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MULTI-TARGET VITAL SIGN DETECTION BY FUSION OF BIOLOGICAL RADAR AND
CONVOLUTIONAL NEURAL NETWORK

HONGBIN YUAN; CHENYAO YUAN| AND HUIQUN CAO }

Abstract. In order to address the increasing demand for vital sign detection, the author proposes a multi-target vital sign
detection research that combines biological radar and convolutional neural network. Based on the fundamental architecture of
convolutional neural networks (CNNs), the author combines classification-based CNN object detection techniques to develop a
biological radar multi-target vital sign detection platform. The feasibility of this approach is confirmed through experiments,
demonstrating the integration of biological radar and CNNs for multi-target vital sign detection. The experimental results indicate
that the biological radar achieves a recognition accuracy of 96.1%, proving the effectiveness of the biological radar detection
algorithm. The research on multi-target vital sign detection based on the fusion of biological radar and convolutional neural
network is an effective auxiliary method that can provide reference for relevant researchers.
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1. Introduction. In recent years, with the in-depth research and popularization of artificial intelligence
algorithms represented by convolutional neural networks, intelligent electronic devices and related application
scenarios have become ubiquitous, such as object detection, facial recognition, smart healthcare, etc. CNN
achieves high accuracy in model prediction at the cost of high computational complexity by increasing the
network structure. Some application scenarios that require high real-time performance not only demand high
accuracy of the network, but also require high processing speed of the network [1]. Human vital signs primarily
consist of physiological parameters such as heart rate, respiratory rate, body temperature, and blood pressure.
These metrics are essential for assessing an individual’s health status. Heart rate indicates the number of
heartbeats per minute, whereas respiratory rate refers to the number of breaths taken per minute. For healthy
adults, the normal respiratory rate ranges from 12 to 20 breaths per minute, and the typical heart rate ranges
from 60 to 100 beats per minute. The commonly used detection methods for life signals nowadays include
electrocardiography (ECG), photoplethysmography (PPG), and other detection methods that require direct
contact with the human body. However, in some special situations such as burns, infectious diseases, and
psychiatric patients, the use is restricted. To address emerging needs, research on non-contact vital sign
detection technology has garnered significant attention. This technology primarily monitors vital signs using
methods such as infrared, electromagnetic waves, and video [2,3].

Non contact vital sign detection does not require physical contact with the target being tested, and can
detect distant targets. It not only avoids the constraints of cumbersome wiring harnesses and electrodes, expands
its application range, but also avoids psychological pressure on the target during the testing process, making
the detection results more realistic. It has a wide range of applications in home and medical health monitoring,
driver life status monitoring, and other fields. As an emerging physiological signal detection method, microwave
biological radar can detect vital sign signals such as human heart and lung activity. Compared with traditional
methods such as electrocardiogram and pulse, microwave biological radar technology is not only non-contact,
but also has good penetrability, which can penetrate obstacles such as clothing and bedding for detection. These
advantages make microwave biological radar technology have potential applications in medical diagnosis, health
monitoring, disaster rescue and other fields. This study aims to combine biological radar and CNN technology
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to achieve accurate detection and analysis of multi-target vital signs, providing new technological solutions for
fields such as medical diagnosis and health monitoring [4].

2. Literature Review. With the continuous development of medical technology, there is an increasing
demand for the application of vital sign signal monitoring in scenarios such as infant monitoring and smart
elderly care. Traditional vital sign detection methods such as electrocardiogram monitors, smart bracelets,
oximeters, etc. require contact with the patient’s body, which is not only inconvenient but also prone to cross
infection. Biological radar is a new concept radar technology that mainly focuses on the human body as the
detection object. It can detect signals such as breathing, heartbeat, and body movement of the human body
in a non-contact manner, and has become a research hotspot at home and abroad in recent years. Compared
with traditional contact detection, biological radar can reduce the discomfort and psychological burden caused
by electrodes, wires, sensors, etc. on the human body, and has broad application prospects in the field of social
medicine. Liu, J. et al. introduced a convolutional neural network leveraging multi-scale feature fusion to
enhance the integration quality of multimodal medical images. The findings show that this method outperforms
other state-of-the-art techniques across most metrics [5]. Zhang, A. et al. developed a multimodal fusion
convolutional neural network (MFCNN) that employs a dual-stream convolutional neural network (CNN). This
network extracts shared information from surface electromyography (sEMG) and accelerometer signals from
various subjects [6]. Mohan, R. et al. designed a convolutional neural network called MIDNet18, a tailored
medical image analysis and detection network, to diagnose various lung diseases using chest CT images. The
MIDNet-18 CNN architecture has simplified model construction, minimal complexity, simple techniques, and
high-performance accuracy, and can classify binary and multi class medical images [7].

