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PERFORMANCE OF A LU DECOMPOSITION ON A MULTI-FPGA SYSTEM

COMPARED TO A LOW POWER COMMODITY MICROPROCESSOR SYSTEM∗

T. HAUSER† , A. DASU‡ , A. SUDARSANAM‡ , AND S. YOUNG‡

Abstract. Lower/Upper triangular (LU) factorization plays an important role in scientific and high performance computing.
This paper presents an implementation of the LU decomposition algorithm for double precision complex numbers on a star topology
based multi-FPGA platform. The out of core implementation moves data through multiple levels of a hierarchical memory system
(hard disk, DDR SDRAMs and FPGA block RAMS) using completely pipelined data paths in all steps of the algorithm. Detailed
performance numbers for all phases of the algorithm are presented and compared to a highly optimized implementation for a low
power microprocessor based system. We also compare the performance/Watt for the FPGA and the microprocessor system. Finally,
recommendations will be given on how improvements of the FPGA design would increase the performance of the double precision
complex LU factorization on the FPGA based system.
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1. Introduction. High-performance reconfigurable computers (HPRC) [20, 5] based on conventional pro-
cessors and field-programmable gate arrays (FPGAs) [31] promise better performance, especially when taking
the power consumption into account. Recently, HPRCs have shown orders of magnitude improvements in
performance, e.g. power and speed, over conventional high-performance computers (HPCs) in some compute
intensive integer applications but showing similar success on floating point based problems has been limited [32].

Scientific computing applications demand double-precision arithmetic because of numerical stability and
large dynamic range requirements. Solving linear systems and linear algebra plays an important role in scientific
and high performance computing. The LAPACK library [1, 2, 10, 12, 13, 36, 3, 7] is a high quality library of
linear equation solvers and considerable work has been done to achieve very good performance on different high
performance computing platforms. The introduction of hierarchical memory systems, which feature multiple
levels of cache storage with different sizes and access speeds, has tended to degrade the performance of these
linear algebra routines compared to the peak performance. Obtaining good performance with such systems
required the formulation of those algorithms in terms of operations on blocks, so that cache misses could be
minimized [16].

The goal of this paper is to benchmark and compare the performance of a block based algorithm on a HPRC
platform to a highly optimized implementation on a commodity microprocessor. and provide suggestions for
the improvement of the FPGA platform to better support floating point linear algebra algorithms. Our work
is based on the algorithms described in [10] which is adapted to a specific class of HPRCs. Hardware-based
matrix operator implementation has been addressed by several researchers. Ahmed El-Amawy [15] proposes a
systolic array architecture consisting of (2N2

− N) processing elements which computes the inverse in O(N)
time, where N is the order of the matrix. However, there are no results to show that the large increase in area
(for large values of N) is compensated by the speed of this implementation.

Power efficiency is a critical issue in current high performance computing facilities and a critical issue for
developing cost effective small-footprint clusters [22] as it directly influences the cooling requirements of each
cluster node and of the overall cluster rack and server room layout. A 48 core, low power cluster [29], designed
to run on 20 Amp electric circuit, is an example of per-node low power requirements. Each of our quad-core
processor nodes consumes approximately 78 Watts during normal operation under our group’s cluster workloads.
We describe the design and implementation of the LU factorization algorithm for a double precision complex
matrix on a HPRC system and compare it to a highly tuned implementation for a commodity microprocessor.
The matrices considered for the factorization are so large that the factorization has to be performed out of core
on the FPGA system. In addition to comparing the wall clock times, power efficiency of the FPGA versus the
microprocessor using the millions of floating point operations per Watt (MFlops/Watt) metric is provided.

The paper is structured as follows. Section 2 describes the general multi-FPGA system architecture the
algorithm is designed for and the details of the Starbridge HC-62 system. Section 3 presents an overview of the
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Fig. 2.1. Star topology based multi-FPGA system with four FPGAs

algorithm used and how it is mapped on the HPRC architecture. In Sections 4 and 5 we discuss the benchmark
results and compare it to the commodity microprocessor implementation. Section 6 presents an overview over
related work for floating point computation on HPRC architectures and Section 7 provides the lessons learned
from this implementation.

