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A TOOL FOR A TWO-LEVEL DYNAMIC LOAD BALANCING STRATEGY IN

SCIENTIFIC APPLICATIONS∗

RICOLINDO L. CARIÑO† AND IOANA BANICESCU‡

Abstract. This paper describes a dynamic load balancing tool intended for computational investigators who have little
familiarity with programming for a message-passing environment. Motivated by the PAR DOALL directive available in some
compilers for shared-memory systems, the tool is designed to simplify the manual conversion of sequential programs containing
computationally intensive one- or two-dimensional loops with independent iterates into parallel programs that execute with high
efficiency on general-purpose clusters. The tool implements a dynamic loop scheduling strategy to address load imbalance which
may be induced by the non-uniformity of loop iterate times, and by the heterogeneity of processors. The tool is based on the
Message Passing Interface library for wide availability. Experimental results of two scientific applications that utilize the tool on
a Linux cluster are presented to demonstrate sample achievable performance, and to underscore the effectiveness of the two-level
dynamic load balancing strategy.
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1. Introduction. Automatic parallelization of sequential programs containing computationally-intensive
parallel loops is supported by many compilers for shared-memory environments. For example, on a Sun multi-
processor and with a Sun Fortran 77/90 compiler [38], simple insertion of the C$PAR DOALL directive before a
parallel loop will instruct the compiler to generate parallel code. Similar directives are also provided in Sun C
[37] and OpenMP [9]. A clause attached to the directive may specify Guided self scheduling [42] or factoring
[26] as the loop scheduling technique for load balancing, or a fixed chunk size may be supplied. Other schedul-
ing techniques have been developed, such as trapezoid self scheduling [46], weighted factoring [25], adaptive
weighted factoring [5, 7, 11, 12], and, adaptive factoring [4, 6]; however, at the time writing, these techniques
are not supported by the said clause.

In contrast, much manual effort is required to convert a serial program with a parallel loop so that it will
execute on a message-passing platform. Code for explicitly assigning the loop iterates to processors have to
be written, which can be a daunting task for those not familiar with developing message-passing programs.
The code can statically assign iterates to the participating processors before runtime—a simple strategy that is
appropriate if the iterates have uniform execution times and if the processors are homogeneous and start at the
same time. Otherwise, chunks of iterates have to be dynamically assigned during runtime to processors that
become idle. In this case, the chunk sizes must be chosen judiciously such that the processors will all finish at
the earliest possible time. The loop scheduling techniques mentioned above may be utilized for computing the
chunk sizes.

The contribution of this paper is a tool that is an “analogue” of the C$PAR DOALL directive for parallel loops
in applications that will execute on message-passing clusters. The tool is designed to simplify the conversion of a
sequential program into a message-passing parallel version with dynamic load balancing, but without extensive
code modification. Essentially, one statement initializes the tool and five statements convert a parallel loop,
leaving the code of loop body untouched. High performance is expected from the resulting parallel version
because of the added dynamic load balancing capability to address both algorithmic and systemic sources of
load imbalance. The target users of the tool are scientists who write code for novel computational techniques
in a serial language, but require a cluster to extensively investigate the properties of the technique and to
exercise the code. Examples of target users are statisticians who are developing new estimation procedures for
which statistical properties require study through Monte Carlo simulations, and numerical analysts conducting
accuracy studies or parametric studies for new numerical methods.

The rest of this paper is organized as follows. Section 2 identifies the class of applications which can take
advantage of the proposed load balancing tool. The section also reviews dynamic loop scheduling techniques
that have been utilized for determining processor loads. Section 3 describes the design of the tool and its
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interface to applications. Section 4 illustrates the use of the tool in two real applications: the simulation of a
hybrid model for image denoising, and the investigation of the statistical properties of estimators and hypothesis
tests related to the vector functional coefficient autoregressive (VFCAR) model for multivariate nonlinear time
series. Section 5 gives a summary and describes future work.

