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TASK OFFLOADING AND COLLABORATIVE BACKHAUL SYSTEM BASED ON
MULTI-LEVEL EDGE COMPUTING IN THE INTERNET OF VEHICLES

JIN LIN* ZEQIN LI} RUOFEI WANG! RUYUE GONG$ AND HONGJING WUT

Abstract. With the development of 5G and the Internet of Vehicles, diverse in-vehicle services continue to emerge. Computation-
intensive and delay-sensitive in-vehicle tasks pose significant challenges to in-vehicle devices and represent one of the bottlenecks
limiting the development of Internet of Vehicles technology. This paper proposes a Speed-Sensitive Offloading (SSO) and collabora-
tive backhaul solution to address the problem of task offloading and result backhaul failure caused by vehicle movement, including
a multi-level MEC architecture solution, speed sensitive task offloading and an MEC collaboration-based task return scheme (SS-
COM). Through preliminary experimental verification, as the number of vehicles increases, the average task offloading time of
all schemes shows an upward trend, but the SSCOM scheme has the smallest increase; compared with the schemes of random
offloading, speed-prioritized and data-volume-prioritized offloading, the present scheme can signifi- cantly reduce the average task
offloading time; collaborative backhaul can also solve the problem of result backhaul failure caused by vehicles driving out of the
coverage area, etc., can improve the task backhaul success rate and MEC resource utilization rate by at least 5%.

Key words: Multi-level Edge Computing, Vehicle, Offloading, Backhaul, Velocity Sensing

1. Introduction. Currently, 5G and vehicular networking technologies are rapidly advancing, enabling
mobile vehicles to interconnect with networks, artificial intelligence, and other intelligent terminal devices. At
the same time, various in-vehicle services continue to emerge, such as online navigation, road condition recog-
nition, audio-visual entertainment, and autonomous driving [2, 14]. Although 5G communication technology
has improved data transmission speeds, the high mobility and dynamism of vehicles pose significant challenges
to in-vehicle devices for computationally intensive, latency-sensitive tasks such as task offloading and collab-
orative backhaul [8]. An effective solution is to offload computational tasks to cloud servers[11]. However,
for delay-sensitive tasks, the delay caused by inter-cloud transfers is almost unacceptable. For example, the
delay requirement for task response in autonomous driving is only 5-10ms [5]. In addition, a large number of
in-vehicle tasks sending data to the cloud at the same time can also put a huge pressure on the bandwidth of
the core network [6].

The emergence of Multi-Access Edge Computing (MEC) [16] provides the possibility to solve this challenge.
MEC technology sinks the computing power of the cloud to the edge, and takes advantage of the edge’s close
proximity to the end-users to effectively reduce the transmission delays of tasks and optimize the user experience
[4]. In the application scenario of Internet of Vehicles, MEC is deployed at the edge side of the network such
as Road Side Unit (RSU). Therefore, users can offload computational tasks to MEC servers through Vehicle to
Infrastructure (V2I) communication, thus relieving the computational pressure on in-vehicle devices, reducing
the power consumption of in-vehicle devices, and the transmission delay of tasks [18]. On the other hand, RSUs
can also obtain the position, speed and other information of vehicles within the coverage area through V2I
communication [15], which provides the possibility for optimal scheduling of vehicle resources.

This paper proceeds to delve into the design and evaluation of a dynamically adaptive multi-level MEC
framework. It initiates by addressing task offloading optimization under vehicle mobility constraints and in-
troduces a speed-sensitive offloading strategy. Following this, a collaborative backhaul system is proposed to
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tackle issues related to task result returns when vehicles exit RSU coverage zones. The paper further presents
an improved genetic algorithm tailored for task prioritization and scheduling, and evaluates its efficacy through
rigorous experimentation. In conclusion, the paper delves into the intricacies of a pivotal real-time position
updating mechanism integrated within the MEC servers. This mechanism is designed to significantly bolster
the system’s responsiveness and adaptability. It operates by dynamically synchronizing the geographic coordi-
nates of vehicles with the multi-level MEC architecture, ensuring that the computational offloading and result
backhaul processes are aligned with the vehicles’ instantaneous positions. The seamless interaction with the
MEC hierarchy is facilitated through a suite of algorithms and protocols that are adept at handling the velocity
and mobility patterns of vehicles. These include, but are not limited to, geo-fencing algorithms for defining
coverage areas, vehicle mobility prediction models that forecast short-term movement based on historical data,
and real-time communication protocols that enable efficient information exchange between the vehicle and MEC
nodes.

