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MUSKEL: A SKELETON LIBRARY SUPPORTING SKELETON SET EXPANDABILITY∗

MARCO ALDINUCCI† AND MARCO DANELUTTO† AND PATRIZIO DAZZI‡

Abstract. Programming models based on algorithmic skeletons promise to raise the level of abstraction perceived by pro-
grammers when implementing parallel applications, while guaranteeing good performance figures. At the same time, however, they
restrict the freedom of programmers to implement arbitrary parallelism exploitation patterns. In fact, efficiency is achieved by
restricting the parallelism exploitation patterns provided to the programmer to the useful ones for which efficient implementations,
as well as useful and efficient compositions, are known. In this work we introduce muskel, a full Java library targeting workstation
clusters, networks and grids and providing the programmers with a skeleton based parallel programming environment. muskel is
implemented exploiting (macro) data flow technology, rather than the more usual skeleton technology relying on the use of imple-
mentation templates. Using data flow, muskel easily and efficiently implements both classical, predefined skeletons, and user-defined
parallelism exploitation patterns. This provides a means to overcome some of the problems that Cole identified in his skeleton
“manifesto” as the issues impairing skeleton success in the parallel programming arena. We discuss fully how user-defined skeletons
are supported by exploiting a data flow implementation, experimental results and we also discuss extensions supporting the further
characterization of skeletons with non-functional properties, such as security, through the use of Aspect Oriented Programming
and annotations.

Key words. algoritmical skeletons, data flow, structured parallel programming, distributed computing, security.

1. Introduction. Structured parallel programming models provide the user (programmer) with native
high-level parallelism exploitation patterns that can be instantiated, possibly in a nested way, to implement a
wide range of applications [13, 23, 24, 8, 6]. In particular, such programming models do not allow programmers to
program parallel applications at the “assembly level”, i. e. by directly interacting with the distributed execution
environment via communication or shared memory access primitives and/or via explicit scheduling and code
mapping. Rather, the high-level native, parametric parallelism exploitation patterns provided encapsulate and
abstract from these parallelism exploitation related details. For example, to implement an embarrassingly
parallel application processing all the data items in an input stream or file, the programmer simply instantiates
a “task farm” skeleton by providing the code necessary to process (sequentially) each input task item. The
system, either a compiler and run time tool based implementation or a library based one, takes care of devising
the appropriate distributed resources to be used, to schedule tasks on the resources and to distribute input
tasks and gather output results according to the process mapping used. By contrast, when using a traditional
system, the programmer has usually to explicitly program code for distributing and scheduling the processes on
the available resources and for moving input and output data between the processing elements involved. The cost
of this appealingly high-level way of dealing with parallel programs is paid in terms of programming freedom.
The programmer is normally not allowed to use arbitrary parallelism exploitation patterns, but he must use
only the ones provided by the system, usually including all those reusable patterns that happen to have efficient
distributed implementations available. This is aimed mainly at avoiding the possibility for the programmer to
write code that could potentially impair the efficiency of the implementation provided for the available, native
parallel patterns. This is a well-known problem. Cole recognized its importance in his “manifesto” paper [13].

In this work we discuss a methodology that can be used to provide parallel application programmers with
both the possibility of using predefined skeletons in the usual way and, at the same time, the possibility of imple-
menting their own, additional skeletons, where the predefined ones do not suffice. The proposed methodology,
which is based on data flow, preserves most of the benefits typical of structured parallel programming models.
According to the proposed methodology, predefined, structured parallel exploitation patterns are implemented
by translating them into data flow graphs executed by a scalable, efficient, distributed macro data flow inter-
preter (the term macro data flow refers to the fact that the computation of a single data flow instruction can
be a substantial computation). User-defined, possibly unstructured parallelism exploitation patterns can be
programmed by explicitly defining data flow graphs. These data flow graphs can be used in the skeleton system
in any place where predefined skeletons can be used, thus providing the possibility of seamlessly integrating
both kinds of parallelism exploitation within the same program.
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User-defined data flow graphs provide users with the possibility of programming new skeletons. However, in
order to introduce a new skeleton, users need concentrate only on the data flow within the new skeleton, rather
than on the implementation issues typically related to the efficient implementation of structured parallelism
exploitation patterns. This greatly improves the efficacy of the parallel application development process as
compared to classical parallel programming approaches such as MPI and OpenMP that instead provide users
with very low level mechanisms and give them complete responsibility for efficiently and correctly using these
mechanisms to implement the required parallelism exploitation patterns.

After describing how user defined skeletons are introduced and supported within our experimental skeleton
programming environment, we will also briefly discuss other tools we are currently considering to extend the
prototype skeleton environment. These tools extend the possibility for users to control some non-functional
features of parallel programs in a relatively high-level way. In particular we will introduce the possibility of
using Java 1.5 annotations and AOP (Aspect-Oriented Programming) techniques to associate to the skeletons
different non-functional properties such as security or parallelism exploitation related properties.

2. Template based vs. data flow based skeleton systems. A skeleton based parallel programming
environment provides programmers with a set of predefined and parametric parallelism exploitation patterns.
The patterns are parametric in the kind of basic computation executed in parallel and, possibly, in the execution
parallelism degree or in some other execution related parameters. For example, a pipeline skeleton takes as pa-
rameters the computations to be computed at the pipeline stages. In some skeleton systems these computations
can be either sequential computations or parallel ones (i. e. other skeletons) while in other systems (mainly the
ones developed at the very beginning of the skeleton related research activity) these computations may only be
sequential ones.