2. Parallel loops and dynamic loop scheduling. The proposed dynamic load balancing tool is intended
for serial applications that contain straightforward parallel loops (1D-loops) or nested parallel loops (2D-loops),
as illustrated in Figure 2.1, using Fortran 90 notation.

a) 1D-loop b) 2D-loop

... ...

DO I=1,N DO J=1,M ! J-LOOP

... I-ITERATE ... PART A OF J-ITERATE

END DO DO I=1,N(J) ! I-LOOP

... ... I-ITERATE of J-ITERATE

END DO ! i

... PART B OF J-ITERATE

END DO ! j

Fig. 2.1. Target loops

Parallel loops, or loops with no dependencies among their iterates, are major sources of concurrency in
scientific applications. These are frequently targeted for parallelization to reduce application execution time,
and therefore, to achieve high performance. The iterates of a parallel loop can be executed in any order or even
simultaneously without affecting the correctness of the computations. However, minimizing the loop completion
time is not straightforward. Factors such as the nonuniformity of iterate execution times, heterogeneity of the
processors, and operating system interference during loop execution, give rise to unbalanced processor workloads,
which ultimately lead to application performance degradation. These factors, arising from algorithmic and
systemic irregularities that may not be known before the application starts, require the integration of dynamic
load balancing into the strategy for parallel loop execution.

Load balancing during the execution of a parallel loop is achieved through dynamic loop scheduling, where
chunks of loop iterates are executed concurrently by the participating processors. Many techniques for com-
puting the chunk sizes have been proposed and implemented, including non-adaptive [32, 42, 26, 46, 25] and
adaptive [5, 7, 4, 6, 11, 12] techniques, in addition to simple static chunking and self scheduling. The simple
techniques and some of the non-adaptive techniques [42, 26] have been incorporated into compiler technologies
for shared-memory environments, such as multiprocessors from Sun Microsystems [37, 38]. Thus, automatic
parallelization could be achieved through judicious insertion of a compiler directive immediately before a parallel
loop. To the authors’ knowledge, this facility is not yet available for message-passing clusters, which typically
have far more processors and interesting sources of irregularities than shared-memory multiprocessors.

A strategy for executing 2D-loops on shared-memory multiprocessors has been proposed and theoretically
investigated [10, 24, 45]. This strategy describes a feedback-guided self scheduling (FGDLS) algorithm which
uses a feedback mechanism to schedule a parallel loop within a sequentially executed outer loop. It has been
shown to perform well for scheduling problems for which the load associated with the parallel loop changes
relatively slowly as the outer loop executes sequentially. Sufficient conditions have been established for the
convergence of the algorithm. The FGDLS differs significantly from the strategy underlying the tool proposed
in this paper; here, the iterates of the outer loop are executed in parallel and the target environment is a
message-passing architecture. Thus, at least two additional levels of complexity are addressed by the tool.

Some load balancing libraries have been developed for clusters [27, 34, 21], but these are for specific classes
of applications that utilize standardized data structures. Previously, the authors have designed a load balancing
tool which requires the user to provide a routine that encapsulates the computations of a loop iterate, and
routines for migrating data between processors [13].

3. Tool design. A user of the tool proposed in this paper may be someone who has developed a new
computational technique and has written a sequential program to investigate the properties of the technique
or to exercise the code implementing the technique. The sequential program is essentially a computationally-
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intensive parallel loop, and the user has realized that he will be able to conduct more extensive experiments
and to publish results sooner if his investigations are carried out on a parallel system. Although automatic
parallelization is supported by many compilers for shared-memory environments, the user prefers a message-
passing cluster because of platform availability or because of the necessity for more processors. This is the ideal
scenario in which the proposed dynamic load balancing can be utilized.