2. Multi-FPGA system architecture.

2.1. Star networked FPGAs with external storage. The hardware system topology we have con-
sidered for analysis and mapping of the LU factorization algorithm is the Star Network Topology. We assume
that in this topology, multiple FPGA devices can communicate to a central host microprocessor through a
concentrator/router FPGA. In addition, each FPGA is assumed to have its own local external storage such as
DRAM chips. We refer to this structure henceforth as “Star Networked FPGAs with Local Storage” or SNFLS
topology. Figure 2.1 shows a SNFLS systems with four compute FPGAs (PE2-PE5) with locally attached
DRAM, one router FPGA and the host system. Several variations in the topology, such as the manner how
physical memory devices are distributed across FPGAs, how the accelerator FPGA board is connected to a host
system, etc. can have impacts on the performance of a system.

2.2. Starbridge HC-62 system. The system used for the implementation and benchmarks contains a
HC-64 board from Starbridge systems, consisting of eight programmable FPGAs, attached to a host PC with
an Intel x86 processor. There are two FPGA chips that are used for interface functions. The first is an Xpoint
switch chip, and the second is a primary function chip, PE1. The Xpoint FPGA provides a link between the
other FPGAs and the PCI bus. It provides a 256-bit fully populated synchronous cross-point router with each
of the four FPGA elements PE2 through PE5 at 82.4 Gigabits/second. The four FPGAs are connected through
a 128-bit data bus to the Xpoint and PE1 chips, and each contain two 128-bit serial multiplier objects. A group
of four FPGA connected together with 50-bit parallel lines is called a quad group. Each quad group is internally
connected with a 50-bit exclusive chip to chip bus at 96.6 gigabits per second. The memory chips attached to
each PE are arranged in four banks around the chip. The main memory is made up of 8-72 Gigabytes SDRAM
modules, with a bandwidth of 95 Gigabytes with 36 independent 64 bit ports. Each PE is a Xilinx Virtex-II
chip. It consists of 33,792 slices, with each slice consisting of 2 Flip-Flops (FFs) and 2 Look-Up Tables (LUTs).
The chip also contains 144 18x18 ASIC multipliers and 144 Block RAMs (BRAMS) and each RAM contains
18K bits of memory.

3. Matrix Factorization implementation for a multi-FPGA system.

3.1. Block-partitioned LU factorization algorithm. The LU factorization applies a sequence of Gaus-
sian eliminations to form A = LU , where A, L and U are N×N matrices. Note, that in our algorithm a
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permutation matrix is not necessary, since all matrices from the problem addressed are diagonally dominant
and the condition number of our matrices is of O(1). L is a unit lower triangular matrix with 1’s on the main
diagonal, U is an upper triangular matrix. Our algorithm is applied recursively by partitioning the matrix A(k),
which is a n×n submatrix of size n = N − (k−1) ·nb at the k-th step into four blocks, where nb is our blocking
size.
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The use of the inverse of L
(k)
11 is more efficient according to Ditkowski [11], since the condition number

of our matrices is always of O(1).
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The LU factorization is completed when the matrix A(k) becomes so small that only step 1 is left to
compute.

3.2. Mapping of the LU algorithm onto a multi-FPGA system. The SNFLS architecture as shown
in Figure 2.1 is particularly suited for the block-based dense matrix LU factorization, as this algorithm has no
need for inter-block communication in any of the sub-steps. Input data can be loaded into each of the DRAMs
and processed and written back to the host. By analyzing the algorithm, it can be observed that there is data
re-use at both the intra-block as well at the inter-block level. Therefore, a set of blocks can be initially loaded
onto the DRAMs from PC memory and one block can be loaded onto an FPGA’s BRAM for execution. We
assume that most of the data resides on the hard disk of the host microprocessor, and these storage devices are
slow, since they need to communicate with FPGA DRAMs through the PCI-X bus. The data is first transferred
from hard disk to host processor memory. Then it is routed through the host-FPGA bus and saved on each
FPGA’s DRAM.