The first attempts to implement skeleton programming environments all relied on the implementation
template technology. Original Cole skeletons [12], Darlington’s group skeleton systems [18, 20, 19], Kuchen’s
Muesli [23, 26] and our group’s P3L [7] and ASSIST [36] all use this implementation schema. As discussed in [27],
in an implementation template based skeleton system each skeleton is implemented using a parametric process
network chosen from those available in a template library for that particular skeleton and for the kind of target
architecture at hand (see [28], which discusses several implementation templates, all suitable for implementing
task farms, that is embarrassingly parallel computations implemented according to a master-worker paradigm).
The template library is designed once and for all by the skeleton system designer and captures the state of
the art knowledge relating to implementation of the parallelism exploitation patterns modeled by the skeletons.
Therefore the compilation process of a skeleton program, according to the implementation template model, can
be summarized as follows:

1. the skeleton program is parsed and a skeleton tree representing the precise skeleton structure of the
user application is derived. The skeleton tree has nodes marked with one of the available skeletons, and
leaves marked with sequential code (sequential skeletons).

2. The skeleton tree is traversed, in some order, and templates from the library are assigned to each of the
skeleton nodes, apart from the sequential ones, which always correspond to the execution of a sequential
process on the target machine. During this phase, parameters of the templates (e.g. the parallelism
degree or the kind of communication mechanisms used) are fixed, possibly using heuristics associated
with the library entries.

3. The annotated skeleton tree is used to generate the actual parallel code. Depending on the system this
may involve a traditional compilation step (e.g. in P3L when using the Anacleto compiler [11] or in
ASSIST when using the astcc compiler tools [2, 1]) or use of a skeleton library hosting templates (e.g.
Muesli [26] and eSkel [14] exploiting MPI).

4. The parallel code is eventually run on the target architecture, possibly exploiting some kind of loader/
deploy tool.

Figure 2.1 summarizes the process of deriving running code from skeleton source code using template technology.

More recently, an implementation methodology based on data flow has been proposed [15]. In this case
the skeleton source code is used to compile a data flow graph and the data flow graph is then executed on
the target architecture using a suitable distributed data flow interpreter engine. The approach has been used
both in our group, in the implementation of Lithium [35, 6], and in Serot’s SKIPPER skeleton environment
[30]. In both cases the data flow approach was used to support fixed skeleton set programming environments.
We adopted the very same implementation approach in the muskel full Java skeleton library, but in muskel
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Fig. 2.1. Skeleton program execution according to the implementation template approach.

(as shown in the rest of this paper) the data flow implementation is also used to support extensible skeleton
sets.

When data flow technology is exploited to implement skeletons, the compilation process of a skeleton
program can be summarized as follows:

1. the skeleton program is parsed and a data flow graph is derived. The data flow graph represents the
pure data flow behaviour of the skeleton tree in the program.

2. For each of the input tasks, a copy of the data flow graph is instantiated, with the task appearing
as an input token to the graph. The new graph is delivered to the distributed data flow interpreter
“instruction pool”.

3. The distributed data flow interpreter fetches fireable instructions from the instruction pool and the
instructions are executed on the nodes in the target architecture. Possibly, optimizations are taken into
account (based on heuristics) that try to avoid unnecessary communications (e.g. caching tokens that
will eventually be reused) or to adapt the computation grain of the program to the target architecture
features (e.g. delivering more than a single fireable instruction to remote nodes to decrease the impact
of communication set up latency, or multiprocessing the remote nodes to achieve communication and
computation overlap).

Figure 2.2 summarizes the steps leading from skeleton source code to the running code using this data flow
approach. It is worth pointing out that macro data flow implementation of skeletons is “pure data flow” compli-
ant: no side effects, such as those deriving from the usage of global variables, are supported, nor can data flow
graphs compiled from one skeleton in the program affect/modify the graphs compiled from the other skeletons
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Fig. 2.2. Skeleton program execution according to the data flow approach.

in the program. This can be perceived as a limitation if we assume a non-structured parallel programming
perspective. However, this represents a strong point in the structured parallel programming perspective as it
guarantees that macro data flow graphs separately generated from skeletons appearing in the source code can
be composed/unfolded safely in the global macro data flow graph eventually run on the distributed macro data
flow interpreter.

The two approaches just outlined appear very different, but they have been successfully used to implement
different skeleton systems. To support what will be presented in §4.2, we wish first to point out a quite subtle
difference in the two approaches.

On the one hand, when using implementation templates, the process network eventually run on the target
architecture is very similar to the one the user has in mind when instantiating skeletons in the source code.
In some systems the “optimization” phase of Fig. 2.1 is actually empty and the program eventually run on
the target architecture is built by simple juxtaposition of the process networks making up the templates of the
skeletons used in the program. Even when the optimization phase does actually modify the process network
structure (in Fig. 2.1 the master/slave service process of the two consecutive farms are optimized/collapsed, for
instance), the overall structure of the process network does not change very much.

On the other hand, when a data flow approach is used the process network run on the target architecture
has almost nothing to do with the skeleton tree described by the programmer in the source code. Rather, the
skeleton tree is used to implement the parallel computation in a correct and efficient way, exploiting a set of
techniques and mechanisms that are much closer to the techniques and mechanisms used in operating systems
rather than to those used in the execution of parallel programs, both structured and unstructured. From a
slightly different perspective, this can be interpreted as follows:
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Fig. 3.1. Sample muskel code: sketch of all (but the sequential portions of code) the code needed to set up and execute a
two-stage pipeline with parallel stages (farms).