Fig. 3.1. A popular interconnection network for clusters

The tool simplifies the parallelization and load balancing of applications that contain computationally-
intensive 1D- and 2D-loops (Figure 2.1) on message-passing clusters. These clusters are usually organized into
racks that are connected by a cluster switch, each rack consisting of a number of nodes connected by a rack
switch, and each node containing one or more processors. Figure 3.1 illustrates a popular interconnection
configuration. Heterogeneity is inherent in such a cluster, more so if it was constructed incrementally over
a period of time, because the processors would have different capabilities. Rates of communication between
processors are also variable. Typically, the cluster scheduler attempts to assign nodes from a single rack to a
job for efficient communications. Even with excellent job scheduling algorithms, the scattering of processors
across a number of racks occurs with a high probability, especially for jobs that request large numbers of
processors. Thus, applications running on clusters typically need to incorporate load balancing for highest
possible performance.

Figure 3.2 illustrates the modification of the code of the 1D-loop to integrate the tool. Only a few lines are
added: in summary, the original DO loop (capitalized) is converted to a while loop where chunks of iterates can
be executed concurrently on different processors. Since the I-ITERATE invokes CPU-intensive computations,
which may be expressed in hundreds or thousands of lines of code, the additional code to integrate the tool
constitutes a tiny percentage of the total number of lines of code for the application.

The module DLS (abbreviation for Dynamic Loop Scheduling) contains the type definition of infoDLS and
the codes for the DLS * routines. Based on the Message-Passing Interface (MPI) library [22], the routines
implement a scheduler–worker strategy of load balancing, where the scheduler participates in executing loads,
in addition to being responsible for assigning loads.

The DLS routines used in Figure 3.2 are:
DLS Setup(MPI COMM WORLD,info) initializes a dynamic loop scheduling environment (Figure 3.3) on
MPI COMM WORLD. Information about this environment is maintained in the data structure info.
DLS StartLoop(info,1,N,method) is the synchronization point for the start of loop execution. (1,N)
is the loop range, and method is a user-specified index for the selected loop scheduling technique. The
following techniques are implemented: static scheduling, a modification of fixed size chunking [32],
guided self scheduling [42], factoring [26], variants of adaptive weighted factoring [5, 7, 11, 12], and
adaptive factoring [4, 6].
DLS Terminated(info) returns true if all loop iterates have been executed.
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program Application_with_1D_loop

use DLS

include ’mpif.h’

type (infoDLS) info

integer method, iStart, iSize, iIters

double precision iTime

integer mpierr

call MPI_Init (mpierr)

...

method = ...

call DLS_Setup (MPI_COMM_WORLD, info)

call DLS_StartLoop (info, 1, N, method)

do while ( .not. DLS_Terminated(info) )

call DLS_StartChunk(info,iStart,iSize)

DO I=iStart, iStart+iSize-1

... I-ITERATE

END DO

call DLS_EndChunk (info)

end do

call DLS_EndLoop (info, iIters, iTime)

...

Fig. 3.2. Dynamic load balancing of an application containing a 1D-loop.

DLS StartChunk(info,iStart,iSize) returns a range for a chunk of iterates. This range starts with
iterate iStart and contains iSize iterates.
DLS EndChunk(info) signals the end of execution of a chunk of iterates. Internally, a worker processor
requests its next chunk from the scheduler.
DLS EndLoop(info,iIters,iTime) is the synchronization point at the end loop execution. iIters is
the number of iterates done by the calling processor, and iTime is the cost (in seconds) measured using
MPI Wtime(). iIters and iTime are useful for assessing the performance gains achieved by dynamic
load balancing. For example, the sum of the iTimes from all participating processors gives an estimate
of the cost of executing the loop on a single processor.