2. Related Works. The high mobility and dynamics of vehicular networks pose significant operational
challenges, especially in the context of 5G and the Internet of Things (IoT). In these environments, the fast
movement of vehicles leads to frequent switching and coverage transitions, which affects the stability and
efficiency of task offloading and collaborative backhaul. Recent research has highlighted the importance of
addressing these challenges. Sheng et al. [12] demonstrated that in edge sensor networks, tasks can be divided
into subtasks for distributed processing. However, their work did not adequately consider the impact of vehicle
mobility on the effectiveness of task offloading. Similarly. Chen et al. [3],You and Huang [17] focused on the
division of computational tasks but did not sufficiently address the challenge posed by the movement of vehicles.
Zhou et al. [20] developed a model for task segmentation that ensures all subtasks can be fully offloaded to the
Multi-access Edge Computing (MEC) infrastructure before the vehicle exits the current coverage area. This
approach mitigates the issue of task offloading failure due to vehicular mobility. Cao et al. [1] proposed a
scheme to divide onboard tasks into independent subtasks, reducing the volume of data to be offloaded to the
MEC. Ji and Jiang [19] considered the dependencies between subtasks and used genetic algorithms to solve the
multi-site cooperative computational offloading problem.This minimizes the time overhead associated with the
offloading of individual subtasks.Our work builds upon these foundations by introducing a novel speed-sensitive
task offloading scheme designed specifically for fleets of vehicles. Unlike previous studies, our focus is on the
prioritization and scheduling of multiple task offloading scenarios to ensure successful offloading before vehicles
leave the coverage area. Moreover, our approach incorporates a real-time position updating mechanism that
leverages MEC collaboration to enhance the success rate of task return, even as vehicles move across different
coverage areas. Sun et al. [13] proposed predicting the position of a vehicle at the time of task completion
based on factors such as running speed and trajectory, and introduced two distinct offloading strategies. Their
work highlights the need for predictive algorithms to manage the offloading process effectively. Our research
complements this by providing a solution that not only predicts but actively manages the offloading process
in real time, taking into account the dynamic nature of vehicular networks. Ning et al. [9] proposes a traffic
control system deployed at the base station. Utilizing the feature that the coverage of the base station is larger
than the RSU, it obtains the real-time position information of the vehicle and returns the results of the task
processing to the vehicle. Li et al. [7] also adopts a centralized control approach to determine whether the
processing results are returned successfully or not based on the signal-to-noise ratio between the vehicle and
the RSU. However, the centralized control approach not only introduces additional transmission delay, but
also reduces the flexibility of system deployment and becomes another form of “cloud” [10]. Therefore, this
paper proposes a dynamically changing multi-level MEC architecture, which increases the flexibility of system
deployment while improving the success rate of backhauling through MEC collaboration instead of cloud-side
collaboration.

In contrast to previous research, we focus on sequencing the fleet’s tasks to ensure that offloading is
completed in a timely manner before the vehicles leave the coverage area. This approach addresses the problem
of failed task offloading due to vehicle movement. We introduce a collaborative backhaul system that leverages
cooperation between MECs to improve the success rate of processing result returns. This addresses the problem
of failed result returns when vehicles leave the RSU coverage area. We have improved the genetic algorithm
specifically for task prioritisation and scheduling, which improves the responsiveness and flexibility of the system.
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Fig. 3.1: Superior MEC and a subordinate MEC

Our solution ensures that vehicles can quickly offload tasks and receive results even in high-mobility situations,
resulting in a safer and more responsive autonomous driving experience.

In conclusion, previous research has not fully addressed the operational challenges specific to in-vehicle
networks, such as the need for real-time location updates, scalability, computational complexity, and security
and privacy concerns. In this paper, we investigate speed-sensitive task offloading and co-return schemes in
vehicular networks (VNETSs) and introduce a dynamically evolving multi-layer MEC architecture that optimises
the efficiency of task offloading and significantly improves the success rate of task return, thus providing a
solution to the challenges posed by vehicular mobility in 5G and Internet of Things (IoT) environments.

