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ROBUST PARALLEL IMPLEMENTATION OF A LANCZOS-BASED ALGORITHM FOR

AN STRUCTURED ELECTROMAGNETIC EIGENVALUE PROBLEM

MIGUEL O. BERNABEU∗, MÁRIAM TARONCHER† , VÍCTOR M. GARCÍA‡ , AND ANA VIDAL§

Abstract. This paper describes a parallel implementation of a Lanczos-based method to solve generalised eigenvalue problems
related to the modal computation of arbitrarily shaped waveguides. This efficient implementation is intended for execution mainly
in moderate-low cost workstations (2 to 4 processors). The problem under study has several features: the involved matrices are
sparse with a certain structure, and all the eigenvalues needed are contained in a given interval. The novel parallel algorithms
proposed show excellent speed-up for small number of processors.
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1. Introduction and examples. This paper is focused on the parallelisation of a Lanczos-based method
for the solution of the following generalised eigenvalue problem: Given a symmetric pencil Ax = λBx, find all
the generalised eigenvalues (and the corresponding eigenvectors) comprised in a given interval. This interval
contains a large number of eigenvalues.

An efficient sequential method was already proposed in [1]. However, when the number of desired eigenvalues
is very large, the execution time is still too long. A first parallel algorithm was recently introduced in [2], using
MPI and a distributed-memory approach. The results presented in that paper show that the method parallelises
extremely well.

A code based in the proposed technique will be included in a CAD tool for design of passive waveguide
components. However, this CAD tool will usually run in low cost workstations or, at most, small PC clusters.
For these small systems, a different approach should be chosen.

Therefore, the main goal of this paper is to explore different parallel programming approaches for the
implementation of the sequential technique described in [1], in low cost workstations and small clusters.

Three different approaches have been examined: First, we have designed an OpenMP version of the Lanczos
algorithm to take advantage of two-processor machines. Next, we implemented a version for distributed memory
machines using MPI (Message Passing Interface), to execute it on clusters of PCs. Finally, a mixed approach
was proposed in order to achieve optimum performance on clusters of two-processors.

A number of modifications have been carried out lately in the algorithm, to improve the reliability of the
code, these shall be described as well. The main corrections have been i) the inclusion of ARPACK [7] routines
for the extraction of all the generalised eigenvalues in a small subinterval, ii) the correction of the algorithm for
balancing workload, and iii) the improvement of the linear solver, formerly based in the LU-Schur complement
and now based on the LDLt decomposition.

The paper is organised as follows: first, we will briefly outline the sequential problem (described in [1]),
including the algorithmic modifications. Then, the new parallelisation schemes will be completely described,
taking into account the different proposed options: i. e. MPI, OpenMP, MPI+OpenMP and so on. Finally,
some numerical results are shown, and then the conclusions of this work are given.

2. Problem Description and Sequential Algorithm.

2.1. The electromagnetic problem. In this study, the efficient and accurate modal computation of
arbitrary waveguides is based on the Boundary Integral - Resonant Mode Expansion (BI-RME) method (see the
detailed formulation in [1, 3]). This technique provides the modal cut-off frequencies of an arbitrary waveguide
from the solution of two eigenvalue problems. The first one is a generalised eigenvalue problem that models
the transversal electric (TE) family of modes of the arbitrary waveguide. The structure of the corresponding
matrices A and B, shown in Fig. 2.1, presents a very sparse nature that is conveniently exploited in this work.
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Both matrices have a non-zero main diagonal, and a small N×N block in the right, bottom corner. Furthermore,
the B matrix has two thin nonzero stripes R (with dimensions N × M) and Rt (M × N), in the last N rows
and the last N columns. The size of the matrices is (M + N) × (M + N), but since M is far larger than N
the matrices are very sparse (see [1]). This situation is given when a large number of cut-off frequencies is
demanded. The transversal magnetic (TM) family of modes can be also formulated as a generalised eigenvalue
problem (see [1]) with matrices A and B very similar to those explained before for the TE modes.

Here we will consider only the TE case.
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Fig. 2.1. Structured matrices A and B for the TE problem in a ridge waveguide.

2.2. The sequential algorithm.

2.2.1. Shift-and-Invert Lanczos’ algorithm. The standard techniques for generalised eigenvalue prob-
lems is the QZ algorithm. However, as was described in [1], in this case is not efficient since it does not use the
structure of the matrices.