Fig. 3.3. Scheduler-worker strategy for dynamic loop scheduling

After loop execution, the results of the computations (in I-ITERATE) will be distributed among the par-
ticipating processors. A reduction operation like MPI Reduce() may be necessary to collect the results in one
processor, or MPI Allreduce to make the results available to all processors in MPI COMM WORLD. This would be the
responsibility of the user, since DLS only manipulates the indices of the loop. Information about the mapping
of the chunks of iterates to processors is maintained in the chunkMap component of the infoDLS structure.
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Figure 3.4 illustrates the integration of DLS into an application containing a 2D-loop. (The original code
is capitalized.) An iterate of the outer loop may be composed of a series of I-LOOPs; the code for each one goes
through the same modification.

program Application_with_2D_loop

use DLS

include ’mpif.h’

...

type (infoDLS) iInfo, jInfo

integer iMethod, iStart, iSize

integer jMethod, jStart, jSize

integer iIters, jIters

double precision iTime, jTime

integer coordinator, minSize, maxSize

...

iMethod = (loop scheduling technique)

jMethod = (loop scheduling technique)

minSize = (min. processors for inner loop)

maxSize = (max. processors for inner loop)

coordinator = 0

call DLS_GroupSetup (MPI_COMM_WORLD,&

coordinator,minSize,maxSize,jInfo,iInfo)

call DLS_StartLoop (jInfo, 1, M, jMethod)

do while ( .not. DLS_Terminated(jInfo) )

call DLS_StartChunk (jInfo, jStart, jSize)

DO J=jStart, jStart+jSjze-1 ! J-LOOP

... PART A OF J-ITERATE

call DLS_StartLoop (iInfo,1,N(J),iMethod)

do while ( .not. DLS_Terminated(iInfo) )

call DLS_StartChunk(iInfo,iStart,iSize)

DO I=iStart, iStart+iSize-1 ! I-LOOP

... I-ITERATE of J-ITERATE

END DO ! i

call DLS_EndChunk (iInfo)

end do ! while

call DLS_EndLoop (iInfo, iIters, iTime)

... PART B OF J-ITERATE

END DO ! j

call DLS_EndChunk (jInfo)

end do ! while

call DLS_EndLoop (jInfo, jIters, jTime)

...

Fig. 3.4. Parallelization and load balancing of a 2D-loop.

The environment to execute a 2D-loop is initialized by DLS GroupSetup(), which splits MPI COMM WORLD

into a number of non-overlapping communicators iComms and one communicator jComm (see Figure 3.5). The
processors residing in the same rack are combined into an iComm for efficient communications, subject to the
constraint that the size of iComm is in the range [minSize, maxSize], to match the amount of concurrency in the
inner loop. Processors from different racks may be combined in an iComm to satisfy minSize, or processors from
a single rack may be split into many iComms to satisfy maxSize. The jComm is comprised of the coordinator and
the rank-0 processors of the iComms. Information regarding this two-level setup is stored in the data structures
jInfo and iInfo. Except for the coordinator, all processors participate in executing iterates. The iterates of
the J-LOOP are dynamically scheduled in jComm, following the scheduler-worker strategy depicted by Figure 3.3.
Chunks of J-ITERATEs are concurrent executed on the iComms, each iComm also following the same scheduler-
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Fig. 3.5. Two-level setup for 2D-loops. Dynamic load balancing occurs simultaneously on all the communicators.

worker strategy as the jComm. In fact, the same DLS routines are used, but with different arguments, notably,
iInfo in an iComm and jInfo in the jComm.

Within an iComm, the processors execute a chunk of J-ITERATEs sequentially, in lock step. The processors
redundantly compute PART A and PART B of a J-ITERATE. However, the processors cooperatively execute the
N(J) iterates the I-LOOP. For this strategy to be applicable, M must be significantly larger than the number of
iComms, and that each N(J) must be significantly larger than the number of processors in an iComm. Otherwise,
the number of chunks to be scheduled may not be sufficient in order to achieve good load balancing.

4. Applications. The dynamic load balancing tool has been integrated into a number of scientific appli-
cations. To illustrate the utility and the performance improvement achievable by the tool, this section presents
timing results for the simulation of an image denoising model, and the simulation of a vector functional coefficient
autoregressive (VFCAR) model for multivariate nonlinear time series.