The top level control flow can be handled by the host processor which will split the matrix into multiple
parts for each step. On-chip memory of the host processor can be used as a buffer to handle the difference in
the speed of data transfer between Host’s-Hard Disk and an FPGA. Data transfer between off-chip DRAM and
the FPGA is modeled as a sequence of I/O operations. During a single I/O operation, a block of data can be
transferred from off-chip DRAM to the FPGA. This block is of size nb×nb, where nb is the block size in the LU
decomposition algorithm. The value of nb should be chosen so that the amount of data transferred is neither
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too small, nor too large. A too small value of nb is wasting opportunities for parallelism whereas a too large
value will exceed the capacity of the DRAM.

When data is transferred from host memory to DRAM, one of the factors that can limit the amount of data
transferred per I/O operation is the DRAM size. Information about the latency of transferring data from host
memory to DRAM should be used while scheduling the various operations.

The proposed design outlines the order in which the various blocks of data are transferred from/to the host
memory to/from the FPGA board. The number of blocks transferred will depend on the DRAM size associated
with each FPGA. The following sequence of control steps determines the order of their access.

For the case of a single-FPGA accelerated system, a basic block of size nb × nb forms the input and the
module corresponding to the algorithm in which a single block is processed needs to be realized in FPGA
hardware. In the proposed approach, data path units found inside the inner-most loop are identified and these
units are replicated as many times as possible on a given FPGA device. The number of parallel instances is
limited by resource availability of a single FPGA, as the proposed design limits the processing of a single block
of data to be performed within a single FPGA. This constraint is added so that the data transfer logic can be
localized to a single FPGA permitting easy scalability if more FPGAs are added to the system, but topology is
retained.

From preliminary investigation, it was concluded that a single moderate size FPGA (such as a Xilinx Virtex
2-6000) can provide some amount of data path parallelism if the data types are single precision and real. But
even these expensive devices do not have sufficient resources to support data path parallelism within a chip if the
data types are complex and double precision floating point. In such cases since intra-block parallelism is limited,
there is a need to extract inter-block parallelism by using multiple FPGAs to execute several blocks in parallel.

For effective use of all three levels of memory in the system, initial data is assumed to be stored in the hard
disk that is connected to the host processor. Each FPGA contains block RAMs (BRAMS) that form the first
level of the memory hierarchy and provide seamless bandwidth to computation modules on the device. Resource
utilization of BRAMs depends on multiple factors that include block size, amount of parallelism required, data
type etc and is limited by the amount of on-chip memory available. Off-chip DRAMs form the second level of
memory hierarchy and bandwidth between compute engine and DRAM is limited by the interconnection between
FPGA and DRAM. Hard disks (connected via the host computer) form the third level in memory hierarchy.

Since the matrices generally are so big that computing the LU decomposition on a single PE is prohibitively
expensive, the different steps are distributed onto several FPGAs so don’t processing can take part in parallel.
Steps 1 is processed on the host PC since it is only computed once and then the result is distributed to the
different FPGAs. Figure 3.1a shows how steps 2 and 3 can be mapped to multiple FPGAs. Half of the FPGAs

are assigned to process the submatrix A
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21 . This matrix is than partitioned in as many parts as FPGAs are
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4. Benchmarking results of a double-precision complex LU decomposition. We implemented the
algorithm described in Section 3 using Viva 3.0. Viva, developed by Starbridge systems, is a graphic-based hard-
ware design tool to generate and synthesize the hardware designs for the LU decomposition algorithm. Xilinx
mapping and place-and-route tools were used to generate the bit streams for the designs that then were loaded
onto the target hardware platform. Our implementation was benchmarked on a Starbridge Hypercomputer
board HC-36 (see Section 2.2). Although the IP cores for individual arithmetic units can be clocked at 100MHz
or higher, the vendor caps the board to run only at 66MHz. Matrix sizes varied from 1000x1000, 2000x2000,
4000x4000 and 8000x8000. Each element in once of the matrices is a 64-bit double precision (52- mantissa;
11-exponent; 1-sign) complex number. In the discussion of the performance result the following four phases in
the computation are differentiated:

1. Reconfiguration: The FPGA needs to be reconfigured for each of the four steps of the LU factorization.
2. FPGA processing: This time includes the transfer from DRAM to BRAM and all computational pro-

cessing on the FPGA and the transfer back to DRAM.
3. PC to DRAM: This time describes the time takes to transfer data from the host PC to the DRAM of

the FPGA accelerator.
4. DRAM to PC: This is the time it takes to transfer the data back to the PC.
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(a) Step 2 and Step 3 mapping to multiple FPGAs (b) Step 4 mapping to multiple FPGAs

Fig. 3.1. Mapping of different steps of the algorithm to multiple FPGAs

Fig. 4.1. Wall clock times for the different phases of the LU implementation for increasing problem sizes N on one FPGA
shown on a log scale (nb = 1)

4.1. Performance depending on problem size. In Figure 4.1, run-times for several problem sizes are
compared for each of the different phases of the algorithm. The run times are displayed on a logarithmic scale
because otherwise it would be difficult to recognize the small contributions of the reconfiguration, PC to DRAM
transfer and DRAM to PC phases to the overall time of the algorithm.

In Figure 4.1 the overall dominating time is the processing time in the FPGA. The reconfiguration time
doubles from 19.05 seconds to 38.25 and to 76.65 when doubling the problem size, because the number of
reconfigurations scales linearly with the problem size. The processing time scales with O(N3) as seen from the
timing results. Also, the processing time scales much faster with the problem size then the memory transfer
times and the reconfiguration time. Figure 4.1 clearly demonstrates that the dominating time on the FPGA
system is the “FPGA processing” time.
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4.2. Performance Depending on Block Size. The block size nb is an important parameter of the
block partitioned LU factorization algorithm. This parameter determines how big the pieces are the FPGA can
process on. In Figure 4.2, the influence of different block sizes nb on the performance is shown.

Fig. 4.2. Wall clock times of different phases of the LU implementation for increasing block size nb on one FPGA (N = 8192)

The block size nb cannot be increased above 64 because of the limitation on the number of block RAMs on
the used FPGA. Increasing the block size increases the performance of the algorithm not only in the compute
engine but it also reduces the number of blocks transferred and the number of reconfigurations. These are
overhead operations which do not contribute to the overall progress of the computation but are necessary for
the implementation of the algorithm.

4.3. Performance depending on number of FPGAs. In Figure 4.3 the wall clock times for the
different phases of the LU algorithm are presented, when the number of FPGAs is increased.

Similar to figure 4.1, the dominating time is the processing time in the FPGA. The memory transfer time
stays constant because of the the star topology of the hardware. All data has to go through the PCI bus
to the DRAM of the individual FPGA. Therefor no speedup can be achieved for the memory transfer. The
reconfiguration time actually increases when the number of FPGAs is increased.

The speedup S, defined as

S =
Ts

T n
p

, (4.1)

is given in table 4.1. Ts is the time on a system with one FPGA and T n
p is the time of the parallel algorithm

on n FPGAs. The result show that the overall speedup does not scale linearly with increasing the number of
FPGAs. While performance on each FPGA is highly deterministic, one can and correctly expect a linear scaling
in speedup if only FPGA processing times are inspected. But because of the overhead of the data transfer and
reconfiguration the speedup is reduced significantly.