• skeletons in the program “annotate” sequential code by providing the meta information required to
efficiently implement the program in parallel;

• the support tools of the skeleton programming environment (the data flow graph compiler and the
distributed data flow interpreter, in this case) “interprets” the meta information to accurately and effi-
ciently implement the skeleton program, exploiting (possibly at run time, when the target architecture
features are known) the whole set of known mechanisms supporting implementation optimization (e.g.
caches, prefetching, node multiprocessing, etc.).

Viewed in this way, the data flow implementation for parallel skeleton programs presents a new perspective
in the design of parallel programming systems where parallelism is dealt with as a “non-functional” feature,
introduced by programmers via annotations or exploiting Aspect-Oriented Programming (AOP) techniques,
and handled by the compiling/runtime support tools in the most convenient and efficient way with respect to
the target architecture at hand (see §4.2).

3. muskel. muskel is a full Java skeleton programming environment derived from Lithium [6]. Currently, it
provides only the stream parallel skeletons of Lithium, namely stateless task farm and pipeline. These skeletons
can be arbitrarily nested, to program pipelines with farm stages, for example, and they process a single stream of
input tasks to produce a single stream of output tasks. muskel implements skeletons using data flow technology
and Java RMI facilities. The programmer using muskel can express parallel computations by simply using
the provided Pipeline and Farm classes. For example, to express a parallel computation structured as a two-
stage pipeline with a farm in each of the stages, the user should write code such as that shown in Fig. 3.1.
f and g are two classes implementing the Skeleton interface, i. e. supplying a compute method with the
signature Object compute(Object t) computing f and g, respectively. The Skeleton interface represents the
“sequential” skeleton, that is the skeleton always executed sequentially and only used to wrap sequential code
in such a way that it can be used in other, non-sequential skeletons.

In order to execute the program, the programmer first sets up a Manager object. Then, using appropriate
methods, he indicates to the manager the program to execute, the performance contract required (in this case,
the parallelism degree required for the execution), what is in charge of providing the input data (the input
stream manager, which is basically an iterator providing the classical boolean hasNext() and Object next()
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methods) and what is in charge of processing the output data (the output stream manager, providing only
a void deliver(Object) method processing a single result of the program). Finally, he can request parallel
program execution simply by issuing an eval call to the manager. When the call terminates, the output file
has been produced.

Actually, the eval method execution happens in steps. First, the application manager looks for available
processing elements using a simplified, multicast based peer-to-peer discovery protocol, and recruits the required
remote processing elements. Each remote processing element runs a data flow interpreter. Then the skeleton
program (the main of the example) is compiled into a macro data flow graph (capitalizing on normal form
results shown in [3, 6]) and a thread is forked for each of the remote processing elements recruited. Then the
input stream is read. For each task item, an instance of the macro data flow graph is created and the task item
token is stored in the proper place (initial data flow instruction(s)). The graph is placed in the task pool, the
repository for data flow instructions to be executed. Each thread looks for a fireable instruction in the task pool
and delivers it for execution to the associated remote data flow interpreter. The remote interpreter instance
associated to the thread is initialized by being sent the serialized code of the data flow instructions, once and for
all, before the computation actually starts. Once the remote interpreter terminates the execution of the data
flow instruction, the thread either stores the result token in the appropriate “next” data flow instruction(s) in
the task pool, or it directly writes the result to the output stream, invoking the deliver method of the output
stream manager. Currently, the task pool is a centralized one, associated with the centralized manager. We are
currently investigating the possibility to distribute both task pool and manager so as to remove this bottleneck.
The manager takes care of ensuring that the performance contract is satisfied. If a remote node “disappears”
(e.g. due to a network failure, or to the node failure/shutdown), the manager looks for another node and starts
dispatching data flow instructions to the new node instead [16]. As the manager is a centralized entity, if it
fails, the whole computation fails. However, the manager is usually run on the user machine, which is assumed
to be safer than the remote nodes recruited as remote interpreter instances.

The policies implemented by the muskel managers are best effort. The muskel library tries to do its best
to accomplish user requests. If it is not possible to completely satisfy the user requests, the library establishes
the closest configuration to the one implicitly specified by the user with the performance contract. In the
example above, the library tries to recruit 10 remote interpreters. If only n < 10 remote interpreters are found,
the parallelism degree is set exactly to n. In the worst case, that is if no remote interpreter is found, the
computation is performed sequentially, on the local processing element.

In the current version of the muskel prototype, the only performance contract actually implemented is the
ParDegree one, asking for the use of a constant number of remote interpreters in the execution of the program.
The prototype has been designed to support at least another kind of contract: the ServiceTime one. This
contract can be used to specify the maximum amount of time expected between the delivery of two program
result tokens. Thus, with a call such as manager.setContract(new ServiceTime(500)), the user may request
delivery of one result every half a second (time is in ms, as usual in Java). We do not discuss in more detail
the implementation of the distributed data flow interpreter here. The interested reader can refer to [15, 16].
Instead, we will present more detail of the compilation of skeleton code into data flow graphs.