3. System Architecture and Achemes.

3.1. Dynamically Changing Multi-level MEC Architecture. In vehicular networking, Road Side
Units (RSUs) have a specific coverage area, and when a vehicle enters an RSU’s coverage, it establishes a
Vehicle-to-Infrastructure (V2I) connection. The Multi-access Edge Computing (MEC) server connected to the
RSU provides computing resources to vehicles within the coverage area. As vehicles leave one RSU’s coverage,
they connect to the next RSU. RSUs also establish wired or wireless connections with other RSUs, creating a
larger connection range than the V2I range. As shown in Figure 3.1, when a vehicle enters an RSU’s coverage
and generates a computational task, the MEC server for that RSU becomes the superior MEC, while other
connected MEC servers become subordinate MECs. The superior MEC decides on task offloading, while
subordinate MECs provide information on local link status, vehicle position, and computational capacity. Each
MEC acts as both a superior and subordinate MEC, forming a dynamic hierarchical structure. This structure
facilitates improved coordination and resource allocation. The superior MEC decides whether to offload a task
to itself or to a subordinate MEC based on computational capacity, link quality, and vehicle velocity. It also
coordinates with other superior MECs to ensure seamless task offloading and result return as vehicles move
across different RSU coverage areas. The hierarchical structure optimizes task offloading and result return
success rates, enabling informed decisions based on real-time information from subordinate MECs, adapting to
vehicle mobility and optimizing resource utilization. Collaboration between superior and subordinate MECs
ensures service continuity and minimizes average task offloading time by dynamically allocating tasks to the
most suitable MEC based on network conditions and vehicle trajectory. Proactive task offloading by the superior
MEC to subordinate MECs in anticipation of vehicle movement reduces the likelihood of offloading failure due
to exiting RSU coverage. In summary, the dynamically changing multi-level MEC architecture provides a
flexible and scalable framework for managing computational tasks in vehicular networks, effectively handling
high mobility challenges and ensuring seamless service delivery.

3.2. Multi-level MEC architecture sorts offloading tasks. At moment ¢, there are multiple vehicles
within the coverage area of a single RSU, and each vehicle may generate computational tasks. It is assumed
that the communication mode between the RSU and the vehicles uses time-division multiplexing. Due to the
limited link resources, the superior MEC must sort all the tasks generated at the moment, as shown in Fig. 3.2.
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Fig. 3.2: Sorting of tasks by superior MECs

The task with the serial number n must wait for the previous n-1 task to finish offloading before it can
be offloaded. Since the vehicle is always on the move, the position of the vehicle corresponding to the task
number n has changed when the previous n-1 task has finished offloading, therefore, the following effects may
be caused: 1) the distance between the vehicle and the RSU changes: the change in distance will lead to the
change in the link state between the vehicle and the RSU, resulting in the change of the task n offloading time,
and ultimately leading to the change of the average task offloading time; 2) the vehicle moves out of the current
RSU coverage area, and the average task offloading time changes.

Therefore, the superior MEC needs to consider how to sort all the tasks generated at a moment in time
t to reduce the average task offloading time while ensuring that the vehicle does not drive out of the current
coverage area.

4. System Schemes. In the future intelligent transportation system (ITS), there will be a lot of nego-
tiations between vehicles and vehicles (V2V) and vehicles and roads (V2I), which will generate a lot of task
offloading and backhaul optimization problems. In the process of data transmission between vehicles, multilat-
eral server vehicles, etc., many data services must be performed within a specified time, such as path planning
services, information, entertainment and information transmission services. Therefore, the Internet of Vehicles
needs to focus on how to reduce the latency of network data transmission. The use of edge computing resources,
as well as the use of network function virtualization and software defense network technology, can greatly im-
prove the efficiency and quality of end users to obtain services and reduce latency and energy consumption in
data processing.

We define vehicles as autonomous agents that can act as temporary storage and computation resources
for nearby vehicles, especially when the central server is overloaded or unavailable. Vehicles can perform
temporary storage and computation tasks for other vehicles during peak traffic periods or in areas with limited
MEC server coverage. Roadside Units (RSUs) act as communication nodes that collect information from the
vehicles and forward it to the appropriate MEC servers, providing real-time updates about link status and
computational capacity. As shown in Table 4.1, the differences between traditional and vehicular network
operations are summarised.Strategically deployed Mobile Edge Computing (MEC) servers handle offloaded
tasks and can operate in a centralised or decentralised manner, managing tasks over a large area or within a
smaller geographic area, respectively. The task offloading mechanism utilises a genetic algorithm executed by
the centralised MEC servers, which makes informed decisions on task offloading based on information provided
by RSUs and vehicles.