The technique proposed in [1] by the authors is based on Lanczos algorithm [6]. This algorithm, in its
most basic form, allows the computation of a reduced number of extremal eigenvalues (the largest or smallest
in magnitude). However, given a real number (usually called shift) σ, Lanczos’ algorithm can be applied to the
matrix W = (A−σB)−1B. Lanczos’ algorithm applied to this matrix will deliver as result the eigenvalues of the
original problem closer to the shift σ. (This is called the “Shift-and-Invert” version of the Lanczos’ algorithm.)
The application of the Lanczos’ method to this problem requires the solution of several linear systems, with
A − σB as coefficient matrix. However, the structure of the matrices A and B allows a very efficient solution
of these systems, using the Schur complement method. This method, described in [1] for this problem, was
based in the LU decomposition; one of the algorithmic improvements mentioned above has been to change the
LU-based technique to a LDLt based algorithm, described next.

2.2.2. LDLt decomposition. Let us now find out how is the LDLt decomposition of the matrices in our
case. For a matrix (A − σB) with A and B as above, we can write

A − σB =

(

Uσ Rσt

Rσ Hσ

)

=

(

D 0

F T

)

·

(

Dl 0

0 Ds

)

·

(

Dt Ft

0 Tt

)

=

(

D · Dl ·Dt D · Dl · Ft

F ·Dl · Dt F ·Dl · Ft + T ·Ds · Tt

)

(2.1)

where the structure of matrix A− σB is identical to that of matrix B (Figure 2.1).
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It is easy to check that we can take D as the identity matrix (since Uσ is diagonal), so that equating parts
of this equation we arrive to the following procedure to compute the LDLt decomposition:

1. Take Dl equal to Uσ .
2. F = Rσ ·D−1

l (trivial, since Dl is diagonal).
3. T and Ds are obtained computing the LDLt decomposition of Hσ −F ·Dl ·Ft, through the LAPACK

routine dsytrf .

2.2.3. Main interval decomposition. As we have mentioned before, the shift-and-invert version of the
Lanczos’ algorithm computes a subset of the spectrum centred in the shift point. The number of eigenvalues
required will determine the number of iterations of the Lanczos’ algorithm and its spatial cost [7]. Obviously, we
cannot apply the Lanczos’ algorithm to the main interval [α, β] where all the desired eigenvalues lie. The original
problem should be split into many smaller ones to ensure the optimal performance of the Lanczos’ algorithm.

As shown in [1], it is possible to use the Inertia Theorem to know in advance how many eigenvalues contain
a given interval [α, β]. For such interval, the LDLt decompositions of A−αB (equal to LαDαLt

α) and A−βB

(equal to LβDβLt

β) can be computed with a moderated cost (as described above). Then, the number of
eigenvalues in the interval is simply the number ν(Dβ) − ν(Dα), where ν(D) denotes the number of negative
elements in the diagonal D. It must be taken into account that the diagonal returned by dsytrf may not be
completely “diagonal”; instead, it can be diagonal with 1 ∗ 1 and 2 ∗ 2 blocks, as a consequence of the special
pivoting strategy. In this case, the eigenvalues of this special diagonal matrix can be easily found (solving the
characteristic equation for the 2*2 blocks), which allows to compute the inertia quite efficiently anyway.

Thus, we can divide the original [α, β] interval into m subintervals [αi, βi] of different length, but containing
nearly the same number of eigenvalues, and where the number of eigenvalues in each subinterval is known
exactly. Therefore, the CPU time needed to compute the eigenvalues of every subinterval is expected to be
nearly constant.

2.2.4. Sequential algorithm. The full sequential algorithm is as follows: The interval where lie the
desired eigenvalues, [α, β], is divided in many small subintervals. Then, in each subinterval, a shift (possibly the
middle point) is selected, and then the “Shift-and Invert” Lanczos algorithm is applied independently to each
subinterval. This will compute all the eigenvalues in each subinterval, independently of the other subintervals.
The number of subintervals and its width are chosen so that the number of eigenvalues on each subinterval is
not too large.

This allows to obtain all the eigenvalues in the full interval in a reasonable time and without memory
problems (see [1] for all the details).

Algorithm 1. Sequential overall algorithm.

INPUT: matrices A and B, the main subinterval [α, β] and the maximum number
of eigenvalues per subinterval

OUTPUT: eigenvalues of the pair (A,B) contained in [α, β] ant its corresponding
eigenvectors

1. Apply the Inertia Theorem to the full interval [α, β] to divide it
into m smaller subintervals [αi, βi]

2. for every subinterval [αi, βi]
4. σ = (βi − αi)/2
5. Apply Lanczos’ shift-and-invert method to extract the eigenvalues

closer to σ and its eigenvectors
6. end for

7. return eigenvalues and eigenvectors

In the latest versions of the code, the robustness has been improved by using the ARPACK [7] routines
for the symmetric generalised eigenvalue problem dsaupd. This routine is faster and safer than our previous
versions of the Lanczos algorithm.



266 Miguel O. Bernabeu et al.

3. Parallel implementations.

3.1. Algorithmic approach. Clearly, the basic idea for the parallel implementation is to distribute the
subintervals among the available processors; in each subinterval, the extraction of the eigenvalues will still be
carried out in a sequential way.