A muskel parallel skeleton code is described by the grammar:

P ::= seq(className) | pipe(P, P) | farm(P)

where the classNames refer to classes implementing the Skeleton interface, and a macro data flow instruction
(MDFi) is a tuple:

MDFi ≡ Id × Id × Id × In ×Ok

where the first Id : paper.tex, v1.352007/03/2316 : 45 : 59marcodExp represents the MDFi identifier distin-
guishing that MDFi from other MDFi in the graph, the second represents the graph id (both are either integers
or the special NoId identifier), the third the identifier of the Skeleton code computed by the MDFi; and, fi-
nally, I and O are the input tokens and the output token destinations, respectively. An input token is a pair
〈value, presenceBit〉 and an output token destination is a pair 〈destInstructionId, destTokenNumber〉. With these
assumptions, a data flow instruction such as 〈a, b, f, 〈〈123, true〉, 〈null, false〉〉, 〈〈i, j〉〉〉 is the instruction with
identifier a belonging to the graph with identifier b. It has two input tokens, one present (the integer 123) and
one not present yet. It is not fireable, as one token is missing. When the missing token is delivered to this
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instruction, either from the input stream or from another instruction, the instruction becomes fireable. To be
computed, the two tokens must be given to the compute method of the f class. The method computes a single
result that will be delivered to the instruction with identifier i in the same graph, in the position corresponding
to input token number j. The process compiling the skeleton program into the data flow graph can therefore be
more formally described as follows. We define a pre-compile function PC : P × Id → (Id → MDFi⋆) as follows:

PC[P]g =















λi. {〈newId(), g, f, 〈〈null, false〉〉, 〈〈i, 1 〉〉〉} if P = seq (f)
PC[P1]g if P = farm(P1 )
λi.((PC[P1]gid (getId(T ))) ∪ (T (i)))

where T = PC[P2]gid if P = pipe (P1, P2)

where λx.T is the usual lambda notation for functions and getID() returns the id of the first instruction in its
argument graph, that is, the one assuming to receive the input token from outside the graph.
Then, we define the compile function C : P → MDFi⋆ as follows:

C[P ] = PC[P ]newGid() (NoId)

where newId() and newGid() are stateful functions returning a fresh (i. e. unused) instruction and graph
identifier, respectively. The compile function therefore returns a graph, with a fresh graph identifier, containing
all the data flow instructions defining the skeleton program. The result tokens are identified as those whose
destination is NoId. For example, the compilation of the main program pipe(farm(seq(f)), farm(seq(g))) produces
the data flow graph:

{〈2, 1, f, 〈〈null, false〉〉, 〈〈1, 1〉〉〉 , 〈1, 1, g, 〈〈null, false〉〉, 〈〈NoId, 1〉〉〉}

(assuming that identifiers and token positions start from 1).
When the application manager is told to compute the program, via an eval() method call, the input file

stream is read looking for tasks to be computed. Each task found is used to replace the data field of the initial
data flow instruction in a new C[P ] graph. In the example above, this results in the generation of a set of
independent graphs such as:

{〈2, i, f, 〈〈null, false〉〉, 〈〈1, 1〉〉〉 , 〈1, i, g, 〈〈null, false〉〉, 〈〈NoId, 1〉〉〉}

for all the tasks ranging from task1 to taskn.
All the resulting instructions are put in the task pool of the distributed interpreter in such a way that

the control threads taking care of “feeding” the remote data flow interpreter instances can start fetching the
fireable instructions. The output tokens generated by instructions with destination tag equal to NoId are
delivered directly to the output file stream by the threads receiving them from the remote interpreter instances.
Those with a non-NoId flag are delivered to the appropriate instructions in the task pool, which will eventually
become fireable.

4. Expanding muskel skeleton facilities. In this section, we will discuss how the skeleton facilities
provided by muskel can be extended to accomplish particular user requirements. Two issues are considered.
First, the mechanisms used to allow programmers to define their own skeletons are discussed, along with their
muskel implementation. Using these mechanisms, the programmers may declare and use arbitrary, possibly
“unstructured”1 new skeletons. Then, we discuss how alternative mechanisms based on Java annotations
and/or AOP techniques are currently being used to provide further expandability of the muskel skeleton set,
in particular characterizing existing skeletons with new, non-functional features.

4.1. User-defined skeletons. In order to introduce completely new parallelism exploitation patterns,
muskel provides programmers with mechanisms that can be used to design arbitrary macro data flow graphs.
A macro data flow graph can be defined creating some Mdfi (macro data flow instruction) objects and connecting
them in a MdfGraph object.

For example, the code in Fig. 4.1 is that needed to program a data flow graph with two instructions. The
first computes the inc1 compute method on its input token and delivers the result to the second instruction.
The second computes the sq1 compute method on its input token and delivers the result to a generic “next”
instruction (this is modelled by giving the destination token tag a Mdfi.NoInstrId tag). The Dest type in
the code represents the destination of output tokens as triples containing the graph identifier, the instruction

1With respect to classical skeleton frameworks.
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Fig. 4.1. Custom/user-defined skeleton declaration.

identifier and the destination input token targeted in this instruction. Macro data flow instructions are built
by specifying the manager they refer to, their identifier, the code executed (must be a Skeleton object) the
number of input and output tokens and a vector with a destination for each of the output tokens.

We do not present all the details of arbitrary macro data flow graph construction here (a complete de-
scription is provided with the muskel documentation). The example is just to give the flavor of the tools
provided in the muskel environment. Bear in mind that the simple macro data flow graph of Fig. 4.1 is
actually the same macro data flow graph obtained by compiling a primitive muskel skeleton call such as:
Skeleton main = new Pipeline(new Inc(), new Sq()) More complex user-defined macro data flow graphs
may include instructions delivering tokens to an arbitrary number of other instructions, as well as instructions
gathering input tokens from several distinct other instructions. In general, the mechanisms of muskel permit
the definition of any kind of graph with macro data flow instructions computing sequential (side effect free)
code wrapped in a Skeleton class. Any parallel algorithm that can be modeled with a data flow graph can
therefore be expressed in muskel2. Non deterministic MDFi are not yet supported (e.g. one that merges input
tokens from two distinct sources) although the firing mechanism in the interpreter can be easily adapted to
support this kind of macro data flow instructions. Therefore, new skeletons added through the macro data flow
mechanism always model pure functions.

