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ALEX/ELM NETWORK DETECTION BASED ON IMPROVED FIREFLY SWARM
OPTIMIZATION ALGORITHM

XIAOYAN WANG∗

Abstract. To address the issues of blind spots and low detection accuracy associated with using a single machine learning
approach in network intrusion detection, the author suggests employing an Alex/ELM network detection system enhanced by an
optimized firefly swarm algorithm. In the construction of base classifiers, the differences between samples of each base classifier are
increased by sampling the sample set and selecting the feature set; By employing various learning algorithms to boost the diversity
of the base classifiers on the sample set, the detection results are combined through a weighting mechanism. An enhanced firefly
optimization algorithm is used to fine-tune the classification result weights of each base classifier. Experimental results demonstrate
that, compared to other algorithms, this approach maintains a relatively high detection accuracy (with a minimum accuracy of
95.5%), showcasing the algorithm’s stability and effectiveness even with imbalanced samples. In conclusion, the method proposed
by the author significantly enhances detection accuracy, while reducing both the false alarm rate and the missed alarm rate.
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1. Introduction. At present, at a time when a new round of scientific and technological industrial revo-
lution and the risk of epidemic are intertwined and superimposed, the global network security situation is still
grim. The frequent occurrence of network security threats against key industries, new technologies and new
scenarios forces countries to continue to deepen security measures for key infrastructure and strengthen security
risk prevention for new technologies and new applications. Cybersecurity legislation and law enforcement work
together to fully defend cyberspace security [1]. Benefiting from policy intensification and the release of secu-
rity needs, the development of network security technology has ushered in opportunities. Looking ahead to the
14th Five Year Plan period, the digital economy will shift towards a new stage of deepening development. In
response to the new situation and challenges of network security, the connotation of network security concepts,
new technologies, and security technology industries will usher in key developments [2]. The global cybersecu-
rity situation remains strict, and the evolution and upgrading of network attack methods are not optimistic
about the current global cybersecurity situation. On one hand, key industries like energy, transportation, and
telecommunications have been increasingly targeted by cyber attacks. In 2021, numerous organizations were
affected, including the largest oil pipeline operator in the United States, public railway operators in the UK,
and major telecommunications companies in New Zealand. These attacks have caused multiple interruptions
to network services and have had a profound impact on social stability and people’s production and life [3].
On the other hand, there is an increasing number of network threats targeting new technologies and scenarios.
Take the Internet of Vehicles as an example: the security risks associated with infrastructure components such
as application platforms, network support, and data computing power are highly complex and multifaceted. Ac-
cording to the 2021 Global Automotive Network Security Report by Upstream, IoT infrastructure has emerged
as a new target for cyber attacks. The percentage of connected vehicles subjected to cyber attacks rose to
77.6% from 2020 to 2021 alone. As network attack methods continue to evolve and improve, the conflict be-
tween network attack and defense has become increasingly intense [4]. Regarding attack methods, exploiting
vulnerabilities to conduct chain attacks has become more common. In terms of tactics, enhanced network
defense capabilities have made attacks more challenging. Consequently, attackers are now employing various
strategies to bypass security measures and successfully infiltrate networks. When it comes to targets, driven by
potential gains, attackers are increasingly selecting their targets with greater precision. By adopting intelligent
methods, attackers begin to collect information about attack targets and target ”high-value” targets to carry
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out attacks [5].