Once we have computed the bounds of every [αi, βi] subinterval, m/p subintervals are assigned to each
processor. This assignation is performed at the beginning of the algorithm, and there is no more communication
among the processors until all of them have ended its work and results have been gathered.

As we have mentioned in Section 2.2.3, the CPU time needed to extract the eigenvalues of every subinterval
is expected to be nearly constant. Thus, just distributing them among the available processors the work load
balance is expected to be close to the optimal.

Algorithm 2. Parallel overall algorithm.

INPUT: matrices A and B, the main interval [α, β] and the maximum number
of eigenvalues per subinterval

OUTPUT: eigenvalues of the pair (A,B) contained in [α, β] ant its corresponding
eigenvectors

Let us suppose that m is multiple of p

1. At the master processor
2. Apply the Inertia Theorem to the full interval [α, β] to divide it

into m smaller subintervals [αi, βi]
3. Assign m/p subintervals to each processor
4. End at the master processor

5. For each processor
6. for every assigned subinterval [αi, βi]
7. σ = (βi − αi)/2
8. Apply Lanczos’ shift-and-invert method to extract the eig eigenvalues

closer to σ and its eigenvectors
9. end for

10. Send eigenvalues and eigenvectors to the master processor
11. End for each processor

12. At the master processor
13. Gather the results from all the processors
14. End at the master processor

3.2. Implementation details. The new proposed algorithms have been implemented in Fortran 90,
making use of the Intel Fortran Compiler for Linux. OpenMP and MPI standards have been used for the
shared-memory version and distributed-memory version, respectively. In addition, BLAS and LAPACK [8]
have been used whenever it was possible.

We have implemented three versions of Algorithm 2:
1. MPI version of algorithm 2
2. OpenMP version of algorithm 2
3. MPI+OpenMP version of algorithm 2

In the MPI version, all the processes read the input data from disk (matrices and main interval). Then, the
main interval is divided with the technique described in the previous section. Next, a distributed algorithm is
executed to assign the subintervals that should be solved by each process. Once it is done, every process solves
its corresponding subintervals sequentially. Then, the results are gathered by the master process. This version
is oriented to distributed memory machines, although it should work as well in shared memory machine.
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In the OpenMP version, only the main thread reads the input data from disk. Then, the [α, β] interval
is divided by the main thread, again. Next, the subintervals are assigned and distributed among the threads.
This version is designed to run on shared memory machines.

Finally, the MPI+OpenMP version combines both techniques. In the first level of parallelism, a set of p
MPI processes are spawned and they execute the MPI algorithm described before. Then, in the step where
each MPI process solves its m/p subintervals, a second level of parallelism is introduced. Instead of sequentially
solving those intervals, a group of p′ OpenMP threads are created and the m/p intervals are divided among
them in the same way described in the OpenMP version. There are p ∗ p′ processors working on the solution of
the problem. Note that this version is a combination of the two previous ones , and has been designed to run
on a cluster of SMP machines.

4. Experimental results.

4.1. Description of the test environment. In order to test the performance of the three implemented
versions of algorithm 2, we have chosen two different environments: an SMP Cluster and an SGI Computation
Server.

The SMP Cluster consists of two Intel Xeon bi-processors running at 2.2 GHz with 4GB of RAM each one,
interconnected through a Gigabit-Ethernet network.

The SGI Computation Server is an SGI Altix 3700. This machine is a cluster of 44 Itanium II tetraprocessors,
although it has been designed as a ccNUMA machine [5] and therefore can be programmed as a SMP machine.

As mentioned previously, the algorithms have been designed to be included into a CAD tool of complex
passive waveguide components. This kind of tools are expected to run in moderate-low cost workstations, so
the SMP Cluster is the perfect testing environment. Despite of this, we have also chosen a more complex and
powerful machine, the SGI Server, in order to test the algorithm performance using more expensive machines.
Obviously, we will only use 4 of the 44 processors available for fair comparison purposes with the cheaper
machine.

4.2. Experimental results. The following tables show the execution times of the implementations listed
in section 3 for both test environments.

For the testbed, we have considered a single ridge waveguide described in [1].
Table 4.1

Execution time (s) for MPI implementation at the SMP Cluster.

M + N p = 1 p = 2 p = 4
5000 71.68 40.92 20.45
8000 199.26 121.22 67.98
11000 426.32 257.13 140.06
14000 772.10 413.06 221.21
17000 1247.71 655.40 367.26
20000 1685.27 1003.56 540.88

Table 4.2

Execution time (s) for OpenMP implementation at the SMP Cluster.