These applications were executed on the heterogeneous general-purpose EMPIRE cluster of the Mississippi
State University. The cluster can be abstracted as in Figure 3.1 and has a total of 1038 processors. A rack
contains 32 nodes of dual 1.0GHz or 1.266GHz Pentium III processors and 1.25GB RAM. Each node is connected
to a 100Mb/s Ethernet rack switch. The rack switches are connected by a gigabit Ethernet cluster switch.
Installed software includes RedHat Linux and PBS. The general submission queue allows 64-processor, 48-hour
jobs; a special queue allows 128-processor, 96-hour jobs from a restricted set of users. According to the Top 500
Supercomputer Sites list published in June 2002, EMPIRE then was the 126th fastest computer in the world
and the 10th among educational institutions in the U.S.

4.1. Image denoising. Denoising is an important image processing (IP) step for various image-related
applications and often necessary as a pre-processing for other imaging tasks such as segmentation and com-
pression. Thus, image denoising methods have occupied an important position in IP, computer graphics, and
their applications. Recently, as the field of IP requires higher levels of reliability and efficiency, various powerful
tools of partial differential equations (PDEs) and functional analysis have been successfully applied to image
restoration [1, 15, 19, 28, 35, 39, 41, 43, 50] and color processing [8, 20, 29, 31, 44]. In particular, a consider-
able amount of research has been carried out for the theoretical and computational understanding of the total
variation (TV) model [43] and its variants [1, 15, 16, 19, 28, 30, 35, 36, 47].

However, most of those denoising models may lose fine structures of the image due to a certain undesired
dissipation. As remedies, the employment of the G-norm [36] and iterative refinement [40] have been studied.
But these new methods are either difficult to minimize utilizing the Euler-Lagrange equation approach or have
the tendency to keep an observable amount of noise. Recently, in order to overcome the drawbacks, one of the
authors suggested the method of nonflat time evolution (MONTE) [18] and the equalized net diffusion (END)
approach [17]. The MONTE and END techniques are applicable to various (conventional) denoising models as
either a time-stepping procedure or a variant of mathematical modeling.

As another remedy to the undesired dissipation, fourth-order PDE models have emerged [23, 33, 49]. In
particular, the Laplacian mean-curvature (LMC) model has been paid a particular attention due to its potential
capability to preserve edges of linear curvatures. However, it has been numerically verified [48] that the LMC
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model can easily introduce granule-shaped spots to restored images. To overcome the granularity, a hybrid
model which combines a TV-based model and the LMC has been proposed [14], briefly described below.

The Laplacian mean-curvature (LMC) model is:

∂u

∂t
+ ∆κ(u) = β(f − u), (4.1)

where β ≥ 0, a constraint coefficient, and κ(u) denotes the mean-curvature defined as

κ(u) = ∇ ·
( ∇u

|∇u|

)
.

In equation (4.1), f is a contaminated image and the solution u represents a denoised image. The LMC model
has a major drawback: granularity. The restored image can easily incorporate granule-shaped spots. The LMC
model also shows staircasing, a phenomenon that tends to make the restored image locally constant. However,
it is relatively easy to cure [29, 35].

As a remedy for the granule-shaped spots introduced by the LMC model, consider the following hybrid
model

∂u

∂t
− σ κ̃(u) + ∆κ̃(u) = β(f − u), (4.2)

where σ ≥ 0 is a regularization parameter and

κ̃(u) = |∇u|κ(u) = |∇u| ∇ ·
( ∇u

|∇u|

)
.

Here the gradient magnitude |∇u| has been incorporated into κ̃(u), as a scaling factor, in order to reduce
staircasing [35]. The second-order term is introduced for 4.2 to hold a certain degree of maximum principle,
with which the model in turn can eliminate the granularity [48].