To tackle these challenges and establish a foundation for multi-target vital sign detection, the author
suggests a study focused on detecting multiple vital signs through the integration of biological radar and
convolutional neural networks. Non-contact vital sign detection technology offers a valuable supplementary
method for health monitoring. Developing a device for detecting human vital signs using microwave radar
technology. Design a continuous wave radar circuit based on the Doppler principle to detect human micro
motion signals; Using short-time Fourier transform and interpolation algorithm to extract human heart rate and
respiratory rate parameters; Introducing embedded platforms to achieve miniaturization design and integration
of devices; Develop embedded signal processing software to achieve real-time signal processing, recording, and
display. With the growth of training data and advancements in machine performance, convolutional neural
network-based object detection has surpassed the limitations of traditional methods, becoming the leading
algorithm in contemporary object detection.

3. Research Methods.
3.1. Convolutional Neural Networks.

3.1.1. Basic Structure of Convolutional Neural Networks. Convolutional neural networks were
proposed by Professor LeCun at the University of Toronto in Canada. The earliest convolutional neural networks
were used as classifiers, mainly for image recognition [8]. In Figure 3.1, a convolutional neural network (CNN) is
depicted as a hierarchical model comprising essential components: an input layer, convolutional layers, pooling
layers, fully connected layers, and an output layer. CNNs are specialized for image processing, leveraging
weight-sharing through convolution to extract features in the convolutional layers. This architecture enables the
network to progressively extract hierarchical features from low-level to high-level representations. These high-
level features are then classified using fully connected and output layers, producing one-dimensional vectors
that categorize the input image. Thus, CNNs can be conceptually divided into a feature extractor (input,
convolutional, and pooling layers) and a classifier (fully connected and output layers), each contributing distinct
functions in the image recognition process.

3.1.2. Classification based Convolutional Neural Network Object Detection. Traditional object
detection methods involve a sequence of steps: preprocessing, window sliding, feature extraction, feature selec-
tion, feature classification, and post-processing. In contrast, convolutional neural networks (CNNs) encompass
the capabilities of feature extraction, selection, and classification within their architecture. This integrated ap-
proach enables CNNs to streamline object detection tasks by reducing the need for separate preprocessing steps
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Fig. 3.1: Basic Structure of Convolutional Neural Network

and directly processing raw data to classify objects effectively [9]. Convolutional neural networks (CNNs) are
capable of directly classifying candidate regions generated by sliding windows, a method known as classification-
based CNN object detection. Unlike traditional object detection methods with multiple steps, this approach
simplifies the process to three main steps: sliding windows, image classification, and post-processing, where
sliding windows and post-processing methods are predefined. As a result, research in this area predominantly
centers on enhancing CNNs’ abilities in feature extraction, selection, and classification to improve the overall
accuracy of image recognition.

Researchers have developed algorithms to extract sub-images containing specific semantic information from
the target image, thereby reducing the number of candidate regions. These regions vary in size and represent
distinct semantic meanings. By employing convolutional neural networks (CNNs) for classification and recogni-
tion, this approach enables the detection of objects across multiple scales and classes. This method significantly
enhances the efficiency of object detection by focusing computational efforts on relevant and meaningful regions
within the image [10]. In the evolution of object detection methods, researchers are exploring new approaches
to enhance accuracy by reconfiguring convolutional neural networks (CNNs) as regressors. Instead of relying
solely on classification, these methods treat the entire image as a potential candidate region. This involves
directly inputting the image into the CNN to regress and pinpoint the precise position information of the target
within the image itself. This approach represents a shift towards more holistic and integrated methodologies
in CNN-based object detection [11].

3.1.3. SIMD Computing Acceleration Method for Convolutional Networks Based on ARM
Processor. ARMvS8 has 32 128 bit registers, and the author uses embedded assembly programming based
on ARMvS8 to implement the design of SIMD convolution accelerator. One instruction is used to perform
multiplication and accumulation operations on 8 sets of data [12]. Table 3.1 lists several common instructions,
namely addition, subtraction, multiplication, multiply accumulate, data load, and store instructions.