4.1. Speed Sensitive Task Offloading Based Scheme. Speed Sensitive Computing Offloading Model
(SSCOM), a speed-aware task offloading scheme based on the classical offloading model, adds the consideration
of vehicle speed and the constraints of the vehicle crossing the zone situation. The offloading model is as shown
in Fig. 4.1, this scheme uses the highway as the horizontal coordinate. the RSU is located on one side of
the highway, and the perpendicular distance from the highway is yg. Assuming that the coverage area of the
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Table 4.1: Differences between traditional and in-vehicle network operations

Traditional Network Operations Vehicular Network Operations

Centralized servers provide all services Centralized servers, decentralized nodes, and autonomous agents

Static network topology Highly dynamic and mobile network topology

Limited peer-to-peer communication Extensive peer-to-peer communication and cooperation

Fixed resource allocation Adaptive resource allocation based on vehicle density and mobility

Predominantly static security measures | Dynamic security and privacy measures that adapt to the changing net-
work environment
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Fig. 4.1: Internet of Vehicles Scenario

RSU is L, the left boundary of the coverage area of the RSU is used as the starting point of the horizontal
coordinate. Therefore, the coordinates of this RSU are ( %, yo). Assume that all vehicles will not collide, the
vertical coordinates are all 0, the speed of vehicle is v,,, and all vehicles are traveling at a uniform speed within
the coverage area of the RSU.

At moment t, vehicle u generates a computational task that needs to be offloaded. At this time, the
horizontal distance between vehicle u and the left boundary of the RSU is X, (¢) and the vertical distance
is yo. At the same moment, there are other vehicles that generate tasks, and their task offloading order is
prioritized over the vehicle u. The set of these vehicles is pre(u). Therefore, the vehicle has to wait for a time
of A, = Zmepre(u) T, . The distance traveled by the vehicle during the waiting time is v,A,. At this time,
the vehicle’s horizontal coordinate is X, (t + Ay,) = Xu(t) + v,A(u) and the distance from the RSU can be
expressed as:

L
ru(t) = \/yg + (Tu(t + Ay) — 5)2 (4.1)
At time t 4+ A,,, the data transmission rate between the vehicle and the RSU is:
Pyh,(t

u

where B is the bandwidth of the link channel, P, is the transmit power of vehicle u, o2 is the Gaussian white
noise power, and h,, is the channel gain parameter. h,, is related to r,(t + A):

hy(t) = U

T Tt AL)° (4.3)
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where h is the channel fading factor of the upload link and § is the path loss factor. It is assumed that the
position of vehicle u does not change during the offloading of its own task. Vehicle u consumes the time to
offload the task of size D, at moment ¢ + A, as:

| = D
u(t) a Ol - h2 (4.4)
Ru (t) P, \/y2+(x (Dtom > I
BNlog | 1+ ot (zu v S mepre(u) Tm =3

Tu

Assuming that the set of vehicles at time ¢ is U and the number of tasks is N (each vehicle generates one
task), the average task offloading time is:

U U
=y 0 - — (4.5

P, G
u Vi@ +vu e pre(u) Tm—5)
2

BNlog | 1+

G-’U.

Assuming that the superior MEC offloads the tasks using the sorting method A , the following optimization
objective is in place:

m%iln T(t) (4.6)

In prevent the vehicle from driving out of the coverage area of the RSU at the moment , the superior MEC
also needs to consider the following constraints during the sequencing:

Xu(t+A,) <L (4.7)

Assuming that there are a total of NV tasks at time ¢, there are N! possible sorting methods. Therefore, in
this paper, a genetic algorithm is used to solve the optimal offloading sorting scheme.

4.2. MEC Collaboration-Based Processing Result Return Scheme. During the time the MEC is
processing the task, the vehicle may have already driven out of the RSU’s coverage area. Even if the MEC
is able to predict the vehicle’s position from the vehicle’s historical travel speed and return the result via
inter-RSU communication, there is no guarantee that the vehicle can be found at the target MEC.

Therefore, based on the unpredictability of vehicle user behavior, this paper introduces a real-time position
update mechanism on MECs. A mapping table is maintained on each MEC. The table records the task currently
being processed, and the RSU serial number of the task corresponding to the latest passing of the vehicle.

