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BUILDING ENERGY SYSTEMS USING DIGITAL TWINS AND GENETIC ALGORITHMS

JIFENG HAN∗AND LIQIN AI†

Abstract. In order to solve the problems of energy consumption behavior and production process generating heat waste and
carbon emissions, the author proposes to use digital twins and genetic algorithms to study building energy systems. The author
employed Matlab/Simulink to develop an optimization framework for isolated multi-energy complementary building energy systems.
The optimization objective was to minimize the annual cost of the system, and based on digital twins and genetic algorithms, the
model was optimized and simulated for analysis. The experimental results show that compared to not considering flexible loads,
when flexible electrical loads, flexible thermal loads, and flexible electrical/thermal loads participate in regulation, the annual cost
of the system is reduced by 5.13%, 33.01%, and 35.4%, respectively. Incorporating flexible electrical loads into regulation shifts
energy demand towards periods of high photovoltaic output, thereby reducing the required capacities of energy storage batteries
and diesel generators. Compared to scenarios where only flexible thermal loads participate in regulation, simultaneous participation
of both flexible electrical and thermal loads results in smoother indoor temperature fluctuations with reduced amplitude. When
flexible thermal and electrical loads are simultaneously regulated, the best effect is achieved in reducing the annual value of system
costs and annual carbon dioxide emissions.
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1. Introduction. As national society progresses, industrialization advances, and living standards rise, the
demand for energy continues to grow steadily [1]. The total energy consumption of building energy systems is
high and is influenced by weather, indoor personnel behavior, and comfort needs. It mainly consumes a large
proportion of energy in cooling, heating, and lighting systems. Therefore, the optimization of building energy
system operation and energy-saving strategies have received widespread attention from scholars [2].

The traditional energy consumption method usually uses manual methods to predict resources and optimize
scheduling in real-time based on the predicted resources; This method has the disadvantages of many uncertain
factors, a small range of scheduling strategy selection, and large prediction errors [3]. For example, due to
information asymmetry among users, between users and the power grid, or between users, energy conservation
and emission reduction goals cannot be achieved, and the requirements for equipment performance among
users are inconsistent or even deviate from the goals; It is difficult to achieve when resources are optimized
and scheduling strategies are configured to achieve this goal; The energy consumption behavior and production
process generate problems such as heat waste and carbon emissions that are difficult to eliminate [4]. Therefore,
in order to further achieve the goal of efficient energy conservation and emission reduction, it is necessary to
conduct unified analysis and optimization of various resources, and dynamically analyze and simulate them to
obtain scheduling strategies with universal laws and good targeting and energy-saving effects. By using digital
twin and genetic algorithm technology, a dynamic energy efficiency model is constructed and applied to the
overall planning of the comprehensive energy platform to achieve goals such as improving energy utilization
efficiency and reducing energy consumption. Establishing a multi energy complementary building energy system
that couples renewable energy and traditional energy can effectively overcome the intermittency and volatility
of renewable energy, which is of great significance for ensuring the reliability and stability of energy supply in
isolated rural areas and achieving local energy self-sufficiency [5,6].

2. Literature Review. Due to the intermittent and fluctuating characteristics of renewable energy, it
is difficult to match the supply and demand of multi energy complementary building energy systems. The
integration of energy storage devices is an important technology for achieving supply-demand balance in re-
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newable energy systems at present, but relying solely on energy storage devices for regulation will greatly
increase system costs [7-8]. Flexible load regulation refers to a type of method that optimizes the load curve
by actively changing the load operating time or load size, and has become a hot research topic for domestic
and foreign industry scholars due to its economic and efficient characteristics [9]. Libralato, M. et al. created
a digital twin to analyze the energy consumption of building HVAC systems. They detailed the programming
and data analysis framework of the supervisory system. The digital twin was then employed to compare two
control strategies for summer thermostat regulation, aiming to enhance the energy efficiency of building HVAC
systems and leverage the thermal storage properties of building envelope structures to modify and reduce peak
power demand [10]. Ohmura, T. et al. presented a use case examining optimal scheduling and energy-saving
parameters. The study revealed that certain parameter configurations could reduce work waiting time by up
to 70% and decrease energy consumption by 1.2% during peak system activity. Consequently, this digital
twin demonstrated the feasibility for system administrators to accurately adjust various parameters without
disrupting system operations [11]. Hou, Y. et al. introduced a combined simulation framework for energy au-
diting and pixel-level simulation of building envelope structures that integrates with Digital Twins (DT). This
framework initially examines the input and output interactions between the Building Physics Twin (PT) and
DT for energy auditing, highlighting the current technical challenges in transferring data from PT to DT for
building energy simulation. Additionally, it evaluates the requirements for building parameters in simulations
and identifies the existing research gap in model updates between Building Information Modeling (BIM) and
Building Energy Modeling (BEM). Furthermore, the framework presents joint simulation methods for building
energy simulation, detailing how to exchange data within the joint simulation and interpret the results to
develop renovation plans [12].