2. Literature Review. The process of network intrusion detection is actually the recognition of abnormal
network behavior in the system. When there is a significant difference between the current behavior and normal
behavior, an alarm message is issued. This process was early achieved through traditional machine learning
algorithms. According to whether there are data labels involved in the training process, traditional machine
learning algorithms can be divided into supervised learning and unsupervised learning. According to different
operating mechanisms, supervised learning can be divided into generative methods and discriminative methods.
The generation method starts from a statistical perspective and uses probability distribution to reflect the
similarity between traffic data. Representative algorithms include naive Bayesian algorithm, Bayesian network,
and hidden Markov model. Chang, W. Y. et al. introduced a hybrid metaheuristic algorithm that integrates
dynamic multi-swarm particle swarm optimization with the firefly algorithm. This approach aims to achieve an
optimal deployment solution that maximizes coverage and minimizes energy consumption using both static and
mobile sensors. Moreover, the proposed algorithm incorporates a novel switching search mechanism between
subgroups to prevent early convergence from becoming trapped in local optima. The simulation results show
that compared with other PSO based deployment algorithms, this method can achieve better solutions in terms
of coverage and energy consumption [6]. Gao, B. T. et al. developed a method for self-correcting the parameters
of a disturbance rejection controller using an enhanced firefly swarm optimization algorithm. This algorithm
incorporates local optimization operators based on sine and cosine functions, along with adaptive mutation
strategies. The refined algorithm is then applied to tune the parameters of the disturbance rejection controller,
enhancing the control system’s anti-interference capabilities and ensuring parameter accuracy. The results
indicate that optimizing disturbance rejection control with the improved firefly swarm optimization algorithm
results in a quick response time, no overshoot, a stable tracking process, strong anti-interference capability,
and superior optimization performance [7]. Zhou, X. et al. developed a multi-objective optimization model
utilizing an enhanced firefly algorithm. This model uses the partial load rate of each chiller unit and the cooling
rate of the freezer as optimization variables to determine the ISAC system’s minimal energy consumption loss
rate and operating cost. Experimental results demonstrate that, compared to strategies based on constant
proportion, particle swarm optimization, and the standard firefly algorithm, the optimization strategy based
on the improved firefly algorithm (IFA) achieves significantly greater energy savings and economic benefits [8].

The author employs the firefly optimization algorithm to optimize the decision output weights of each
base classifier, identifying the optimal weighting scheme to enhance the detection model’s accuracy. By using
ensemble learning methods as the central detection algorithm, the author enhances the detection model’s
performance by refining the construction of the base classifiers and the method of result fusion.

3. Research Methods.

3.1. Heterogeneous Integration Algorithm of GSO. To enhance the effectiveness of ensemble learn-
ing, the author employs heterogeneous ensemble learning techniques, integrating multiple learning models and
increasing the diversity of training samples from the training dataset. These methods improve the generalization
capability of ensemble learning, thereby ensuring high detection accuracy.

3.1.1. Heterogeneous basis classifier generation. Ensemble learning involves employing a finite set
of learning machines to tackle the same problem, where the final output for a given input example is determined
by aggregating the outputs of these machines within the ensemble. A prerequisite for ensemble classifiers to out-
perform individual classifiers is their individual accuracy and diversity. Current machine learning methods with
robust generalization capabilities often meet accuracy requirements without stringent parameter considerations.
The crucial focus lies in enhancing the diversity among base classifiers. Ensemble learning can be categorized
into two methods based on the similarities and differences in the classification algorithms of the base classifier:
isomorphic and heterogeneous ensembles. Isomorphic ensembles utilize the same learning algorithm across all
base classifiers, varying only in parameters and selected samples. On the other hand, heterogeneous integra-
tion employs different classifiers and learning algorithms, effectively ensuring diversity among base classifiers.
Hence, heterogeneous integration is adopted for investigating intrusion detection, emphasizing the importance
of diverse classification methods in enhancing detection accuracy [9].
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The differences between base classifiers are not only affected by the self classification algorithm mentioned
above, but also by the selection of the dataset when constructing the base classifier. Ensemble learning can be
classified based on dataset selection methods into Pattern Level ensemble, which involves various resampling
techniques, and Feature Level ensemble, which focuses on selecting different sample features. Pattern Level
ensemble utilizes methods like repeated sampling or altering sample distributions to create diverse training
sets for each base classifier, enhancing their variability. Commonly used Bagging and Boosting methods fall
under Pattern Level integration. Feature Level integration, on the other hand, targets scenarios with numerous
features by selecting subsets that capture distinct problem properties for each base classifier’s training set.
Given the high-dimensional sample space in network intrusion detection, employing Feature Level integration
is practical. To enhance base classifier accuracy, a heterogeneous ensemble construction method that combines
Pattern Level and Feature Level approaches is employed.