MdfGraph objects are used to create new ParCompute objects. ParCompute objects can be used in any
place where a Skeleton object is used. Therefore, user-defined parallelism exploitation patterns can be used
as pipeline stages or as farm workers, for instance. The only limitation on the graphs that can be used in a
ParCompute object consists in requiring that the graph has a unique input token and a unique output token.

When executing programs with user-defined parallelism exploitation patterns the process of compiling
skeleton code to macro data flow graphs is slightly modified. When an original muskel skeleton is compiled,
the process described in §3 is applied. When a user-defined skeleton is compiled, the associated macro data
flow graph is directly taken from the ParCompute instance variables where the graph supplied by the user is
maintained. Such a graph is linked to the rest of the graph according to the rules appropriate to the skeleton
where the user-defined skeleton appears.

To show how the whole process works, let us suppose we want to pre-process each input task in such a way
that for each task ti a new task

t′i = h1(f1(ti), g2(g1(f1(ti))))

2Note, however, that common, well know parallel application skeletons are already modelled by pre-defined muskel Skeletons.
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Fig. 4.2. Mixed sample macro data flow graph (left): the upper part comes from a user-defined macro data flow graph (it
cannot be derived using primitive muskel skeletons) and the lower part is actually coming from a three stage pipeline with two
sequential stages (the second and the third one) and a parallel first stage (the user-defined one). GUI tool designing the upper
graph (right).

is produced. This computation cannot be programmed using the stream parallel skeletons currently provided
by muskel. In particular, current pre-defined skeletons in muskel allow only processing of one input to produce
one output, and therefore there is no way to implement the graph described here. In this case we wish to process
the intermediate results through a two-stage pipeline to produce the final result. To do this the programmer can
set up a new graph using code similar to the one shown in Fig. 3.1 and then use that new ParCompute object as
the first stage of a two-stage pipeline whose second stage happens to be the postprocessing two-stage pipeline.
When compiling the whole program, the outer pipeline is compiled first. As the first stage is a user-defined
skeleton, its macro data flow graph is directly taken from the user-supplied one. The second stage is compiled
according to the (recursive) procedure described in §3 and eventually the (unique) last instruction of the first
graph is modified in such a way that it sends its only output token to the first instruction in the second stage
graph. The resulting graph is outlined in Fig. 4.2 (left).

Making good use of the mechanisms allowing definition of new data flow graphs, the programmer can
arrange to express computations with arbitrary mixes of user-defined data flow graphs and graphs coming from
the compilation of structured, stream parallel skeleton computations. The execution of the resulting data flow
graph is supported by the muskel distributed data flow interpreter in the same way as the execution of any
other data flow graph derived from the compilation of a skeleton program. At the moment the muskel prototype
allows user-defined skeletons to be used as parameters of primitive muskel skeletons, but not vice versa. We
are currently working to extend muskel to alow the latter.

While the facility to include user-defined skeletons provides substantial flexibility, we recognize that the
current way of expressing new macro data flow graphs is error prone and not very practical. Therefore we have
designed a graphic tool that allows users to design their macro data flow graphs and then compile them to
actual Java code as required by muskel and shown above. Fig. 4.2 (right) shows the interface presented to the
user. In this case, the user is defining the upper part of the graph in the left part of the same Figure. It is worth
pointing out that all that is needed in this case is to connect output and input token boxes appropriately, and
to configure each MDFi with the name of the sequential Skeleton used. The smaller window on the right lower
corner is the one used to configure each node in the graph (that is, each MDFi). This GUI tool produces an
XML representation of the graph. Then, another Java tool produces the correct muskel code implementing the
macro data flow graph as a muskel ParCompute skeleton. As a result, users are allowed to extend, if required,
the skeleton set by just interacting with the GUI tool and “compiling” the graphic MDF graph to muskel code
by clicking on one of the buttons in the top toolbar.

As a final example, consider the code of Fig. 4.3. This code outlines how a new Map2 skeleton, performing
in parallel the same computation on all the portions of an input vector, can be defined and used. It is worth
pointing out how user-defined skeletons, once properly debugged and fine-tuned, can simply be incorporated in
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Fig. 4.3. Introducing a new, user-defined skeleton: a map working on vectors and with a fixed, user-defined parallelism degree.

the muskel skeleton library and used seamlessly, as the primitive muskel ones, but for the fact that (as shown
in the code) the constructor needs the manager as a parameter. This is needed so as to be able to link together
the macro data flow graphs generated by the compiler and those supplied by the user. It is worth noting that
skeletons such as a general form of Map are usually provided in the fixed skeleton set of any skeleton system
and users usually do not need to implement them. However, as muskel is an experimental skeleton system, we
concentrate the implementation efforts on features such as the autonomic managers, portability, security and
expandability rather than providing a complete skeleton set. As a consequence, muskel has no predefined map
skeleton and the example of user defined skeleton just presented suitably illustrates the methodology used to
expand the “temporary” restricted skeleton set of the current version of muskel depending on the user needs.
The Map2 code shown here implements a “fixed parallelism degree” map, that is the number of “workers” used
to compute in parallel the skeleton does not depend on the size of the input data. It is representative of a
more general Mapskeleton taking a parameter specifying the number of workers to be used. However, in order
to support the implementation of a map skeleton with the number of workers defined as a function of the input
data, some kind of support for the dynamic generation of macro data flow graphs is needed, which is not present
in the current muskel prototype.