The above research comprehensively analyzed the impact of digital twins and genetic algorithms on the
capacity configuration of energy system equipment, but the research objects are mostly limited to multi input
single output microgrid systems. The author aims to establish a matching mechanism between multi type het-
erogeneous energy combination supply and flexible demand, establish an isolated multi energy complementary
building energy system design optimization model for solving multi input and multi output, and analyze and
summarize the effect of flexible electricity/heat load on the overall performance of the system through specific
cases. The research results can lay a theoretical foundation for the planning and design of distributed multi
energy complementary building energy systems in villages.

3. Method.
3.1. Principle of Thermal Power Supply. The isolated multi energy complementary building energy

system consists of photovoltaic modules, solar collectors, air source heat pumps, diesel generators, energy storage
batteries, and heat storage water tanks (see Figure 1). The system can be divided into two major components:
Power supply system and heating system. In the power supply system, photovoltaic modules serve as the main
power supply equipment, and diesel generators serve as auxiliary power supply equipment to supply power to
air source heat pumps, electric heaters, and buildings [13,14]; In the heating system, solar collectors serve as the
main heating equipment, while air source heat pumps and electric heaters serve as auxiliary heating equipment
to provide heat to buildings. The energy storage equipment of the system consists of a heat storage water tank
and energy storage batteries.

3.2. Heating control strategy. The operation of a solar collector is influenced by the temperature
difference between its inlet and outlet, as well as the maximum temperature of the heat storage tank. Similarly,
the start and stop of an air source heat pump and electric heater are affected by the upper temperature limit
of the heat storage tank. The heating control strategy is illustrated in Figure 3.2. In this figure, the upper
temperature limit of the heat storage tank is set at 50◦C. The temperature differences for starting and stopping
the solar collector are 5◦C and 2◦C, respectively. For the air source heat pump, the start and stop temperatures
are 40◦C and 45◦C, while the start temperature for the electric heater is 40◦C.

3.3. Power supply control strategy. The power supply strategy for isolated multi energy complemen-
tary building energy systems is shown in Figure 3.3. When the power generation of photovoltaic modules
exceeds the sum of air source heat pumps, electric heating, and building electricity consumption (total elec-
tricity consumption), only photovoltaic modules are used for power supply; When the power generation of
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Fig. 3.1: Isolated Multi energy Complementary Building Energy System

photovoltaic modules is less than the total electricity consumption and has not yet reached the lower limit of
energy storage battery discharge, priority should be given to the auxiliary photovoltaic modules powered by
energy storage batteries. After reaching the lower limit of energy storage battery capacity, diesel generators
should be started for power supply [15].

3.4. Establishment of mathematical models for equipment.
3.4.1. Solar collectors. The author utilizes flat plate solar collectors as the primary heating equipment.

The heat collection capacity of a solar collector depends on the solar irradiance and the effective area of the
collector [16]. In a stable state, ignoring the heat absorbed by the heat absorbing plate itself, the formula for
calculating the solar heat collection is:

Qcu = Aco · [FR · (τα)e ·G− FR · UL · (Tci − Ten)] (3.1)

In the above equation: Aco is the effective area of the solar collector, m2; Tci is the inlet temperature of the
solar collector, ◦C; Ten ambient temperature, ◦C.

The heat collection of a solar collector can also be expressed by the inlet and outlet temperature of the
solar collector, and the calculation formula is:

Qcu = 3600 · c ·mco · (Tco − Tci) (3.2)

In the above formula: Tco solar collector outlet temperature, ◦C; Tci is the inlet temperature of the solar
collector, ◦C.

3.4.2. Heat storage water tank. The author employs the ’node method’ to model the thermal stratifi-
cation phenomenon in the water tank. The control functions for the solar collector side and the load side are
as follows:

F c
i =


1, i = 1, Tco > Ti

1, Ti−1 ⩾ Tco > Ti

0, i = 0||i = N + 1

0, other

(3.3)
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Fig. 3.2: Heating System Control Strategy

FL
i =


1, i = N,TL < TN

1, Ti−1 ⩾ TL > Ti

0, i = 0||i = N + 1

0, other

(3.4)

In the above equation: Ti represents the average water temperature at node i of the thermal storage tank, ◦C.
TL is the return water temperature on the load side, ◦C; TN is the average water temperature (lowest layer) of
node N in the thermal storage tank, ◦C.

