deeply learn the latent features of
users’ hotel choices, thereby generating hotel recommendation predictions.

(2) Improved Restricted Boltzmann Machine (RBM) Algorithm. Building upon RBM, this improved version
adjusts the sampling initial values and sampling steps of Gibbs sampling to phased sampling initial values and
phased sampling steps.

(3) Recurrent Temporal Restricted Boltzmann Machine (RTRBM) Algorithm. This algorithm can be seen
as an extension of RBM, where several RBMs are horizontally concatenated. It utilizes continuously sampled
differences from previous sampling results to effectively handle temporal information about changes in user
preferences for hotels.

(4) Probabilistic Matrix Factorization (PMF) Algorithm. This algorithm leverages both user social infor-
mation and user rating and review information. It decomposes the ”user-social attention” matrix into user
implicit factor matrices and social attention implicit factor matrices. Using these implicit factor matrices, it
predicts user ratings for hotels and generates hotel recommendation lists.
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(a) Reconstruction error of Gibbs sampling initial
value before improvement

(b) Reconstruction error of improved Gibbs sampling
initial value

Fig. 5.1: Comparison of reconstruction error of Gibbs sampling random initial value before and after improve-
ment

5.2. Comparative analysis of Gibbs sampling initial values. By comparing the random initial values
of Gibbs sampling with the initial values set as random for the early iterations (1-2000 iterations) and as the
values from the previous Gibbs sampling for the later iterations (2001-10000 iterations), the effectiveness of the
improved Gibbs sampling initial values can be demonstrated. Therefore, under the premise of 10,000 iterations,
the reconstruction error metrics of the initial values of Gibbs sampling before and after the improvements for
CD-1, CD-5, CD-10, and CD-100 are calculated to determine the effectiveness of the improved Gibbs sampling
initial values strategy. The experimental results are shown in Fig.5.1.

1. As shown in Fig.5.1(a), the selection of random initial values for Gibbs sampling does not satisfy the
power-law distribution characteristics of the recommendation data. This results in higher reconstruc-
tion errors for both single-step and multi-step sampling during the 10,000 iterations compared to the
improved initial values of Gibbs sampling shown in Fig.5.1(b). This demonstrates that the improve-
ment to the Gibbs sampling initial values—using random initial values in the early iterations (1-2000
iterations) and the previous sampling results in the later iterations (2001-10000 iterations)—enables the
early iterations to converge quickly and the later iterations to converge to higher precision, effectively
reducing the reconstruction error throughout the entire training cycle.

2. Meanwhile, the change in CD-1 reconstruction error before and after the improvement is minimal,
decreasing from 188 to 178 in the later stages. This is because single-step sampling converges extremely
quickly within just one iteration, resulting in a slower decrease in reconstruction error. However, the
greater the number of multi-step samplings, the larger the reduction in reconstruction error. This
indicates that multi-step sampling focuses on collecting tail data in the later stages, allowing the tail
data of the recommendation data to be intensively learned through iterations, thereby improving the
accuracy of Gibbs sampling.

3. Considering the characteristics of the Yelp dataset, users’ ratings and reviews of hotels are quite sparse,
with a sparsity level exceeding 90%. Only a few users who frequently patronize hotels and actively
review them receive a lot of attention. When the RBM recommendation algorithm learns the users’
rating and review information for hotels, it processes all user information one by one, leading to the
loss of hotel review data for the majority of users. This results in a decrease in the recommendation
accuracy of RBM. Therefore, by changing the strategy of random initial values in Gibbs sampling
and shifting the algorithm’s attention to users with more social information and hotel ratings and
reviews, the reconstruction error of Gibbs sampling can be reduced, thereby enhancing the predictive
performance of the RBM recommendation algorithm.
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Fig. 5.2: Comparison of reconstruction error between fixed Gibbs sampling steps and staged Gibbs sampling
steps

In summary, after improving the initial values of Gibbs sampling, the RBM algorithm can adjust sampling
based on the characteristics of the concentrated tail data in the recommendation dataset, making the advantages
of the improved RBM algorithm more apparent. The improved RBM algorithm is suitable for large-scale and
sparse recommendation data, enhancing the learning speed of the algorithm while ensuring the accuracy of the
recommendations.