4.2. Non-functional features. We briefly discuss here how annotations and aspect-oriented program-
ming techniques and mechanisms can be used to introduce convenient ways of expressing non-functional features
of parallel skeleton programs in muskel. Unlike the work discussed in the previous section, which has already
been implemented in the current muskel prototype, this is more on-going work. We have preliminary results
demonstrating the approach is feasible and we are currently working to transfer the experimental techniques to
the “production” muskel prototype.
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Fig. 4.4. AspectJ code modeling normal form in muskel.

In this context, let us consider as non-functional features all that is not related to the control flow that
the programmer needs to set up to compute the final program result. For instance, we consider as non-
functional features the necessity to secure code and data management in a program execution, the application
of optimization rules transforming the user-supplied program into an equivalent, possibly more efficient one, or
the hints given by programmers as to the features to exploit during the execution of the parallel skeleton code.

We wish to outline how these features can be implemented in the muskel framework using some innovative
programming techniques.

First consider security issues. When executing a muskel program on a network of workstations, it may
be the case that the workstations used happen to be in different local networks, possibly interconnected by
public, untrusted network segments. Also, it may be the case that the user running the program does not have
complete control of the machines used to run the remote data flow interpreter instances, and therefore cannot
exclude malicious user activity on the remote machines aimed at reading or modifying the program or the data
involved in the parallel program run. Therefore, it is appropriate to provide mechanisms that can be used in
the muskel support to authenticate and encrypt all the communications happening during a muskel program
run, both those relating to the transmission of the (serialized) program code and those relating to input and
output token communications. As an example, an ssl transport layer can be used instead of plain TCP/IP to
implement the muskel communications. However, the use of the ssl transport layer involves a communication
cost which is definitely higher than the cost involved in plain TCP/IP configurations (see results shown in §5).
Therefore, the user may wish to denote in the program which are the sensitive data or code segments that must
not be transmitted in clear on untrusted networks. Java annotations can be used to the purpose, as follows:

• the programmer annotates (using some @SensitiveCode and @SensitiveData annotations) those
Skeletons whose code must be properly secured and those data that must be kept secret;

• then the Manager, in the eval implementation may use reflection to access these annotations and to
process them properly. That is, in the case of Skeleton objects annotated as @SensitiveCode it
provides for distribution of the code using ssl tunnelled RMI, in the case of tasks/tokens annotated
as @SensitiveData it provides for invocation of remote compute execution again using ssl tunnelled
RMI, while in all other cases it uses plain RMI over unencrypted, more efficient TCP/IP connections.

Now consider a different kind of non-functional feature: source-to-source program optimization rules. For
example, let us consider our previous result on skeleton program normal form. Such result [3] can be informally
stated as follows: an arbitrary muskel program whose structure is a generic skeleton tree made out of pipelines,
farms and sequential skeletons may be transformed into a new, equivalent one, whose parallel structure is a farm
with each worker made up of the sequential composition of the sequential skeletons appearing in the original
skeleton tree taken left to right. This second program is the skeleton program normal form and happens to



336 MUSKEL: an expandable skeleton environment

Fig. 4.5. AspectJ code handling performance contracts in muskel.

perform better than the original one in the general case and in the same way in the worst case (this with
respect to the service time). As an example, the code of Fig. 3.1 can be transformed into the equivalent normal
form code: Skeleton main = new Farm(new Seq(f,g)); where Seq is basically a pipeline whose stages are
executed sequentially on a single processor.

In Lithium, normal form can be used by explicitly inserting statements in the source code. This means
that the user must change the source code to use the normal form or the non-normal form version of the
same program. Using AOP (and AspectJ, in particular) we can define an aspect dealing with normal form
transformation by defining a pointcut on the execution of the setProgram Manager method and associating to
the pointcut the action performing normal form transformation on the source code in the aspect, such as the
one of Fig. 4.4. As a consequence, the user can decide whether to use the original or the normal form version of
the program just by choosing the standard Java compiler or the AspectJ one. The fact that the program is left
unchanged means the programmer may debug the original program and have the normal form one debugged
too as a consequence, provided the AOP code in the normal form aspect is correct, of course. Moreover, if
normal form is handled by aspects as discussed above, it is better to handle also related features by means of
suitable aspects. For example, if the user provided a performance contract (a parallelism degree, in the simpler
case) and then used the AspectJ compiler to request normal form execution of the program, it turns out to be
quite natural to imagine a further aspect handling the performance contract consequently. Fig. 4.5 shows the
AspectJ code handling this feature. In this case, contracts are stored as soon as they have been issued by the
programmer, with the first pointcut, then, when normalization has been required (second pointcut) and program
parallel evaluation is required, the contract is handled consequently (third pointcut); in this case it is either left
unchanged or a new contract is derived from the original one according to some normal form related procedure.

At the moment we are experimenting with both annotations and AOP techniques to provide the muskel

programmer with better tools supporting more and more possibilities to customize parallelism exploitation in
muskel programs.
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Fig. 4.6. muskel performance versus number of remote interpreters on a homogeneous cluster. Left) Efficiency of SyntApp

for several computation grains. Right) Speedup of ImgFilter2 compared with ideal speedup.