The energy balance relationship of node i is as follows:

mi ·
dTi

dt
= [

UA

cp
· (Ten − Ti) + F c

i ·mco · (Tco − Ti)+

FL
i ·mL · (TL − Ti) +

{
ṁi · (Ti−1 − Ti), ṁi > 0

˙mi+1(Ti − Ti+1), ˙mi+1 < 0
]

(3.5)

3.4.3. Air source heat pump. The author used a fitted coefficient of performance (COP) curve to
calculate the heating capacity of an air source heat pump, taking into account the defrosting correction of the
air source heat pump in the study. The calculation formula is:

COP = −0.0004 · T 2
en + 0.0903 · Ten + 3.0924 (3.6)

QASHP = SASHP · PASHP · COP · (1− k) (3.7)
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Fig. 3.3: Power Supply System Control Strategy

3.4.4. Photovoltaic modules. The formula for calculating the power generation of photovoltaic modules
is:

PPV = PMPref · G

1000
· [1 + γPV · (Tcell − 25)] (3.8)

The above equation: γPV is the temperature coefficient of the photovoltaic module’s power generation
efficiency, ranging from 0.4% to 0.6%/◦C; Tcell is the battery temperature, ◦C.

The battery temperature Tcell can be calculated by equation 3.9:

Tcell = Ten +
NOCT − 20

800
·G (3.9)

3.4.5. Energy storage batteries. The State of Charge (SOC) calculation during the charging and dis-
charging process of energy storage batteries is as follows:

SOC(t) = SOC(t−∆t) +
Pban · ηcha ·∆t

Cbat
(3.10)

SOC(t) = SOC(t−∆t) +
PbaT ·∆t

ηdis · Cbat
(3.11)

The above equation: SOC(t) t represents the charging and discharging status of the energy storage battery
at time t; ηcha is the charging efficiency of the energy storage battery, taken as 1; ηdis is the discharge efficiency
of the energy storage battery, taken as 0.8.
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3.4.6. Diesel generator. As an emergency power supply, the fuel consumption of diesel generators de-
pends on their rated power and output power. The approximate mathematical expression is:

Fcons = αDC · PDG + βDG · Po−DG (3.12)

The above equation: αDC is the coefficient of diesel generator, taken as 0.081451/kWh; βDG is the coefficient
of diesel generator, taken as 0.2461/kWh.

3.5. Electric load model. The author divides the user side electricity load into three categories: 1) Basic
electricity load: closely related to the living habits of residents, and cannot change their energy consumption
mode and time; 2) Translatable electrical load: The power supply time of the load can be changed, but the load
needs to be moved as a whole and cannot be interrupted [17]. 3) Transferable electricity load: The electricity
consumption during each time period can be flexibly adjusted, but it must ensure that the total load of the
entire cycle remains unchanged after the transfer compared to before the transfer. The specific modeling of
various flexible electrical loads is detailed in the following text [18].

3.5.1. Translatable electrical load. Assuming a unit scheduling time of 1 hour, for the translatable
electrical load Lmove, the power distribution before participating in scheduling is expressed as:

L∗
move = [0, · · · , Pmore(ts), Pmore(ts + 1), · · · , Pmove(ts + tb), · · · , 0] (3.13)

Assuming the translatable interval is [tmove, tmove], use the 0-1 variable a to represent the translational
state of Lmove at a certain time period t. When a=1, it indicates that Lmove starts translational from time t;
when a=0, it indicates that Lmove does not translational. The set of starting time periods Smove is:

Smove = [tmove−, tmove − tD + 1] (3.14)

If t ∈ [tmox, tmoxot − tD +1] and t ̸= ts, then the power distribution of L∗
max shifting from time t ϵ to Lmax

at time t is:

Lmove = [0, · · · , Pmove(t), Pmove(t+ 1), · · · , Pmover(t+ tD), · · · , 0] (3.15)

3.5.2. Transferable electrical load. Assuming that the transferable interval of the transferable electrical
load Ltrm is [ttan, ttrmn], the 0-1 variable b represents the transfer state of Ltrom at time t, and b(t)=1 represents
the transfer of power Ptan in Ltrn at time t. The power constraints after the transfer are as follows:

b(t) · P tran
min ⩽ Ptran(t) ⩽ b(t) · P tran

max (3.16)

If there are no restrictions on the load transfer period, there may be a phenomenon of load transfer to
multiple single periods, which is manifested externally as frequent equipment startup and shutdown. Therefore,
it is necessary to limit the minimum duration of load transfer operation:

+T tman
mimen−1∑
τ=t

b(τ) ⩾ T tran
min · (b(τ)− b(τ − 1)) (3.17)

By using the above model, the adjusted flexible electrical load can be obtained, and the total electrical load
can be calculated as follows:

Pactive = Pmove + Ptran (3.18)

Pload = Pbase + Pacctive (3.19)
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3.6. Heat load model.
3.6.1. Calculation of building heat load. The heat load calculation model for the room is:

Qload = qV · V · (Tin − Ten) (3.20)

3.6.2. Heat load model considering flexible loads. Assuming that the indoor temperature varies
between and the variable di represents the difference between the upper limit of the indoor temperature and
the actual indoor temperature, the indoor temperature is:

Tin(t) = Tinmax − di(t) (3.21)

By substituting formula 3.21 into formula 3.20, a heat load model considering flexible loads can be obtained
[19].

3.7. Optimization Model.
3.7.1. Objective function. The author sets the annual cost of isolated multi-energy complementary

building energy systems as the objective function for optimization. The annual cost of the system comprises
two components: the annualized investment value and the operation and maintenance costs. The mathematical
expression is:

min(F ) = min(C1 + Com) (3.22)

The mathematical expression for the annual value C1 of system investment is:

C1 =

[
Ph · iATT

1− (1 + iAIT )− Th
+ Pe ·

iATT

1− (1 + iAIT − Tc)
+ Cbat ·

iAIT

1− (1 + iAIT )− TLac

]
(3.23)

Ph = C1_co ·Aco + C1ASHP · PASHP + C1_st · Vst (3.24)

Pe = C1_PV · PMPref + C1_DG · PDG + C1_acc (3.25)

Cbat = C1Lhat · Cbat (3.26)

The operating cost of the system is the fuel cost generated by diesel power generation, and the mathematical
expression for operating and maintenance costs is:

Com = CF · Fcons + C1 · ζ (3.27)

3.7.2. Constraints. The capacity and operation of each device in the system should be within a certain
reasonable range, and the corresponding equipment capacity and power range are:

0 ⩽ Aco ⩽ Aco,max (3.28)

0 ⩽ Vst ⩽ Vst,max (3.29)

0 ⩽ PMPref ⩽ PMPref,max (3.30)

0 ⩽ Chat ⩽ Chat,max (3.31)

0 ⩽ Po−DG ⩽ PDG (3.32)

0 ⩽ PASHP ⩽ Qload,max

COP
(3.33)

SOCmin ⩽ SOC ⩽ SOCmax (3.34)
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Fig. 3.4: System Optimization Flowchart

Table 3.1: Unit Costs of System Equipment

parameter numerical value parameter numerical value
CI_co/(yuan ·m−2) 800 CI_ASHP /(yuan ·KWW−1) 2000
CI⩽1/(yuan ·m−3) 500 CI_PV /(yuan ·KWW−1) 8000
C.1bat/(yuan · kWh−1) 800 CI_DG/(yuan ·KWW−1) 1500

3.7.3. Optimization methods. The author established a system model using Simulink, and based on
genetic algorithm, jointly solved it using Simulink and Matlab optimization toolbox. The optimization process
is shown in Figure 3.4. At the beginning of the iteration, the decision variables are passed to the Simulink
module, and the objective function value is calculated using dynamic simulation of the system and returned to
MATLAB for judgment [20]. If the termination condition is satisfied, the iteration stops and the optimal result
is achieved; otherwise, the iteration continues until the termination condition is met.

3.8. Input parameter settings. The author studied calculating a time step of 1 hour, setting different
population sizes and maximum iterations for different scenarios, with a maximum population size of 1490 and
a maximum iteration of 400. The unit costs of each equipment involved in the calculation process are shown
in Table 3.1.

3.9. Experimental Analysis. The author takes a rural residential building as the research object, with
a heating area of 68m2 and an indoor calculated temperature of 18 ◦C.

The daily electrical load of buildings includes basic electrical load, translatable electrical load 1, translatable
electrical load 2, and transferable electrical load. The parameters of each flexible load are shown in Table 3.2.
The author’s research assumes that the hourly electricity consumption of the building is the same during winter,
transition season, and typical summer days.