Equation 4.2 is a generalized LMC (GLMC) model with the three model parameters (β, σ and α). The
iterations to solve the differential equations involve two extra algorithm parameters: ∆t and n. Thus, for a
given contaminated image, values have to be selected for these parameters which result in the best restored
image. However, when the original uncontaminated image is not known, assessing the quality of the restored
image is difficult, if not impossible. In order to gain insight on the influence of these parameters on the quality
of the restored image, the model is simulated on known images with synthetically-added Gaussian noise. As a
measure of the quality of the restored images, the peak signal-to-noise ratio (PSNR) is adopted. The PSNR is
defined as

PSNR ≡ 10 log10

( ∑
ij 2552

∑
ij(gij − uij)2

)
dB,

where g denotes the original uncontaminated image and u is the restored image.

Establish uncontaminated image g
Add Gaussian noise to g to produce contaminated image f
Establish parameter counts Nβ , Nσ, Nα, N∆t, Nn

Establish parameter values β[1], . . . , β[Nβ ]; σ[1], . . . , σ[Nσ];
α[1], . . . , α[Nα]; ∆t[1], . . . , ∆t[N∆t]; n[1], . . . , n[Nn]

For each combination of β, σ, α, ∆t, n values
Apply denoising procedure on f to produce restored image u
Calculate PSNR; output β, σ, α, ∆t, n and PSNR

End for

Fig. 4.1. Outline of parametric study for image denoising model

The parametric study to investigate the influence of the parameters β, σ, α, ∆t and n on PSNR is outlined
by the the pseudo-code in Figure 4.1. Various plots from the outputs of the study could be produced, including
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animations of PSNR as a function of β, σ, α, with either ∆t or n fixed and using the other as the variable for
the animation.

The number of combinations of parameter values is simply Nβ×Nσ×Nα×N∆t×Nn, which could be huge even
for small to moderate values of the parameter counts. Fortunately, the denoising procedure can be computed
simultaneously for several combinations of the parameters, on a parallel machine. However, the denoising
procedure performs nonuniform amounts of computations for each parameter combination; therefore, dynamic
load balancing is necessary for efficient utilization of the parallel machine. These characteristics render the
parameter study an ideal test application for the load balancing tool described in Section 3. The next two
figures summarize the performance of the resulting parallel code for the parameter study with Nβ =9, Nσ =9,
Nα =9, N∆t =9 and Nn =15, for a total of 98,415 parameter combinations.

Fig. 4.2. Distribution of iterations and work times for the parametric study on the image LenaGray256

Figure 4.2 gives a summary of the performance of the parallel code for the parametric study on the image
LenaGray256. This study was submitted as a 32-processor job on the EMPIRE cluster; the cluster scheduler
assigned homogeneous processors to the job. Since jobs were also executing on the cluster along with the study,
the contention for network resources was a source of system-induced load imbalance. However, the major source
of load imbalance was the nonuniform amount of computations required by the denoising procedure for different
sets of parameter values. The left axis (for the bars) denotes the number of iterations of the loop in Figure 4.1
executed by a processor, while the right axis (for the diamonds) denotes the time in seconds taken by the
processor to execute the iterations. The large differences in the number of iterations done by the processors is
evidence for application-induced load imbalance. However, the difference between the maximum and minimum
work times is only 2581.3 seconds, which is a relatively narrow range. The job time measured by the cluster
scheduler was 8.453 hours. An estimate of the sequential cost of the study is 260.4547 hours (∼10.9 days), which
is the sum of the work times of the 32 processors. Thus, an estimate of the efficiency is: (estimated sequential
cost)/(parallel cost) = (260.4547)/(32×8.453) = 0.963. The high efficiency indicates that the dynamic load
balancing tool successfully addressed the load imbalance.