3.2. Bioradar Multi target Vital Signs Detection Platform.

3.2.1. Composition and Detection Principle of Experimental Platform. Figure 3.2 shows the
overall structure of the experimental platform, which mainly includes the biological radar sensor, radar baseband
signal conditioning circuit, MSP430F 5529LaunchPad experimental board, and upper computer data processing
system. Through the experimental platform, non-contact respiratory and heartbeat signals can be collected,
processed, and analyzed. The experimental steps are as follows: One is that the biological radar sensor emits
high-frequency continuous microwaves to the human body; The second is to use the radar baseband signal
conditioning circuit to perform DC offset correction, filtering, and amplification processing on the signal output
by the radar sensor, filter out noise in the signal, and preserve the effective frequency components of the
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Table 3.1: Several Common SIMD Instructions

op Output operands Input operands

add v0.8h, v0.8h,v8.8h

sub v0.8h, v0.8h,v8.8h

mul v0.8h, v0.8h,v8.8h

mla v0.8h, v0.8h,v8.8h

1d4  {v0.8h,v1.8h,v2.8h,v3.8h} [%0]

st4 [%2] {v0.8h,v1.8h,v2.8h,v3.8h}

MSP430F5529 LaunchPad experimental board

Radar baseband signal conditioning circuit
Upper
s . g computer
Biological DC offset Wave
y 3 J.
radar correction filtering ADC1L MSP430F5529 LARE proli:::ing
system

Fig. 3.2: Overall structure of experimental platform

body motion signal; The third is to use the MSP430F5529 LaunchPad experimental board to collect and
process the body motion signals output by the conditioning circuit, and transmit the processing results to the
upper computer data processing system through a serial communication interface. The upper computer data
processing system, often developed using MATLAB or LabVIEW, serves to process and analyze collected body
motion signals. Its primary function includes extracting respiratory and heartbeat signals from the gathered
data.

The front-end antenna of the continuous wave biological radar emits high-frequency continuous microwaves
to the human body [13]. When the microwave irradiates the human body, the chest wall micro motion caused
by respiratory movement and heart beat modulates the reflected echo signal in phase and frequency. After
signal amplification, filtering and other processing, respiratory, heartbeat and other signals are extracted from
the echo signal.

Microwave biological radar provides a non-contact and penetrating means of detecting biological motion
information [14]. Among them, continuous wave radar uses the Doppler effect of electromagnetic waves to detect
the displacement, velocity and other motion information of targets, with a simple structure and easy processing
of received signals. Continuous wave biological radar emits continuous electromagnetic waves towards human
targets, while receiving echoes reflected from the human body surface. By changing the frequency or phase
of the echo signal, micro motion information on the body surface is extracted and calculated [15]. Due to
the higher frequency of electromagnetic waves, the stronger the reflection at the interface between human skin
and air, but at the same time, the reflection on obstacles such as clothing and bedding will also increase. In
order to achieve higher detection accuracy and reduce the power of clutter, biological radar usually uses a
carrier frequency of (2.4-60) GHz. In terms of physiology, the micro motion information on the human body
surface can reflect certain physiological activities of the human body, such as detecting chest wall vibrations
to obtain heart and lung activity related information such as breathing and heartbeat. The amplitude of
surface mechanical vibration caused by normal human heartbeat movement is about 0.6 mm; The amplitude
generated by respiration is around (4-12) mm. If a 10GHz frequency band biological radar is used to detect chest
wall motion, every Imm displacement of the chest wall will cause a maximum phase shift of 25.2. Therefore,
theoretically, although the amplitude of chest wall vibration is small, the phase shift reflected in the radar
baseband can still be distinguished when the carrier frequency is high enough [16].
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The sine signal generated by the oscillator is represented as the radar transmission signal by formula 3.1:
T(t) = Apcos(2mft + ¢(t)) (3.1)

The distance traveled by the transmitted signal to become the received signal is represented by formula
3.2:

drdy  Amx(t —d(t)/c)
A "= A ot -

R(t) = Agcos[2r ft — + 6p)] (3.2)

2dy  2x(t —d(t)/c)
c c
The received signal is mixed with the signal in the radar receiver and low-pass filtered to obtain the
baseband signal output, which is expressed as formula 3.3:

2d
_ 2oy dra(t) 47m:(t)]
c A A

3.2.2. System Hardware Design. When extracting the target’s cardiopulmonary activity information
from the received signal of the biological radar, the useful signal frequency is between (0.2 10) Hz and the
amplitude is weak. The front-end circuit of the continuous wave radar requires a sufficiently high signal-to-
noise ratio, and performs DC offset correction, signal amplification, analog bandpass filtering, and analog-to-
digital conversion on the down converted received signal. Then, various physiological parameter detection
and extraction algorithms are used to obtain the required information. The system diagram of the vital sign
detection device is shown in Figure 3.3.