The author studied using annual cost values as performance evaluation indicators for isolated multi energy
complementary building energy systems, with carbon dioxide emissions as auxiliary performance evaluation
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Table 3.2: Flexible Load Parameters

Types Translatable electrical load
ts tD/h tmone ∼ tmonet ts tD/h tmone ∼ tmonet ts tD/h tmone ∼ tmonet

1 19:00 3 08:00-20:00
2 11:00 2 08:00-20:00

Transferable electrical T tam
min /h Pmin ∼ Pman/kW ttran ∼ ttran

load 2 0.15 ∼ 0.25 08 : 00− 20 : 00

Table 4.1: Optimization Results of Multi energy Complementary Building Energy System Design

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4
Aco/m

2 16.17 11.72 9.70 9.45
PssH/kW 2.60 2.07 1.31 2.06
Vs/m

3 9.84 9.87 7.88 8.47
PMP/kW 2.03 2.00 1.88 1.81
Cba/kWh 68.87 71.26 66.60 64.43
PDc/kW 0.05 0 0.04 0
F/ ten thousand yuan 2.63 2.50 1.72 1.66
ECo2/kg 120.35 0 92.13 0
Cost savings rate/% - 5.13 33.00 35.40

indicators. The formula for calculating the annual carbon dioxide emissions of diesel generators is:

ECO2
=

8760∑
t=1

Fcons(t) · EF (3.35)

4. Results and Discussion. To analyze the impact of flexible loads on the performance of multi-energy
complementary building energy systems, the author establishes four scenarios for comparative analysis: Scenario
1, which does not consider flexible load regulation; Scenario 2, which considers flexible electrical load regulation;
Scenario 3, which considers flexible heat load regulation; and Scenario 4, which considers both flexible electrical
and thermal load regulation. The optimization results for the multi-energy complementary building energy
system under these four scenarios are presented in Table 4.1.

From Table 4.1, it can be seen that in Scenario 1, the solar collector, air source heat pump, and diesel
generator have the highest capacity. In scenario 2, the equipment capacity of the solar collector and air source
heat pump has decreased compared to scenario 1, but the capacity of photovoltaic modules and energy storage
batteries is the highest among all scenarios. Compared with scenario 1, the annual carbon dioxide emissions
have decreased by 120.35kg, and the annual system cost has decreased by 5.13%. Compared with Scenario 1
and Scenario 2, the capacity of equipment such as solar collectors, air source heat pumps, and photovoltaic
modules in Scenario 3 has all decreased. Compared with Scenario 1, the annual carbon dioxide emissions have
decreased by 28.11kg, and the annual system cost has decreased by 33.01%. In scenario 4, the area of the solar
collector, the capacity of photovoltaic modules and energy storage batteries are the lowest among all scenarios.
Compared with scenario 1, the annual carbon dioxide emissions are reduced by 120.35kg, and the annual system
cost is reduced by 35.4%, resulting in the best regulation effect.

Upon integrating flexible electrical loads into regulation, the load schedule aligns with peak photovoltaic
output periods, effectively utilizing solar power and thereby reducing the required capacities of energy storage
batteries and diesel generators. When both flexible thermal and electrical loads are regulated concurrently, the
capacities needed for photovoltaic modules, energy storage batteries, and diesel generators reach their minimum
across all scenarios; After the participation of flexible heat load regulation, the indoor temperature decreases
and the fluctuation amplitude is large. When flexible electricity and heat loads are simultaneously regulated,
indoor temperature fluctuations tend to flatten.
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5. Conclusion. The author proposes the use of digital twins and genetic algorithms for the study of
building energy systems. The author analyzes the impact of flexible loads on the optimization design of multi
energy complementary building energy systems and establishes a multi energy complementary building energy
system optimization model and flexible load model in MATLAB/Simulk, mainly consisting of photovoltaic
modules and solar collectors. The genetic algorithm is used to optimize the capacity of various equipment
in the system, and the following conclusions are obtained:) Compared with not considering flexible loads,
when flexible electricity loads, flexible heat loads, and flexible electricity/heat loads participate in regulation,
the annual cost of the system is reduced by 5.24%, 33.11%, and 35.5%, respectively, and the annual carbon
dioxide emissions are reduced by 120.46, 28.22, and 120.46kg, respectively. When flexible thermal and electrical
loads are simultaneously regulated, the best reduction effect is achieved for the annual value of system costs
and annual carbon dioxide emissions; After the participation of flexible electrical loads in regulation, the load
shifts towards the photovoltaic output period, timely consuming photovoltaic power generation and reducing
the capacity of energy storage batteries and diesel generators. When flexible thermal and electrical loads are
simultaneously regulated, the capacity of photovoltaic modules, energy storage batteries, and diesel generators
is the lowest value among all scenarios; After the participation of flexible heat load regulation, the indoor
temperature decreases and the fluctuation amplitude is large. When flexible electricity and heat loads are
simultaneously regulated, indoor temperature fluctuations tend to flatten.
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