3.1.2. Firefly Algorithm Weight Optimization. After acquiring the outputs from multiple base clas-
sifiers, it’s essential to fuse these results to derive the ultimate detection outcome. Since intrusion detection
revolves around binary classification, the output results of each base classifier are assigned as +1 and -1, repre-
senting normal and detected intrusion, respectively. Assuming there are n base classifiers, the detection result
of the i-th base classifier is yi, and the fused weight is xi, the final detection result y is as follows 3.1:

y = sgn(

n∑
i=1

xiyi) (3.1)

To ensure the model achieves its highest detection accuracy by determining the optimal x, the objective
function for optimization is expressed as follows 3.2:

f(xi) = max(acc), 0 < xi < 1 (3.2)

Among them, acc represents the testing and detection accuracy of the entire integrated model under different
weights xi. In order to solve this problem, the author chose the Firefly Optimization Algorithm (GSO) to solve
it [10]. GSO is a typical swarm intelligence optimization algorithm, originally proposed by Krishnanand in
2005. Its basic idea is to simulate the movement of individuals with low brightness towards individuals with
high brightness in firefly swarm activities, in order to achieve optimization.

Compared to other swarm intelligence algorithms, it has the advantages of simplicity, fewer parameters,
and easy implementation, making it suitable for determining the weights of decision layers.

The current position of the i-th firefly in GSO, which has a weight of xi(t), has a fluorescence value of Ii(t)
at that position, and t is the number of iterations. The iterative update process of GSO is determined by both
fluorescence and position updates.

The formula for updating the fluorescence value is as follows 3.3:

Ii(t) = (1− ρ)li(t− 1) + γf(xi(t)) (3.3)

Among them, f(xi(t)) objective function fitness value, ρ is the volatilization factor of fluorescein, γ is the
fluorescence renewal rate. The position update formula is as follows 3.4:

xi(t+ 1) = xi(t) + s(
xj(t)− xi(t)

||xj(t)− xi(t)
||) (3.4)

Among them, s is the movement step size, xj(t)− xi(t) is the distance between firefly j and i.
During each iteration, the dynamic decision domain radius is updated as follows 3.5:

rid(t+ 1) = min{rS ,max{0, rid(t) + β(ni − |Ni(t)|)}} (3.5)

Among them, rS is the perception radius, β is the update rate, |Ni(t)| is the number of fireflies within the
neighborhood range. Through iteration, the optimal weight with the highest brightness will be ultimately
found [11].
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Fig. 3.1: Algorithm Process

3.1.3. Algorithm process. Building upon the previous analysis and considering the practicalities of intru-
sion detection problems, the author opts for heterogeneous integration. This involves selecting well-established
machine learning methods with strong generalization performance: SVM, KNN, AlexNet, and ELM serve as
learning techniques for base classifiers. To further improve the variability between base classifiers, an ensemble
learning detection algorithm for GSO optimization weights combining Pattern-Level and Feature-Level selection
training set methods. The detailed algorithmic process is depicted in Figure 3.1.

Here are the specific steps:
1. Employ the Bagging method to resample the samples with replacement, generating multiple subsets of

samples.
2. Utilize the Feature Level method to randomly select features from the previously generated sample

subsets, obtaining feature subsets.
3. Train different learning methods on the feature subsets obtained in Step 2. The parameters for each

base classifier are determined using a simple trial and error method, resulting in the creation of each
base classifier.

4. Synthesize the results from each base classifier with weighted fusion. The weights are optimized using
the firefly algorithm as described in Section 1.2. The final detection results are then produced through
a sign function [12].