5.3. Comparative analysis of Gibbs sampling steps. Based on the empirical analysis of the Gibbs
sampling initial values mentioned above, a similar empirical comparative analysis is conducted for the Gibbs
sampling steps before and after the improvements. By comparing the performance of fixed Gibbs sampling steps
with the strategy of single-step sampling in the early iterations (1-2000 iterations) and multi-step sampling (CD-
5) in the later iterations (2001-10000 iterations), with the initial values being random in both cases, we aim
to validate the effectiveness of phased sampling steps. Therefore, under the premise of 10,000 iterations, the
reconstruction error of fixed Gibbs sampling steps CD-1, CD-5, CD-10, CD-100, and phased sampling steps is
calculated to determine the effectiveness of the phased Gibbs sampling strategy. The experimental results are
shown in Fig.5.2.

1. As shown in Fig.5.2, during the early iterations, the phased Gibbs sampling (PGS) employs single-step
sampling, resulting in significant decreases in reconstruction errors for various fixed Gibbs sampling
steps (CD-K) and PGS. This rapid convergence indicates comparable performance across these methods.
In the later iterations, the reconstruction error of PGS is lower than that of fixed Gibbs sampling steps.
This suggests that PGS facilitates rapid convergence in the early iterations while focusing on improving
sampling precision in the later iterations, effectively enhancing the operational efficiency and accuracy
of the RBM algorithm. Furthermore, it demonstrates PGS’s ability to adapt effectively to the power-
law distribution characteristics of recommendation data by conducting multi-step sampling in the tail
data, thereby improving the accuracy of Gibbs sampling.

2. According to the analysis of the reconstruction error characteristics of Gibbs sampling before improve-
ment, fixed Gibbs sampling steps do not conform to the power-law characteristics of the Yelp dataset.
From the reconstruction error characteristics of PGS shown in Fig.5.2, it is evident that throughout the
10,000 iterations, PGS consistently maintains lower reconstruction errors compared to fixed sampling
steps. This indicates that PGS can effectively leverage the rich information of users in the Yelp dataset,
enabling better selection and prediction of hotels.

3. During the initial 2000 iterations, whether using single-step or multi-step Gibbs sampling, the recon-
struction error shows a significant decrease followed by a slight increase. This pattern is determined
by the characteristics of the Yelp dataset. In the early stages of recommendation prediction, the Yelp
dataset allows RBM to learn and predict recommendations based on limited information. This initial
learning involves deep learning of relevant information from scratch, acquiring data features, and thus
achieving a significant decrease in reconstruction error after a few Gibbs iterations. However, the
majority of users in the dataset have sparse information, providing minimal evaluations on aspects
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Table 5.2: Comparison of performance indicators of different recommendation algorithms

Indicators

Recommendation
algo-
rithm RBM Improved

RBM RTRBM PMF

recall@K 0.728 0.763 0.731 0.712
MAE 0.801 0.833 0.741 0.702 0.778 0.764 0.862 0.848
RMSE 1.291 1.227 1.114 1.031 1.201 1.126 1.429 1.354

such as hotel location and cuisine. Due to the drawbacks of fixed single-step and multi-step Gibbs
sampling namely, insufficient precision in the later stages and high time costs respectively the original
RBM algorithm struggles to efficiently predict recommendations based on the characteristics of the
Yelp dataset.

In conclusion, throughout the entire iteration cycle, PGS demonstrates its ability to balance the parameter
iteration of the RBM algorithm, allowing the network to converge to a higher precision. Specifically, in the
early stages of the algorithm’s recommendation learning, single-step Gibbs sampling facilitates faster parameter
convergence, enabling the parameters to approach the true values. In the later stages, rapid parameter con-
vergence through multi-step sampling also helps the parameters to converge to the true values. This indicates
that the improvement in Gibbs sampling steps is meaningful and can effectively enhance the recommendation
efficiency of the RBM.

5.4. Performance Comparison Analysis of Different Recommendation Algorithms. In addition
to comparing the initial values and sampling steps of Gibbs sampling before and after improvement, it is also
essential to conduct a comparative analysis between the improved RBM algorithm and other classical recom-
mendation algorithms to assess the performance of the improved RBM. This section will compare the original
RBM algorithm, Recurrent Temporal Restricted Boltzmann Machine (RTRBM) algorithm, Probabilistic Ma-
trix Factorization (PMF) algorithm, and the improved RBM algorithm based on recall@K, MAE, and RMSE
metrics. This comparison aims to demonstrate the effectiveness of the improved RBM algorithm.

5.4.1. The results of the experiment. A comparison was made between the classic recommendation
algorithms and the improved RBM. The performance of the algorithms was evaluated using metrics such as
recall@K, MAE, and RMSE. The performance comparison results for different recommendation algorithms are
shown in Table 5.2. The performance of the algorithms was tested using different test set sizes, with the test
sets being 70% and 80%, and the prediction sets being 30% and 20%. In Table 5.2, the MAE and RMSE values
on the left side correspond to the predictions with the 70% test set, while those on the right side correspond to
the predictions with the 80% test set.