Table 4.1

Speedup computed from increasing the number of FPGAs for block size 64, matrix size 8192

1 FPGA 2 FPGAs 4 FPGAs

Overall time 3870.24 2484.06 1862.41
Speedup overall time - 1.55 2
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Fig. 4.3. Wall clock times of the LU decomposition using 1, 2 and 4 FPGAs for processing in log scale

Table 5.1

Comparison of wall clock time between Intel®Xeon®X3210 microprocessor and FPGA implementation with block size = 64

CPU 1 CPU 2 CPU 4
Size 1 thread FPGA 2 threads FPGAs 4 threads FPGAs

1024 0.499 13.56 0.249 16.24 0.318 26.03
2048 3.767 72.95 1.896 61.67 1.066 73.47
4096 29.49 505.7 14.862 348.74 8.021 305.69
8192 232.8 3870.24 117.2 2484.06 61.73 1862.41

5. Performance comparison to a commodity microprocessor.

5.1. Microprocessor based system architecture and LU implementation. For comparison the per-
formance and power consumption was measured on a low power commodity CPU cluster which was specifically
designed to run on a single 20A 110V circuit [29]. Since the problem sizes considered are relatively small a single
compute node of this cluster was used to get the performance numbers for the microprocessor based system.
The compute node consists of the following components:

• Quad-Core Intel®Xeon®X3210 processors
• 8 Gigabytes RAM
• 4 Gigabit ports
• No Hard Drive

The implementation of the LU decomposition on the cluster node uses the Intel®MKL library version
9.1 [23], specifically the LAPACK routine “zgetrf”. This library is highly optimized for Intel®processors and
provides highly scalable implementations for multiple threads.

5.2. Wall clock time comparison between FPGA and microprocessor based system. The bench-
mark results are summarized in Table 5.1.

These results show that the microprocessor has a performance advantage of about 30 times. The perfor-
mance of the FPGA implementation could be improved by a factor of two by switching from the floating point
objects provided by VIVA to Xilinx Coregen IP cores (see also section 5.3).

5.3. System performance modeling. To estimate impacts of changes of system parameters, e.g. in-
terconnect bandwidth, or changes of the FPGA hardware, we have also developed a performance model. This
section discusses in short some of the results obtained through the performance model, when using a more
advanced FPGA platform. Our performance model contains a set of system parameters which can be obtained
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Fig. 5.1. LU timing results for Virtex-II 6000 and Virtex-4 LX160 from our performance model

for any FPGA from their respective data-sheets. Hence, our model can be extended to support any multi-FPGA
platform. Here we compare the performance model result for a Xilinx Virtex-4 LX160 FPGA with the overall
timing results from our benchmark platform using Xilinx Virtex-II 6000 FPGAs. For each target FPGA the
number of data paths, P , is set such that the resource utilization of the FPGA is maximum. We found P = 5
for the Virtex-4 and P = 1 for the Virtex-1 device. In addition we included the effect of switching from the
floating point objects provided by the Viva Corelib to the Xilinx IP Coregen library in our performance model
results.

Figure 5.1 shows the comparative results for the two target platforms for different values of the problem
size, N and a blocking size of b = 16. It is seen that the Virtex-4 implementation is almost four times faster
than the Virtex-II implementation. There is a two-fold increase. One is due to the larger slice count available
and the other is use of a better design library.

5.4. Power consumption.

5.4.1. Power consumption of FPGA board. Table 5.2 shows the power consumption of the FPGA
board alone. It shows that there is an increase of power consumption with the number of FPGAs used in the
computation and the block size.

5.4.2. Power consumption of FPGA system. The overall system, consisting of the host PC and the
FPGA board, has a power consumption profile as shown in Table 5.3. An interesting observation is the power
consumption for larger problem sizes which seems to go down with the block size nb. Especially for the largest
test case of 4096× 4096 elements the increase in block size shows a reduction in power by ten Watts.