3.2. Algorithm validation. In order to verify the effectiveness of the algorithm, we will first start with
its effectiveness and examine its classification performance by applying the algorithm to the current universal
dataset. Here, German, Ionosphere, Image, and Thyoid datasets are selected as the experimental datasets. The
author’s proposed algorithm is compared against traditional classification methods to evaluate performance
differences. Additionally, a comparison is made between Bagging and Boosting ensemble algorithms to assess
their respective effectiveness. For ensemble learning, it is not advisable to have too many or too few integrated
base classifiers. Select 40 base classifiers and construct them based on this method, bagging, and boosting,
respectively. The author samples the samples in the first layer and performs 5 resamples on each sample.
Based on this, two random feature selections are performed on each subset, with a feature selection ratio of
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Fig. 3.2: GSO optimization results for different datasets

Table 3.1: Comparison of experimental accuracy for general datasets

data Classification accuracy(Acc %)
set KNN AlexNet ELM SVM The method (Alex/ELM)
German 74.5 76.7 75.8 77.5 81.4
Ionosphere 81.3 82.7 84.5 86.2 90.7
Image 92.5 94.3 95.2 95.8 98.2
Thyoid 93.1 94.7 94.2 95.0 97.1

80%. This resulted in 10 training sets. Based on these 10 training sets, SVM KNN, AlexNet, and BP neural
networks were trained to obtain 40 base classifiers. The final classification result is obtained using the majority
voting method [13,14].

Firstly, compare the classification performance of a single classifier and this method. For the single classifier,
we employ base classifier methods, namely SVM, KNN, AlexNet, and BP neural networks. In SVM and
BP neural networks, Gaussian functions are chosen as the kernel and activation functions, respectively. The
parameters for each learner are determined through 5-fold cross-validation and grid search methods. The
parameters for each base classifier in this algorithm are straightforwardly set without any special processing.
Given the robust learning capabilities of the selected methods, the chosen parameters typically fulfill the
requirements. In the GSO optimization algorithm, based on the problem, set the number of fireflies to 50,
the fluorescence volatilization factor =0.4, the fluorescence update rate =0.6, and the update rate =0.08,
neighborhood threshold =5, with 100 generations. The obtained experimental results are shown in Figure 3.2.

The graph depicts that the classification accuracy of each dataset remains consistently high during the
initial stages, suggesting that the ensemble learning algorithm yields promising learning outcomes and maintains
stability throughout the process. On different datasets, the algorithms converge quickly, indicating that the
GSO algorithm has good convergence, and each algorithm ultimately stabilizes at a relatively high classification
accuracy [15]. Next, the results of this article will be compared with several other single classification methods,
and Table 1 presents the classification results.

The experimental findings reveal that among the algorithms tested, KNN exhibits the lowest classification
accuracy. Despite its simplicity and high operational efficiency, the KNN algorithm tends to extract minimal
classification information. In contrast, SVM, AlexNet, and ELM yield comparable classification results. These
methods leverage distinct learning mechanisms, offering varied perspectives for sample learning and demon-
strating proficiency in handling nonlinear classification tasks. The author’s proposed method achieves optimal



Alex/ELM Network Detection based on Improved Firefly Swarm Optimization Algorithm 1289

Table 3.2: Comparison of Average Differences of Base Classifiers

Data Average difference value
set Bagging Boosting This method (Alex/ELM)
German 0.203 0.216 0.272
Ionosphere 0.170 0.181 0.2124
Image 0.013 0.012 0.020
Thyoid 0.064 0.073 0.103

Table 3.3: Classification accuracy results of integrated algorithms

Data Classification accuracy(Acc%)
set Bagging Boosting Voting fusion GSO optimization
German 78.4 78.4 80.3 81.3
Ionosphere 87.0 88.3 90.3 90.7
Image 97.3 97.1 97.7 98.1
Thyoid 95.3 95.8 96.4 97.1

classification accuracy by integrating diverse classifiers, thereby compensating for individual classifiers’ errors
and omissions. This ensemble learning strategy enhances the overall classification’s generalization capability,
showcasing the inherent advantage of ensemble learning.