Assume that the vehicle has successfully offloaded the task to the superior MEC. The vehicle remains on
an unpredictable driving trajectory while the superior MEC is processing the in-vehicle task. Therefore, the
superior MEC divides the processing time of the task into multiple fixed-size time slots 7. At each time slot
7, the superior MEC sends a vehicle position update request message to the subordinate MEC, and keeps
updating the serial number of the RSU in which the vehicle is located. When the task processing is finished,
the superior MEC transmits the processing result back to the vehicle via inter-RSU communication based on
the updated position information. The MEC acting as the superior MEC is itself a subordinate MEC to other
MECs, so this MEC also responds to vehicle position update requests from other superior MECs. The superior
MEC processing is shown in Fig. 4.2.

Assume that the vehicle u offloads tasks Ku to the superior MEC. The superior MEC initiates position
requests for the vehicle at fixed intervals. The data volume of the position request is very small, and thus imposes
a negligible transmission delay. The superior MEC first checks whether the vehicle is in the coverage area of
its own RSU. If it is, it updates the value in the mapping table; if it is not, it obtains the vehicle information
from the subordinate MEC corresponding to the RSU through the corresponding RSU serial number in the
mapping table. If the subordinate MEC also has no vehicle information, it indicates that the vehicle has driven
out of the current range. However, since the subordinate MEC is the latest position of the vehicle during the
last time. So it is easier to get the vehicle’s position information by initiating a query from that lower.
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Fig. 4.2: Position of the vehicle corresponding to the superior MEC update task

4.3. Overcoming Algorithm Efficiency and Resource Management Challenges. The SSCOM
solution addresses the challenges of algorithm efficiency and resource management in a dynamic vehicle envi-
ronment. In order to reduce the computational intensity of the genetic algorithm used for task prioritisation
and scheduling, parameters are optimised to achieve a balance between computational efficiency and solution
quality. SSCOM dynamically assigns tasks to the most appropriate MEC servers based on network conditions
and computational power, using a hierarchical MEC architecture where the upper-level MECs make informed
decisions about task offloading, while lower-level MECs provide real-time information. This ensures efficient
task execution and resource utilisation, minimising latency. The dynamically changing multi-level MEC ar-
chitecture of the scheme facilitates seamless task offloading and result return, adapting to the high mobility
and dynamic nature of in-vehicle networks. The genetic algorithm has a computational complexity of O(10%),
which makes it feasible to deploy in real vehicle networks considering the modest memory and CPU require-
ments. Thus, SSCOM ensures efficient task offloading and resource utilisation, making it a practical solution
for vehicular networks.

5. Experiments. Based on the above system scheme, this paper conducts simulation experiments on the
offloading scheme. The optimization objective of the speed-aware task offloading scheme is to minimize the
average task offloading time of the task under the constraint that all vehicles do not drive out of the RSU range.
For the NP problem, this scheme is solved using a genetic algorithm. It is assumed that the number of genes N
on the chromosome represents the number of momentary tasks. Each gene represents the vehicle number that
generates the task. One arrangement of genes on the chromosome represents one possible arrangement of task
offloading. The specific process of the experiment is as follows.

5.1. Parameter Selection.

5.1.1. Parameter Selection. The parameters of the genetic algorithm have a significant impact on the
performance of the SSCOM scheme, particularly the mutation probability, replacement probability, and the
number of genetic iterations. To achieve optimal performance, we employ the method of controlled variables
to study the effects of these parameters on the average task offloading time.

a) Mutation Probability: The specific settings are the initial population size of 1000, the number of genes
(vehicles generating tasks) is 100, the number of iterations is 1000, and the mutation probability varies
over the range [0, 0.1]. As shown in Figure 5.1, the average task offloading time tends to decrease within
the range [0, 0.04] and then increases with further increases in the mutation probability. Therefore,
the mutation probability chosen for this scheme is 0.04 (Figure 5.1)

b) Replacement Probability: The specific settings are the initial population size of 1000, the number of
genes is 100, the number of iterations is 1000, and the replacement probability varies over the range
[0, 1]. As depicted in Figure 5.2, the replacement probability chosen for this scheme is 0.5, as it
provides the optimal balance between introducing new chromosomes and maintaining diversity in the
population.

¢) Number of Genetic Iterations: The specific settings were the initial population size set to 1000, the
maximum number of iterations set to 1500, the number of genes set to 40, 80, and 120, respectively,
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the mutation probability is 0.04, and the replacement probability is 0.5. The number of iterations
that yields the most stable performance without excessive computational overhead is selected. It is
determined that the optimal number of iterations is 1000, balancing the trade-off between convergence
speed and solution quality.