5.4.3. Power consumption microprocessor based system. For comparison the power consumption
was measured on the low power commodity cluster using one, two and four threads as also shown in Table 5.4.
Since there are two compute nodes in one 1U chassis, it was not possible to measure the power consumption
of just one compute node. So the same benchmark was run on each of the two compute nodes within one
chassis, and the power consumption measured was divided by two to obtain the result for one compute node.
Therefor, one chassis was plugged into a separate circuit, and the power was measured using a power analyzer
called Watts UP. The results showed that a single node has the following power consumption irrespective of
problem size:
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Table 5.2

FPGA board power consumption

Problem size N block size nb number of FPGAs Power

1024 32 1 1.23
1024 32 2 2.70
1024 32 4 6.19

1024 64 1 1.28
1024 64 2 2.85
1024 64 4 6.24

2048 32 1 1.82
2048 32 2 3.04
2048 32 4 6.68

2048 64 1 1.67
2048 64 2 3.29
2048 64 4 6.97

4096 32 1 2.01
4096 32 2 3.73
4096 32 4 7.07

4096 64 1 1.87
4096 64 2 3.63
4096 64 4 7.27

Table 5.3

The Hypercomputer HC System power consumption.

Problem size N block size nb number of FPGAs Power

1024 32 1 18.88
1024 32 2 24.78
1024 32 4 27.14

1024 64 1 23.60
1024 64 2 27.14
1024 64 4 30.68

2048 32 1 17.70
2048 32 2 23.60
2048 32 4 31.68

2048 64 1 14.16
2048 64 2 22.42
2048 64 4 27.14

4096 32 1 16.52
4096 32 2 25.96
4096 32 4 35.40

4096 64 1 10.62
4096 64 2 16.52
4096 64 4 25.96

5.5. Performance per Watt comparison between FPGA and microprocessor based system.

From figure 5.2, we can observe that for smaller problem sizes, the performance/watt of the Quad core system
is far superior to the Hypercomputer system, because the commodity x86 host processor in the HC system
dominates the power consumption. But for larger problem sizes, this inequality tends to reduce but not by
much. On the other hand, when one considers only the FPGA board, its performance/watt is significantly
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Table 5.4

The Hypercomputer HC System power consumption.

Operating conditions of compute node Power (Watts)

idle 75.5
boot up 131

1 thread benchmark run 113.5
2 thread benchmark run 138.5
4 thread benchmark run 176.5

Fig. 5.2. Performance/watt comparison of FPGA board and FPGA system with respect to a low power Quad core Xeon
system for various matrix sizes

superior compared to the Quad core system. This can be attributed to the extremely low power consumption
of the FPGA devices. These results show that even for a cluster which was specifically designed for low power
usage the FPGA system has a clear power advantage.

6. Related and complementary work. Hardware-based matrix operator implementation has been ad-
dressed by several researchers. Ahmed-El Amawy [15] proposes a systolic array architecture consisting of
(2N2−N) processing elements which computes the inverse in O(N) time, where N is the order of the matrix.
However, there are no results to show that the large increase in area (for large values of N) is compensated for
by the benefits obtained in speed by this implementation.

Lau et. al [25] attempt to find the inverse of sparse, symmetric and positive definite matrices using designs
based on Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) architec-
tures. This method is limited to a very specific sub-set of matrices and not applicable for a generic matrix and
hence has limited practical utility. Edman and Owall [14] also targeted only triangular matrices.

Choi and Prasanna [8] implement LU decomposition on Xilinx Virtex II FPGAs (XC2V1500), using a
systolic array architecture consisting of 8/16 processing units. This work is extended to inversion and supports
16-bit fixed point operations.
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Data et. al [9] propose a single and double precision floating point LU decomposition implementation based
on a systolic array architecture described in [8]. The systolic array architecture is a highly parallel realization
and requires only a limited communication bandwidth. However, every element in the systolic array needs to
have local memory and a control unit in addition to a computation unit, which adds significant overhead.

Wang and Ziavras [34] propose a novel algorithm to compute a LU decomposition for sparse matrices. This
algorithm partitions the matrix into smaller parts and computes LU decomposition for each of them. The
algorithm to combine the results makes use of the fact that most of the sub-blocks of the matrix would be zero
blocks. However, this method cannot be extended to find LU decomposition for dense matrices.