Next, we’ll assess the performance of this method against traditional ensemble learning algorithms. Tradi-
tional ensemble algorithms such as classic bagging and boosting integrate 40 base classifiers. The distinction
among base classifiers serves as an indicator of ensemble learning effectiveness. The difference between base
classifiers, denoted as D, is calculated using the following formula 3.6 on N samples:

Div =
1

TN

T∑
t=1

N∑
i=1

dt(xi) (3.6)

Among them, the following equation 3.7:

dt(xi) =

{
0 ifht(xi) = f(xi)

1 ifht(xi) ̸= f(xi)
(3.7)

Among them, ht(xi) represents the predicted label of the t-th individual classifier on sample xi, f(xi) is the
predicted result after integrating all individual classifiers, using a difference threshold of at least 80% of the
difference of the previous t individual SVMs, we evaluate the effectiveness of ensemble integration. A higher
difference implies lower correlation between base classifiers, leading to improved integration outcomes [16]. We
computed the average difference among three ensemble algorithms across various datasets, as summarized in
Table 3.2.

Table 3.2 reveals that, on the whole, the disparity between Bagging and Boosting integration methods
is not notably substantial. However, compared to the preceding methods, the average difference observed in
this method is notably higher. This is because this method adopts heterogeneous integration. Below, we
will examine the generalization performance of several ensemble algorithms by comparing their classification
accuracy. Here, we’ll delve into the GSO optimization employed by the author and the fusion decision results
solely based on voting. Table 3.3 provides a comparison of the classification accuracy among these four methods.

From the experimental results, it can be seen that several ensemble algorithms have achieved certain
improvements in classification accuracy compared to single learning methods. In the context of constructing
the base classifier in this study, the classification accuracy of the voting fusion method surpasses that of
traditional Bagging and Boosting. This improvement can be attributed to the increased diversity among base
classifiers, leading to enhanced integration effects. Additionally, the GSO optimization method achieves the
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Table 4.1: Results of Intrusion Detection Experiment

Normal Attack
method detection noise factor detection false negative accuracy

number count
SVM 943 5.50 231 7.10 94.31
Bagging 973 2.50 236 5.10 97.31
Boosting 976 2.20 233 6.30 97.61
The method (Alex/ELM) 991 0.70 242 2.70 99.11

highest classification accuracy compared to simple voting methods [17,18]. These findings suggest that the
method proposed in this article significantly enhances ensemble learning performance, thereby establishing a
solid foundation for its application in intrusion detection.

4. Result analysis. The experiments conducted above validate the efficacy of the GSO-optimized ensem-
ble learning algorithm proposed by the author in achieving high accuracy for binary classification tasks. This
section extends the application of the algorithm to intrusion detection using the CSE-CIC-IDS2018 dataset.
This dataset, collaboratively released by the Canadian Communications Security Establishment (CSE) and the
Canadian Institute for Cybersecurity (CIC), comprises network traffic and system logs from 50 attack hosts
targeting 420 computers and 30 servers across 5 departments within an enterprise. It encompasses a total of 7
types of attacks, including Brute force, Heartbleed, Botnet, DoS, DDoS, Web, and Infiltration. Compared to
the traditional KDD99 dataset, CSE-CIC-IDS2018 can better simulate the network environment of enterprises,
which includes a variety of network protocols and new attack methods. The original dataset is very large, with
a ratio of approximately 4:1 between normal and invasive samples. In this experiment, training samples were
selected in a 4:1 ratio. Specifically, 4000 normal samples and 1000 intrusion samples (including all 7 selected
attack types) were randomly chosen from the training set. The test sample consists of 1000 normal samples
and 250 attack samples. Individual machine learning methods, with SVM selected as the model, as well as
ensemble learning algorithms such as bagging and boosting, are employed for detection experiments. It’s worth
noting that the base classifiers integrated with bagging and boosting algorithms are all SVM models. The
performance metrics evaluated include the false detection rate, false alarm rate, and overall detection accuracy
of each algorithm, as illustrated in Table 4.1.