M + N p = 1 p = 2
5000 71.68 38.11
8000 199.26 109.78
11000 426.32 246.32
14000 772.10 419.12
17000 1247.71 646.51
20000 1685.27 963.91

4.3. Analysis of the experimental results. The previous results show that the method described in
section 2 parallelises extremely well in affordable machines. The key points for this good behaviour are the
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Table 4.3

Execution time (s) for MPI+OpenMP implementation at the SMP Cluster.

M + N p = 1 p = 4
5000 71.68 20.53
8000 199.26 61.59
11000 426.32 134.88
14000 772.10 216.84
17000 1247.71 333.86
20000 1685.27 534.69

Table 4.4

Execution time (s) for OpenMP implementation at the SGI Server.

M + N p = 1 p = 2 p = 3 p = 4
5000 44.14 25.44 18.66 14.95
8000 161.99 86.46 69.25 55.67
11000 321.68 185.16 148.37 133.35
14000 598.13 337.35 249.26 247.38
17000 893.64 494.42 405.15 351.61
20000 1259.16 665.58 556.76 532.72

Table 4.5

Execution time (s) for MPI implementation at the SGI Server.

M + N p = 1 p = 2 p = 3 p = 4
5000 44.14 23.69 16.17 13.09
8000 161.99 86.34 60.85 49.24
11000 321.68 172.88 117.61 91.53
14000 598.13 310.42 217.38 170.07
17000 893.64 498.16 304.24 241.64
20000 1259.16 658.08 446.46 349.44

application of Inertia Theorem to ensure a good work-load balance, as well as the absence of communications
during the execution of the algorithm.

The different versions of the developed algorithms differ in the parallel programming standard used: MPI,
OpenMP, or both of them. Both standards offer good performance and the final choice depends more on the
machine architecture rather than on the sequential algorithm characteristics.

Table 4.6

Speed-up @ the SMP Cluster. Comparative study between OpenMP and MPI versions (p = 2).

M + N OpenMP MPI
5000 1.88 1.75
8000 1.82 1.64
11000 1.73 1.66
14000 1.84 1.87
17000 1.93 1.90
20000 1.75 1.68

Table 4.6 shows the speed-up of MPI and OpenMP versions in a two-processor board (one of the nodes
of the SMP Cluster). OpenMP results are slightly better than MPI ones. This result was expected because
OpenMP can take more advantage of the shared memory architecture of the machine.

Table 4.7 shows the speed-up of MPI and MPI+OpenMP versions in a cluster of 2 two-processor boards. In
this kind of environments with two levels of parallelism (shared memory at each node and distributed memory
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Table 4.7

Speed-up @ the SMP Cluster. Comparative study between MPI+OpenMP and MPI versions (p = 4).

M + N MPI+OpenMP MPI
5000 3.49 3.51
8000 3.24 2.93
11000 3.16 3.04
14000 3.56 3.49
17000 3.74 3.40
20000 3.15 3.12

for the global view of the machine) the combination of MPI and OpenMP standards show better results than
the use of MPI only. Again, OpenMP is taking advantage of shared memory features of the machine while MPI
is not doing so.

Table 4.8

Comparative analysis between OpenMP and MPI versions @ SGI Server (M + N = 20000).

version p = 2 p = 3 p = 4

MPI version 1,91 2,82 3,60
OpenMP version 1,89 2,26 2,36

Table 4.8 shows the speed-up of MPI and OpenMP versions at the SGI Server. In this machine, the MPI
version scales better than OpenMP version. This rather surprising result is due to the scheduling policy. When
the batch system runs the parallel algorithm, it can schedule the p threads/processes to different boards. With
the MPI algorithm this does not create problems, since each process owns all the necessary data to perform its
part of the algorithm. However, for the OpenMP implementation it is different, because all the threads need to
access master thread’s memory. This would create accesses to memory placed in a different board, which shall
slow down the algorithm. Obviously, the problem worsens as the number of threads increases.

5. Conclusions. Three parallel implementations of a Lanczos-based method for solving a generalised
eigenvalue problem have been successfully developed. The problem has got several distinct characteristics:
matrices are sparse and structured, and the search of eigenvalues is reduced to a fixed interval.

The proposed technique parallelises very well and any of the implementations present very good speed-up
even for a small number of processors.

OpenMP is the best choice for parallel programming of two-processors boards (and any SMP environment).
For NUMA systems, it is concluded that OpenMP may present some problems and its use should be studied
carefully.

Multi level programming (MPI + OpenMP) is the best choice for hybrid machines (those with two levels
of parallelism), since this paradigm can take advantage of both shared and distributed memory features of the
machine.

Finally, we can conclude that execution times in both machines are not too different, while speed-up is
clearly better at the SMP Cluster. So, in this case, the performance-cost ratio is clearly better for the SMP
Cluster.
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