Figure 4.3 gives the summary for the parametric study on the image BlackCircle. The cluster scheduler
again assigned homogeneous processors to the study, and the job time was 39.546 hours. The differences in
iteration counts are significant, indicating the presence of application-induced load imbalance. An estimate of
the sequential cost is 1,223.279 hours (∼51 days), which is the sum of the work times of the 32 processors. Thus,
an estimate of the efficiency is: (estimated sequential cost)/(parallel cost) = (1223.279)/(32×39.546) = 0.967.

4.2. Vector nonlinear time series. A vector time series is a set of observations of multiple related
phenomena across time. The mathematical underpinnings of the statistical analysis of time series incorporate
the correlation across time and between series—properties that complicate statistical theory. This is especially
true for nonlinear models, where mathematical theory may be extremely difficult, even intractable. Although
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Fig. 4.3. Distribution of iterations and work times for the parametric study on the image BlackCircle

complicated in both presentation and theory, vector nonlinear time series are especially useful for describing
complicated nonlinear dynamic structures that exists in many time-dependent multivariate series.

Let Y t = (Y1,t, . . . , Yk,t)
′ denote the vector time series at time t = 1, 2, . . . , T . Then the vector functional

coefficient autoregressive model of order p (VFCAR(p)) is defined as

Y t = f (0)(Zt) +

p∑

j=1

f (j)(Zt)Y t−j + εt, t = p + 1, . . . , T, (4.3)

where f
(j), j = 0, . . . , p are k× k matrices whose elements are real-valued measurable functions that change as

a function of the (possible vector-valued) Zt, and which have continuous second-order derivatives. The error
terms εt in (4.3) are such that for each i, the series {εi,t}

T
t=1 is a white noise sequence, independent of {Y t}

T
t=1.

However contemporaneous cross-correlation may exist between {εi,t} and {εj,t}, i 6= j. The primary motivation

for studying this model is that specific choices for the elements of the f (j) yield parametric models.
The VFCAR(p) model may be considered a hybrid of non-parametric and parametric models since the

autoregressive structure is assumed, but there is little or no information about the form of the elements of
the f (j). As such, estimation of the parameters of the VFCAR(p) model is done nonparametrically via lo-

cal regression. Simultaneous estimation of the elements of the f (j) provides improved statistical efficiency
when the error terms have positive cross-correlation. In the process of fitting the model (4.3), modified
multifold cross-validation is used to determine an optimal bandwidth and value for p by finding the pair of
values that minimize the accumulated prediction error. This multistage procedure requires an immense num-
ber of arithmetic operations on a univariate series. That number increases exponentially for multivariate
series.

The mathematical complexity of the statistical procedures in using the VFCAR model are highly compli-
cated, necessitating the use of simulation to study their properties. Consequently, Monte Carlo simulation is
often relied upon to give direction, to interpret, and to explain complex analytical results. In general, it can
be said that as the number of Monte Carlo replications increases, the result of the simulation approaches the
“truth”. The more complex the structure, the larger the number of replications needs to be.

The examination of statistical properties of methods related to the VFCAR models via simulations on a
single processor would require execution times of a few weeks or even months. Statisticians have been known
to base empirical results on a relatively small number of simulation replications, sacrificing precision, accuracy,
and possibly compromising the reliability of results in the interest of time. As a result, techniques which may
require thousands of replications for accuracy and reliability often have at most, a few hundred. Fortunately,
the replications are amenable for computation in parallel. Thus, parallel processing technology can be exploited
to enable the extensive simulation of a variety of models within reasonable running time limits.
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Input model specifications; no_reps, nh, no_bs_reps

...

DO rep_no=1,no_reps ! replications

...

DO i1=1,nh+1 ! bandwidth

...

END DO

...

DO i2=1,no_bs_reps ! bootstrap test

...

END DO

...

END DO

...

Fig. 4.4. Outline of VFCAR simulation

Figure 4.4 gives a high-level outline of the simulation procedure to investigate the statistical properties of
estimators and hypothesis tests related to the VFCAR model for multivariate nonlinear time series. Results of
computational experiments in which the simulation procedure is treated as a 1D-loop (i. e., only the replication
loop is parallelized) are reported in [3, 2]. Estimated efficiencies of up to 97% were achieved on 64 processors.