5.2. Test Process and Results.

5.2.1. Program Selection and Setup. Based on the parameter selection experiments described in Sec-
tion 5.1.1, we now conduct the main simulation experiments to evaluate the SSCOM scheme. The experimental
parameters involved in this experiment are shown in Table 5.1.

5.2.2. Algorithm Performance. To evaluate the performance of the SSCOM scheme, we vary the num-
ber of vehicles and observe the changes in the average task offloading time. As illustrated in Figure 5.3, when
the number of vehicles is low, the difference between the schemes is minimal due to the limited number of tasks.
However, as the number of vehicles increases, the SSCOM scheme achieves the optimal average task offloading
time relative to the other schemes. For instance, at a high density of 120 vehicles, the average offloading time
for the SSCOM scheme is 37 ms, which is 32% lower than the random offloading scheme (49 ms), 18% lower
than the speed-first offloading scheme (45 ms), and 16% lower than the data-volume-first offloading scheme (43
ms).
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Table 5.1: Parameters of simulation experiment

Experimental Parameters Value
Link channel bandwidth B 10MHz
Vehicle transmit power P, 500mW
Channel fading factor h 1
Path Loss Factor § 4
RSU Coverage L 400m
RSU distance from yo 10m
Gaussian white noise power o2 -100dB
Vehicle speed v, [16, 32]m/s
Number of vehicles N [10, 150]
Task data size Dy [0.1, 3.1]MB
Number of populations 1000
Maximum number of iterations 1000
Mutation probability 0.04
Replacement probability 3o 0.5
42 : .

—e—num =40

num = 80
num = 120 |

Average Task Offloading Time

1000 1500

0 500
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Fig. 5.3: Effect of the number of iterations on the performance of the scheme

5.2.3. Computational Resource Requirements. The SSCOM scheme requires computational resources
for the genetic algorithm to run, which includes memory for storing the population and fitness values, and CPU
cycles for performing the genetic operations. The memory requirement is proportional to the population size
and the number of genes, and the CPU requirement is proportional to the computational complexity of the
algorithm. Given the parameters used in the SSCOM scheme (Table 5.1), the memory requirement is moderate,
as the population size is 1000 and the number of genes is 100. The CPU requirement is also reasonable, given
that modern computing hardware can efficiently handle the computational complexity of O(10%).

5.2.4. Comparative Analysis. To further understand the performance of the SSCOM scheme, we ana-
lyze the average vehicle traveling speed and the average data volume of tasks for each group of tasks in the case
of a group of tasks with 10 vehicles when the number of vehicles is 100. As shown in Figure 5.4, the speed-first
offloading scheme prioritizes tasks associated with faster vehicles, whereas Figure 5.5 demonstrates that the
data volume priority offloading scheme favors tasks with larger data volumes. In contrast, the SSCOM scheme
takes into account both the speed and data volume to optimize performance.

5.2.5. Testing Results. We conducted experiments with varying vehicle densities to examine the SSCOM
scheme’s behavior under different traffic conditions. The density ranged from low (20 vehicles) to high (120
vehicles) in the RSU coverage area. As shown in Figure 5.6, the SSCOM scheme consistently performed well,
maintaining a lower average task offloading time compared to alternative schemes, even as the number of vehicles
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increased. Specifically, at a high density of 120 vehicles, the average offloading time for the SSCOM scheme
was 37 ms, which is 32% lower than the random offloading scheme (49 ms), 18% lower than the speed-first
offloading scheme (45 ms), and 16% lower than the data-volume-first offloading scheme (43 ms).

5.3. Analysis and Extension.

5.3.1. Detailed Analysis of the Genetic Algorithm. The genetic algorithm used in the SSCOM
scheme is tailored to the specific needs of vehicular networks. The optimization objective is to minimize the
average task offloading time of the task under the constraint that all vehicles do not drive out of the RSU
range. As mentioned earlier, the number of genes on the chromosome represents the number of momentary
tasks. Each gene represents the vehicle number that generates the task. One arrangement of genes on the
chromosome represents one possible arrangement of task offloading. The genetic algorithm operates with a
population size of 1000, a maximum number of iterations of 1000, and a mutation probability of 0.04. These
parameters were selected based on the parameterization experiments described in Section 5.1.1.