In particular, we have investigated the possibility of relieving the programmer of the need to specify farm
skeletons at all. Instead of declaring farm skeletons, programmers may simply annotate as @Parallel the
Skeleton objects and the run time support directly manages to transform calls to the compute methods of such
objects into farms [17]. This is not a completely new technique, but it can be used to evaluate the effectiveness of
the approach, compared both to the original muskel farm handling and to a similar approach defining Skeleton

objects to be computed in parallel in a farm by properly setting up a farm aspect with actions establishing task
farm like computation patterns upon the invocation of the Skeleton compute method.

5. Experimental results. We ran some experiments aimed at validating the muskel prototype supporting
user defined skeletons. The results shown refer to two applications. SyntApp is a synthetic application processing
1K distinct input tasks and designed in such a way that the macro data flow instructions appearing in the graph
had a precise “average grain” (i. e. average ratio among the time spent computing the instruction at the remote
interpreter and the time spent communicating data to and from the remote interpreter, G = Tw/Tc). ImgFilter2

is an image processing application based on the pipeline skeleton, which applies two filters in sequence to 30
input images. All input images are true-color (24 bit color depth) of 640x480 pixels size. ImgFilter2 basically
applies “blur” and “oil” filters (available at http://jiu.sourceforge.net) from the Java Imaging Utilities in
sequence as two stages of a pipeline. Note that these are area filter operations, i. e. the computation of each
pixel’s color does not only impact its direct neighbours, but also an adjustable area of neighboring pixels. By
choosing five neighboring pixels in each direction as filter workspaces, we made the application more complex
and enforced several iterations over the input data within each pipeline stage, which makes our filtering example
a good representative of a compute intensive application [5].

Two types of parallel platforms are used for experimentation. The first is a dedicated Linux cluster at
the University of Pisa. The cluster hosts 24 nodes: one node devoted to cluster administration and 18 nodes
(P3@800MHz) exclusively devoted to parallel program execution. The second is a grid-like environment, in-
cluding two organizations: the University of Pisa (di.unipi.it) and an institute of the Italian National Research
Council in Pisa (isti.cnr.it). The server set is composed of several different Intel Pentium and Apple Pow-
erPC computers, running Linux and Mac OS X respectively (the detailed configuration is shown in Figure 5.1
left). In this case traditional measures like efficiency and speedup versus number of machines cannot be used
due to the machines’ power heterogeneity. To take the varying computing power of different machines into
account, the performance increase is documented by means of the BogoPower measure, defined as the sum of
individual BogoPower contributions of machines participating in the application run. The BogoPower of each
machine is measured in terms of tasks/s the sequential version of the application can compute on the machine.
BogoPower enables the comparison between an application’s actual parallel performance and the application’s
ideal performance for each run [5].

Figure 4.6 summarizes the typical performance results of the enhanced interpreter. The left plot is relative
to runs of SyntApp on the homogeneous cluster. The experiment shows that, in case of low grain, muskel
rapidly loses efficiency with the number of machines involved in the computation. When the grain is high
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Fig. 5.1. muskel performance on a grid-like testing environment. Left) Description of platforms in the testing environment
(machine-type, Bogopower). Right) Completion time of ImgFilter2

enough (G = 200 or more) the efficiency is definitely close to the ideal one. The right plot shows the speedup
of ImgFilter2 on the same homogeneous cluster, instead.

Figure 5.1 right plots the completion time of ImgFilter2 executed on an heterogeneous network of Linux/Pen-
tium and MacOsX PowerPC machines, whose relative performance is shown in the left part of the same Figure.
The measured completion times show the same shape as the theoretical ones, confirming that the muskel run
time efficiently and automatically balances the load when different (with respect to computing power) resources
are used to allocate the muskel distributed macro data flow interpreter.

In addition to the evaluation of the scalability of the muskel prototype, we also have taken into account the
possibility of using different mechanisms to support distributed data flow interpreter execution. We implemented
several versions of muskel on top of ProActive [29], each exploiting different mechanisms, primitive to the
ProActive library, to deploy and run remote macro data flow interpreter instances. In particular, we used
ProActive XML deployment descriptors as well as RMI ssh tunnelling. When possible, we exploited the option
to pre-allocate JVMs running the remote interpreter instances on the remote processing elements, to speed up
program startup. The results showed that in the case where the remote JVMs are preallocated, the performance
is definitely comparable to the performance of plain muskel. In the case of use of RMI tunelling through ssh,
however, larger grain macro data flow instructions (close to 10 times larger grain) are needed to achieve almost
perfect speedup.

As discussed in §3, appropriate security mechanisms, defined using Java 1.5 annotations, should be used to
guarantee that data and code moved to and from the remote data flow interpreter instances are kept confidential
and that intruders cannot use remote data flow interpreter instances to execute non-authorized macro data flow
code. We conducted some experiments to evaluate the effectiveness of introducing selective security annotations
in the code. We prepared a stripped muskel prototype version, using ssl to secure interaction between the main
code running on the user machine and the remote data flow interpreter instances. With the muskel prototype
exploiting ssl [34], we managed to measure the scalability penalty paid to introduce security. We verified
that “secure” muskel scales close to ideal values when using up to 32 nodes for the remote macro data flow
interpreter instances, similarly to plain muskel. However, due to the encrypting/decrypting activity taking place
at the sending/receiving nodes, larger (i. e.more compute intensive) macro data flow instructions are required
to achieve ideal scalability (see Figure 5.2 left). Also, we measured the load distribution in runs involving
half “secure” and half “non-secure” remote interpreter instances. Communications with the secure interpreter
instances are performed using plain TCP/IP, while communications with the non-secure ones are performed
using SSL. With higher and higher amounts of data transferred to and from the remote interpreters more and
more computation is performed on the secure nodes. This is due to the auto scheduling strategy of muskel
that always dispatches computations to the free remote interpreter instances. As more data is transmitted,
more time is spent securing communications through SSL and more time is spent computing a single MDFi.
Therefore less MDFi are actually executed at the non-secure nodes (see Figure 5.2 right). The results shown
are perfectly in line with what is stated in §4: securing muskel communications is quite costly and therefore it
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Fig. 5.2. Effect of providing security in the distributed data flow interpreter: scalability of the muskel prototype using plain
TCP/IP sockets vs. the one using SSL for different computational grains. W represent the average time spent computing a single
MDFi, C the average amount of data sent/received to/from remote processing elements to compute the single MDFi