The radar front-end uses equal amplitude sine wave transmission, zero intermediate frequency receiver
structure, and the radar carrier operates in the frequency band of 10 GHz; The antenna used for transmission
and reception is a microstrip antenna to save space; Analog signal processing circuit (ASP) is used to amplify,
filter and level shift signals. The analog filter uses a lower cutoff frequency of 0.1 Hz to suppress DC offset and
low-frequency noise, and an upper cutoff frequency of 100 Hz to prevent signal sampling aliasing; The analog-
to-digital conversion uses a 16 bit high-precision ADC; The signal processing unit is an embedded platform
used for digital signal processing and regulating the work of various interconnected units; At the same time,
the signal processing unit is connected to various peripheral devices to achieve the output of vital sign results,
including display, alarm, data storage, and communication with computers; On the other hand, it realizes user
control signal input, including functions such as controlling the operation of the system, setting various system
parameters, etc. [17].

B(t) ~ ABCOS[(@ —00) + o(t) — o(t | = Apcos|p(do) + (3.3)

3.3. Experimental research.

3.3.1. Detection experiment using analog signal source. The individual differences in human car-
diovascular activity and the resulting surface vibrations vary with changes in body condition, posture, and
environment. Therefore, in order to conduct quantitative, controllable, and reproducible experimental re-
search, the author first used a device that simulates human chest wall vibration as the detection target [18].
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Fig. 3.4: Pulse sensor waveform and biological radar baseband signal waveform

The device reads in typical mechanical vibration waveform files generated by the computer on the surface of the
human chest wall, converts them into vibration signals, and outputs them to simulate human cardiopulmonary
activity. The vibration surface of the analog signal source device is covered with a metal layer to obtain strong
electromagnetic wave reflection ability.

Referring to the physiological signal surface vibration parameters mentioned above, configure the analog
signal source to send a sine wave with a vibration amplitude of 4 mm and a frequency of 1 Hz, and place it
50 cm away from the biological radar to obtain the baseband signal spectrum of the receiver. Both noise and
useful signal energy are concentrated in the low frequency range, with a baseband signal amplitude of 10.64
dBmV at 1 Hz. Due to the nonlinearity of the demodulation system, harmonics appear in the spectrum. The
system base noise is -94.64 dBmV, and the baseband signal signal-to-noise ratio is 98.36 dB.

For the detection of vital signs of real human targets, experimental results vary with factors such as the
actual environment and subject status. The author fixed the distance between a single stationary human target
and the biological radar at 30 cm, and used a pulse sensor to synchronously collect the pulse signal of the human
target as a reference signal for heart rate recognition results, for comparative analysis. Figure 3.4 shows the
comparison between the waveform of the pulse sensor and the waveform of the biological radar baseband signal,
where the heartbeat signal of the biological radar baseband signal is superimposed with the larger amplitude
respiratory signal. As shown in the figure, the biological radar simultaneously detects respiratory and heartbeat
related information of human targets, where the heartbeat signal corresponds well with the reference signal; In
addition, when using biological radar for the analysis and extraction of heartbeat signals, due to the strong
baseline drift interference provided by respiratory signals, it is not easy to directly analyze using conventional
heart rate measurement methods such as peak seeking or zero crossing detection in the time domain.

4. Results Analysis. In order to evaluate the accuracy of heart rate recognition using the aforementioned
vital sign detection algorithm, an experiment was conducted to collect a signal containing changes in the target
human heart rate, as shown in Figure 5, to obtain the heart rate recognition results of the biological radar
and reference signal after passing through the detection algorithm. When the difference between the results
obtained by the biological radar and the reference signal is less than 2%, it is considered that the biological
radar recognition is correct. The calculation shows that for the data in Figure 4.1, the recognition accuracy of
the biological radar is 96.1%. It can be seen from this that the effectiveness of the biological radar detection
algorithm, in addition, the detection algorithm can quickly track and smoothly transition to changes in heart
rate. Through experiments, it has been found that the biological radar detection system can effectively detect
the respiratory and heart rate of the target in real time within a range of 90 cm from the target. When the
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Fig. 4.1: Heart rate extraction results

distance is farther, due to the influence of noise in the actual environment, the noise power will be equivalent
to the peak power of the heartbeat, causing fluctuations in the heart rate detection results and affecting the
accuracy of heart rate recognition.

5. Conclusion. The current biological radar detection device needs to consider how to automatically
adjust the phase shift constant in hardware, so that the demodulation point is near the optimal demodulation
point to improve detection accuracy; In terms of algorithms, the tracking algorithm used can eliminate sudden
strong interference signals but lacks sufficient suppression of continuous clutter interference, resulting in a
decrease in the accuracy of actual human detection and recognition. Further research should not be limited to
finding the highest spectral peak, but should attempt to use other in-depth spectral analysis algorithms. In
order to address the increasing demand for vital sign detection, the author proposes a multi-target vital sign
detection research that combines biological radar and convolutional neural network. The effectiveness of the
method is verified through experiments.
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