As a further demonstration of the capability of the dynamic load balancing tool, the simulation was treated
as a 2D-loop. Therefore, a parallelization strategy similar to Figure 3.4 was followed. The 2D-loop version
of the application, with no reps=10000, nh=50, and no bs reps=500, was submitted as a 64-processor job to
the EMPIRE cluster. The adaptive factoring technique [4, 6] for loop scheduling was specified. Owing to the
small amount of concurrency in the inner (bandwidth and bootstrap test) loops, maxSize was set to 4. In the
sample run summarized by Figure 4.5, the cluster scheduler assigned to the job 2, 10, 10 and 42 processors
from racks 4, 5, 8 and 11, respectively. Rack 11 contains 1.266GHz processors, while the other racks contain
1.0GHz processors. Eighteen (18) iComms were formed: iComms 2–6 and 12–15, each with 4×1.266GHz pro-
cessors; iComm 1 with 3×1.266GHz processors; iComm 16 with 2×1.266GHz processors; iComms 7–10, each with
4×1.0GHz processors; iComms 11, 17, and 18, each with 2×1.0GHz processors; and the remaining processor as
the coordinator.

Fig. 4.5. Distribution of outer loop iterations and work times for VFCAR simulation

Figure 4.5 illustrates the number of replications (outer loop iterates) executed by each iComm and their
corresponding work times. The heterogeneity of the iComms is reflected in unequal numbers of replications
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executed. But the variation in the work times is small: the average of the absolute deviation (AAD) of the
work times is only 2% of the mean work time, computed as follows: if xi is the work time of the ith iComm and
x̄ is the mean work time, then AAD=

∑18
i=1 |xi − x̄|/(18 ∗ x̄). The parallel job time measured by the cluster

scheduler is 19.89 hours. An estimate of the sequential cost is 1193.06 hours (∼49.71 days), obtained as the
sum of the costs from each iComm. Thus, an estimate of the efficiency is: (estimated sequential cost)/(parallel
cost) = (1193.06)/(64*19.89) = 0.937.

Note that the estimated efficiency of the 2D-loop version (93.7%) of the simulation is slightly less than that
of the 1D-loop version (97%). This is to be expected since the overhead of the 2D-loop version is higher. In any
case, the results are indicative of the effectiveness of the two-level dynamic load balancing strategy implemented
by the tool.

5. Summary and Future Work. An interesting load balancing problem arises when running a scientific
application containing CPU-intensive one-dimensional or two-dimensional parallel loops on a general-purpose
cluster: the loop iterates may have nonuniform execution times, and the processors allocated to the application
may be heterogeneous and may reside on different cluster racks. These sources of load imbalance may not be
known or predictable before the application starts.

This paper describes a dynamic loop scheduling tool to address the above problem. The tool is especially
designed for computational investigators who have little familiarity with developing message-passing programs.
The tool easily integrates into an existing sequential application, after minor code modifications, to produce
a message-passing version. For a 2D-loop, the tool follows a two-level strategy, where at one level, chunks of
iterates of the outer loop are executed concurrently, and simultaneously at another level, chunks of iterates of
the inner loop are also executed concurrently.

The tool has been integrated into nontrivial sequential applications. The applications mentioned in this
paper achieved estimated efficiencies in excess of 90% on a general-purpose heterogeneous cluster. The tool is
being integrated into other scientific applications; discoveries made through these applications will be reported
elsewhere. The use of the tool for dynamic scheduling of 3D-loops (or even higher) is being investigated.
Intuitively, a 3D-loop can be implemented using the same two-level strategy, where a 1D-loop is executed at
one level, while the 2D-loop is executed at the other level. Results of these investigations will be reported in
the future.
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