5.4.2. Analysis of experimental results.
1. As shown in Table 5.2, the recall@K value of the improved RBM algorithm is 0.763, which is higher

than that of the other algorithms. In terms of MAE and RMSE, when the test set is 70%, the improved
RBM algorithm yields values of 0.741 and 1.114, respectively, which are lower than those of the other
algorithms. When the data sparsity is further reduced, the improved RBM algorithm values decrease to
0.702 and 1.031. This clearly demonstrates that the improvements made to the sampling initial values
and sampling steps of the RBM algorithm, considering the power-law characteristics of the dataset,
effectively enhance both the efficiency and accuracy of recommendation predictions.

2. All metrics in Table 5.2 demonstrate that the performance of the improved RBM algorithm surpasses
that of the original RBM algorithm. This indicates that compared to the original RBM algorithm,
the improved RBM algorithm can deeply learn various aspects of information from the Yelp dataset,
including user preferences for hotel location, cuisine, service, and social interactions, thereby achieving
superior recommendation performance. During the early stages of algorithm iteration, RBM recom-
mendation involves the transmission and updating of data between visible and hidden layers to learn
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relevant features based on user preferences for hotel selection. Therefore, when randomly selecting
recommendation data during Gibbs sampling to gather diverse user hotel preference information and
mitigate the limitations of single sampling, it effectively reduces algorithm runtime and enhances recom-
mendation efficiency.Similarly, in the later stages of iteration, due to the continuity of user information,
the RBM algorithm needs to learn temporal user characteristic information, acquiring hotel consump-
tion information and characteristics over time to better understand changes in user hotel preferences.
Hence, considering the temporal aspects and refining the interpretation of user preference features
during Gibbs sampling can effectively improve algorithm performance.

3. The recommendation prediction performance of the RTRBM algorithm lies between that of the im-
proved RBM algorithm and the RBM algorithm. The recall@K value of RTRBM is 0.731, which is
greater than the values of 0.728 for RBM and 0.712 for PMF. For both the 70% and 80% test sets, the
MAE and RMSE values are 0.764 and 1.126, respectively, both of which are higher than the values of
0.833 and 1.227 for RBM, and 0.848 and 1.345 for PMF. This suggests that user preferences for hotels
in the Yelp dataset change over time, showing temporal dynamics where preferences in one period
influence those in subsequent periods. RTRBM demonstrates efficient capabilities in collecting and
organizing user feature information and capturing temporal changes in hotel preferences. This enables
it to make highly accurate recommendation predictions within a relatively short timeframe.

4. The recommendation prediction performance of the PMF algorithm is relatively poor. the recall@K,
MAE, and RMSE values are 0.712, 0.848 and 1.354, respectively when the test set is 80%.This could be
attributed to the PMF algorithm’s reliance solely on implicit factor matrices to predict user hotel pref-
erences, without adequately addressing the temporal dynamics of user data. Furthermore, influenced
by the sparsity of the dataset, the matrix sparsity in PMF leads to decreased accuracy in prediction
results.

In summary, regardless of which metric is used to assess recommendation accuracy, the improved RBM algo-
rithm consistently outperforms others. This demonstrates that the improved RBM algorithm, which considers
the characteristics of the input dataset, achieves the best recommendation performance.

6. Conclusion. Most of the studies do not consider the characteristics of real data sets when making
recommendation prediction, so this paper studies the power-law distribution characteristics of recommendation
data, according to this characteristic, a novel recommendation and prediction algorithm based on improved
RBM model is proposed.

According to the long tail characteristic of the recommendation data, the recommendation algorithm is
required to collect the recommendation tail data and to study and analyze the tail data deeply. Therefore,
the main algorithm in RBM, Gibbs sampling, has been modified: random sampling for initial stages and using
the previous sampling results as initial values in later stages, alongside phased sampling steps. This approach
aims to concentrate on collecting data from the tail end of recommendations, iteratively analyzing this data to
enhance algorithm performance.

Subsequently, the improved Yelp dataset is selected as the training data for the RBM algorithm, and
ablation experiments are conducted on Gibbs sampling. The improved RBM is then compared and analyzed
against the original RBM, RTRBM, and PMF algorithms. Experimental results demonstrate that the improved
RBM algorithm outperforms the other three algorithms in prediction accuracy. It accurately predicts user hotel
preferences, effectively enhancing the recommendation prediction capability of the RBM algorithm.
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