Research efforts towards parallel implementations of LU decomposition largely deal with sparse linear
systems. In some cases these implementations make use of a software package called SuperLU DIST, which
may be run on parallel distributed memory platforms [26, 30]. Other work using similar software package
routines are found in [17]. A common platform that has been used for sparse matrix systems involving LU
factorizations is the hypercube [4, 6]. Other implementations involving parallel LU linear system factorization
and solutions may be found in [18, 24, 34, 35].

As the number of logic elements available on FPGAs increase, FPGA based platforms are becoming more
popular for use with linear algebra operations [19, 33, 37]. FPGA platforms offer either a distributed memory
system or a shared memory system with large amounts of design flexibility. One such design, presented in [19],
utilizes FPGA based architecture with the goal of minimizing power requirements.

Any application implemented on an FPGA that uses external memory must provide some means of control-
ling the memory structure to store/access memory in an efficient manner. A common application that requires
control of external memory is image processing. One group from Braunschweig, Germany has designed an
SDRAM controller for a high-end image processor. This controller provides fixed address pattern access for
stream applications and random address pattern access for events like a cache miss [28]. Another image process-
ing application being worked on by a group from Tsinghua University in Beijing utilizes a memory controller
specifically designed to reduce the latency associated with random access of off chip memory [27]. A design
made to handle multiple streams of data was made by a group from the University of Southern California and
the Information Sciences Institute. In this design each port in the data path as a FIFO queue attached to
it. These data paths are also bound to an address generation unit used to generate a stream of consecutive
addresses for the data stream [21].

The design presented in this paper is similar to the above mentioned work in the fact that it must both
fetch and write data to an external memory device. However, in terms of complexity, the design in this paper is
much simpler in that it provides specific streams of data at specific times for the LU processing engine. In such
light it is not very flexible. However, simplicity has worked to the advantage that the design is easily replicated
across multiple processing nodes. Another advantage that comes with simplicity is the low resource count the
memory controllers take - roughly 13% of the available FPGA slices. This leaves much more room for the LU
processing engine than a more complex design would.

7. Conclusion. In this paper we have presented detail performance numbers of a block based LU factor-
ization algorithm on a multi FPGA system and compared the performance to a low power cluster compute node.
The benchmarking results show that measured by raw compute performance the commodity microprocessor out
performs the FPGA system by a factor of 30 for the current implementation and by 15 by moving to Xilinx
Coregen IP cores. This is definitely an effect of the higher clock frequency and the floating point hardware on
the microprocessor.

The performance picture changes when comparing the performance/Watts metric. Comparing the MFlops/
Watt for the FPGA board, the FPGA board outperforms the low power microprocessor. This is similarly and
effect of the lower clock frequency of the FPGA components. In the case of the complete HC system, which
was not designed for low power usage, the host microprocessor system consumes most of the power and the
power advantage of the FPGA board is lost. This shows that for a low power system the host system has to
be a very low power system. This can be done since the host system does not have to perform any expensive
computational tasks, but only needs to interface to disks and the FPGA board. Therefore, a really low power
system could be used which would improve the performance of the FPGA based system dramatically.

During the design and benchmarking several weaknesses of the HPRC system and the FPGAs for scien-
tific computing were uncovered. The following recommendations are proposed towards building better FPGA
hardware for linear algebra and scientific computing:
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• Single precision and double precision embedded ASICs in an FPGA system could increase the perfor-
mance of FPGAs for scientific computing dramatically.
• Parallel access to BRAMs would enable better performance of the LU algorithm.
• Increasing the block size nb in our implementation is limited by number of BRAMs on the FPGA chip,

but the performance benchmarks show that increasing the block size, increases the performance of the
compute intensive part of the algorithm. Therefore, increasing the number of BRAMs on the FPGA
would increase the performance for our LU implementation.
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