5.3.2. Algorithm Complexity Amnalysis. The SSCOM scheme utilizes a genetic algorithm for task
prioritization and scheduling. The complexity of the genetic algorithm is influenced by the number of genes,
the population size, and the number of iterations. The computational complexity of the genetic algorithm can
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be estimated as O(N * P x I), where N is the number of genes, P is the population size, and I is the number
of iterations. For the SSCOM scheme, the number of genes (N) is set to 100, the population size (P) is set to
1000, and the number of iterations (I) is set to 1000. Therefore, the computational complexity of the genetic
algorithm in the SSCOM scheme is approximately O(10%).

5.3.3. Scalability and Practicality. The SSCOM scheme is designed to be scalable and practical. The
genetic algorithm used for task prioritization and scheduling has a computational complexity of O(10%), which
is feasible for deployment in realistic vehicular networks. The memory and CPU requirements are moderate
and can be met by current computing hardware. The SSCOM scheme ensures efficient task offloading and
resource utilization, making it a practical solution for vehicular networks.

6. Operational issues. To address the operational complexities inherent in vehicular networks, we concen-
trate on five key business challenges: task offloading at varying speeds, collaborative backhaul during coverage
range transitions, real-time location updates, scalability and computational complexity, and security and pri-
vacy. These challenges are critical to the effective operation of vehicular networks and require comprehensive
solutions.

6.1. Security and Privacy. To ensure data security and privacy, we propose implementing centralized
solutions that incorporate secure data transfer protocols, specifically Transport Layer Security (TLS) and Data-
gram Transport Layer Security (DTLS), to encrypt data both in transit and at rest. Robust access control
mechanisms are essential to regulate who can offload tasks and receive results. Authentication mechanisms
are included to verify the identities of vehicles and users, preventing unauthorized access. We also recommend
encrypting and protecting both static and dynamic data using end-to-end encryption for data transmission and
strong encryption algorithms, such as the Advanced Encryption Standard (AES) or Elliptic Curve Cryptogra-
phy (ECC), for storing data. Mutual authentication protocols should be implemented between superior and
subordinate MEC (Mobile Edge Computing) nodes to ensure that only legitimate MEC nodes can communicate,
and that data is returned only to vehicle-related MEC nodes.

6.2. Realistic Validation. For realistic validation, we propose a comprehensive experimental setup that
includes both simulations and field trials. Extensive simulations using real-world vehicular network scenarios
will evaluate the performance of our proposed scheme. Field trials, conducted in collaboration with industry
partners, will assess the practicality and effectiveness of the solution under realistic conditions.

6.3. Real-Time Location Updates. To integrate real-time location update algorithms into a multi-tier
MEC architecture, we propose a scalable and flexible approach involving deploying real-time location services
on MEC servers. These services update vehicle locations as they move within the network, ensuring that all
relevant MEC servers are synchronized. This maintains the operational integrity of the vehicular network and
supports the efficient management of tasks and resources.
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7. Conclusion. This paper has presented a dynamically changing multi-level MEC architecture aimed
at minimizing average task offloading times without compromising on-service continuity for vehicles traversing
RSU coverage areas. By integrating vehicle speed and crossing scenarios into the classical offloading model,
our proposed Speed Sensitive Collaborative Offloading and Backhaul (SSCOM) scheme has demonstrated a
superior capability to minimize offloading times and enhance the task return success rate by at least 5%,
outperforming conventional methods.It‘s practical significance lies in facilitating seamless and efficient service
delivery in IoT environments, where timely data processing and reliable information feedback are critical. The
SSCOM scheme ensures that vehicles can swiftly offload tasks and receive processed results even amidst high
mobility, contributing to safer and more responsive autonomous driving experiences.

However, this study also has its limitations. Firstly, the parameter settings and scenario design in the
simulation experiments are relatively simplified; future work should further validate the effectiveness of the
proposed schemes in more complex real-world environments. Secondly, this paper’s schemes primarily focus
on the performance of task offloading and result return, with less in-depth discussion on security and privacy
concerns during the task offloading process. In future work, we intend to incorporate security mechanisms to
ensure the safe transmission of data and the protection of privacy.Looking ahead, we anticipate that research in
the field of vehicular networking will progress towards more intelligent, service-oriented, and secure development.
With the proliferation of 5G technology and the enhancement of edge computing capabilities, vehicular networks
will be able to offer richer and more efficient services.
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