is better to avoid securing communications not involving sensitive data and/or code. And this can be done by
exploiting the annotation mechanisms just outlined in §4. Further details concerning security issues in muskel

are discussed in [4].

6. Related work. Macro data flow implementation for the algorithmical skeleton programming environ-
ments was introduced by the authors in the late 90’s [15] and subsequently has been used in other contexts
related to skeleton programming environments [31]. Cole suggested in [13] that “we must construct our sys-
tems to allow the integration of skeletal and ad-hoc parallelism in a well defined way”, and that structured
parallel programming environments should “accommodate diversity”, that is “we must be careful to draw a
balance between our desire for abstract simplicity and the pragmatic need for flexibility”. Actually, his eSkel
[9, 14] MPI skeleton library addresses these problems by allowing programmers to program their own pecu-
liar MPI code within each process in the skeleton tree. Programmers can ask to have a stage of a pipeline
or a worker in a farm running on k processors. Then, the programmer may use the k process communica-
tors returned by the library for the stage/worker to implement its own parallel pipeline stage/worker process.
As far as we know, this is the only other attempt to integrate ad hoc, unstructured parallelism exploita-
tion in a structured parallel programming environment. The implementation of eSkel, however, is based on
process templates, rather than on data flow. Other skeleton libraries, such as Muesli [23, 24, 26], provide
programmers with quite extensive flexibility in skeleton programming following a different approach. They
provide a number of data parallel data structures along with elementary, collective data parallel operations
that can be arbitrarily nested to get more and more complex data parallel skeletons. However, this flexi-
bility is restricted to the data parallel part, and it is, in any case, limited by the available collective opera-
tions.

CO2P3S [25] is a design pattern based parallel programming environment written in Java and targeting
symmetric multiprocessors. In CO2P3S, programmers are allowed to program their own parallel design patterns
(skeletons) by interacting with the intermediate implementation level [10]. Again, this environment does not
use data flow technology but implements design patterns using proper process network templates.

JaSkel [21] provides a skeleton library implementing the same skeleton set as muskel. In JaSkel, however,
skeletons look much more like implementation templates, according to the terminology used in §2. However,
it appears that the user can exploit the full OO programming methodology to specialize the skeletons to his
own needs. As the user is involved in the management of support code too (e.g. he has to specify the master
process/thread of a task farm skeletons) JaSkel can be classified as a kind of “low level, extensible” skeleton
system, although it is not clear from the paper whether entirely new skeletons can be easily added to the system
(actually, it looks like it is not possible at all).

There are several works proposing aspect-oriented techniques for parallel programming. [22] discusses an
approach using AOP to separate concerns in scientific code. In [33, 32] a use of AOP is proposed aimed at
separating the concerns of partitioning and distributing data and performing concurrent computations. This is
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far from the usage we think to make of AOP techniques in this work, however, in that it requires a much more
“template oriented” approach with respect to the one followed in muskel.

7. Conclusions. We discussed muskel, a full Java, parallel programming library providing users with the
possibility to use skeletons to structure their parallel applications and exploiting macro data flow implemen-
tation technology. We discussed how muskel supports expandability of the skeleton set, as advocated by Cole
in his “manifesto” paper [13]. In particular, we discussed how muskel supports both the introduction of new
skeletons, modeling parallelism exploitation patterns not originally covered by the primitive muskel skeletons,
and the introduction of non-functional features, i. e. features related to parallel program execution but not
directly related to the functional computation of the application results. The former possibility is supported
by allowing users to define new skeletons providing the arbitrary data flow graph executed in the skeleton and
by allowing muskel to seamlessly integrate such new skeletons with the primitive ones. The latter possibility
is supported by exploiting more innovative programming techniques such as annotations and aspect-oriented
programming. This second part is under development, while the first is already available in the muskel proto-
type.

We also presented experimental results validating the whole muskel approach to expandability and cus-
tomizability of its skeleton set. As far as we know, this is the most significant effort in the skeleton community
to tackle problems deriving from a fixed skeleton set. Only Schaeffer and his group at the University of Alberta
implemented a system were users can, in controlled ways, insert new parallelism exploitation patterns in the
system [10], although the approach followed there is a bit different, in that users are encouraged to intervene
directly in the run time support implementation, to introduce new skeletons, while in muskel new skeletons
may be introduced using the intermediate macro data flow language as the skeleton “assembly” language.

Finally, we discussed how relatively new programming techniques, including annotations and AOP, can be
usefully exploited in muskel to support details and features related to parallel program execution.

Preliminary versions of muskel have been released under GPL and are currently available on the muskel
web site at htpp://www.di.unipi.it/~marcod/muskel. The new version, supporting the features discussed in
this paper, is currently being developed. The support for new skeletons is already completed (and it is available,
as a beta release, on the web site) and the other features will be released soon.
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