The detection results presented in Table 4.1 highlight the comparatively high false detection and false alarm
rates when solely employing the SVM algorithm for intrusion detection, underscoring the benefits of ensemble
learning approaches. Among the three ensemble algorithms examined, the author’s proposed algorithm demon-
strates the most robust detection performance, aligning with our findings from experiments conducted on the
UCI dataset. By enhancing the disparity between base classifiers, the algorithm’s generalization performance
is notably improved. Specifically, by analyzing the detection performance of different attack methods, we can
observe that the algorithm proposed by the author is effective for Botnet The detection rate of attack types
such as DoS, DDoS, and Web has basically reached 100%, and the main erroneous judgments are concentrated
in the Brute force and Infiltration attack types. Analyzing the data of these two attacks, it was found that there
are some normal traffic data in the abnormal samples, which have the same numerical values as the abnormal
traffic in terms of characteristics. Comparing the performance of several methods on these two easily misclas-
sified datasets, the method proposed by the author can greatly improve the detection accuracy of detection
algorithms for these two types of attacks [19].

Moving forward, we’ll utilize the Receiver Operating Characteristic (ROC) curve to evaluate the perfor-
mance of the detection algorithms. When assessing a model’s quality using the ROC curve, two key aspects are
considered: the curve’s shape and the Area Under Curve (AUC). A curve that approaches the upper left corner
indicates superior detection performance, while a deviation from this corner suggests poorer performance. AUC
represents the area beneath the ROC curve, serving as a reflection of the detection model’s diagnostic value. A
higher AUC value, closer to 1, signifies better model performance. Overall, the ROC curves of the algorithms
employed earlier tend to cluster towards the upper left corner, indicative of their efficacy as detectors. Notably,
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Fig. 4.1: Detection accuracy under different attack intensities

the author’s proposed algorithm exhibits the most favorable bias, significantly outperforming other detection
methods. Furthermore, in terms of AUC, this method boasts a larger area under the curve, reaching 0.992,
surpassing the performance of the other three methods. In summary, the ROC curve analysis underscores the
advantages of the method proposed by the author.

In real-world scenarios, network attacks often occur intermittently, with fluctuations in attack frequency
over time. This variability is reflected in the dataset as the ratio of normal samples to attack samples. Conse-
quently, collecting training datasets poses challenges, as a larger dataset theoretically leads to better detection
performance. However, during the initial stages of detection, when a relatively small number of attack events
are collected, the effectiveness of the detection model may be compromised. To assess the efficacy of detection
models under different attack intensities, simulated scenarios are created with attack samples ranging from 5%
to 20% of the total samples. The detection models are trained using these varying attack samples, and their
detection accuracy under different learning modes is depicted in Figure 4.1.

Figure 4.1 illustrates that the trained detection models successfully identify intrusion events across varying
attack intensities. When the attack intensity is low (i.e., a small proportion of attack samples in the training
set, such as 5%), the SVM model achieves a detection accuracy of 91.4%. However, it exhibits a relatively
high missed detection rate, primarily attributed to sample imbalance, causing the SVM’s classification plane to
deviate. From the experimental results, it can also be seen that sample imbalance can affect the effectiveness
of machine learning. Compared with other algorithms, this method can consistently maintain a relatively high
level of detection accuracy (with a minimum of 95.5%), indicating that the algorithm is stable and can also
achieve good detection results in cases of imbalanced samples [20].

5. Conclusion. Given that network intrusion detection is essentially a binary classification problem with
individual machine learning models often yielding suboptimal accuracy, a heterogeneous ensemble learning
approach is adopted. By enhancing the disparity between the training sets and methods in the base classifiers,
the overall integration effect is improved. Furthermore, to further enhance detection accuracy, enhancements
have been made to the result fusion aspect of ensemble learning. The GSO algorithm is optimized to determine
the optimal weight of the base classifier, and the final detection result is obtained through weighted fusion.
Experimental results demonstrate the stability and accuracy of the proposed method, showcasing its practical
value in real-world network intrusion detection applications. Addressing challenges associated with uneven
training samples remains a focal point for future research efforts.
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