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A COMPUTING ARCHITECTURE FOR CORRECTING PERSPECTIVE DISTORTION IN

MOTION-DETECTION BASED VISUAL SYSTEMS∗

SONIA MOTA† , EDUARDO ROS‡ , AND FRANCISCO DE TORO§

Abstract. The projection of 3D scenarios onto 2D surfaces produces distortion on the resulting images that affects the accuracy
of low-level motion primitives. Independently of the motion detection algorithm used, post-processing stages that use motion data
are dominated by this distortion artefact. Therefore we need to devise a way of reducing the distortion effect in order to improve the
post-processing capabilities of a vision system based on motion cues. In this paper we adopt a space-variant mapping strategy, and
describe a computing architecture that finely pipelines all the processing operations to achieve high performance reliable processing.
We validate the computing architecture in the framework of a real-world application, a vision-based system for assisting overtaking
manoeuvres using motion information to segment approaching vehicles. The overtaking scene from the rear-view mirror is distorted
due to perspective, therefore a space-variant mapping strategy to correct perspective distortion arterfaces becomes of high interest
to arrive at reliable motion cues.

Key words. Real-time computing, high performance computing, fine grain pipeline, image processing.

1. Introduction. Animals and human beings have powerful tools for processing information. Recent ad-
vances in biological neural circuits and processing schemes is one of the reasons of a new tendency in engineering
that emulates specific biological computation schemes, this is the research paradigm called neuromorphic en-

gineering. The objective is to achieve more effective machines with a huge potential impact on industry and
society [1, 2, 3, 4].

Vision is one of the most important senses for animals’ survival. In particular, visual motion detection
is the most important information source and constitutes a complex and accurate system. The long-medium
term goal is to implement devices based on vertebrates’ visual systems, because of their astonishing efficiency
in analysing dynamic scenes. However, current vision models based on vertebrates require high computational
cost while most real-time applications cannot be addressed with traditional computer vision strategies due to
their complexity.

But adapting bio-inspired processing schemes on silicon is a complex task. The neural system has synaptic
plasticity (the connection from neuron A to neuron B changes in order to stabilize specific neural activity
patterns in the brain, for instance with neural adaptation strategies such as Hebbian learning [5]) that allows
response to changes to different stimulus or environments. Furthermore the connectivity among neurons in
biological tissues takes place in three dimensions. In contrast, the silicon systems allow only two-dimensional
connectivity among computational threads and lack abilities such as local synaptic plasticity.

Biological systems use efficiently massive parallel processing to overcome the slow chemical-based computing
that takes place in neurons. This advantage of biological systems is shared by current FPGA devices. Different
researchers are working in this direction, i. e. bio-inspired visual systems implemented on FPGAs devices with
massively parallel computation using fine grain processing architectures [6, 7, 8, 9]. This approach allows real-
time image processing and represents a first step towards solutions to particular problems in a wide range of
applications

However, even biological systems need to project 3D scene onto a 2D surface (for instance, a retina or a
camera sensor) before extracting data. Due to the 2D projection the scene is distorted by perspective. This
affects motion processing, a moving object, although moving at a constant speed, seems to accelerate and
its size increases as it approaches the camera. This apparent enlargement adds an expanding motion to the
translational one, and the perception of different velocities in different regions of an object.

Biological systems use low level stereo information or other visual modalities in higher level processing stages
to deal with the perspective distortion. But uni-modal motion-based artificial systems require other strategies
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to compensate this effect. We propose a scheme that corrects perspective distortion so that motion information
can be used in a reliable manner: Space-variant mapping (SVM) method. It is possible to compensate for the
effect of perspective by remapping the image before extracting motion. This processing unit can be connected
to the whole motion detection system as a pre-processing stage of the image.

The rest of this paper is organized as follows: section 2 introduces the space variant mapping method;
section 3 describes the hardware implementation and cost; and section 4 presents an example of perspective
distortion correction in a real-world task, an overtaking monitoring system. Furthermore, the perspective
distortion correction is described using two different methods: space variant mapping (SVM) and another bio-
inspired method based on neural integration of information that we use in order to validate the results and
compare the two different approaches.

2. Space-variant mapping method. The space-variant-mapping (SVM) method is the selected strategy
for dealing with perspective distortion. The Space Variant Mapping [10, 11] is an affine coordinate transfor-
mation that aims at reversing the process of projection of a 3-D scene onto a 2-D surface. It is possible to
invert the projection equations and to compensate the effect of perspective by remapping the original image.
In this approach (a) parallel lines and equal distances in the real scene are remapped to parallel lines and equal
distances in the processed (remapped) image and (b) it is assumed that the depth of the scene, i. e. distance
to the camera projected on its optical axis, varies linearly.

Generally, distances closer to the image plane are projected onto larger segments. Using these assumptions
the SVM approach re-samples the original image. We assume a specific camera configuration targeting the
left vision field with respect to the optical axis. In this case, the required remapping is done by expanding
the left-hand side of the image (corresponding to the part of the scene furthest away from the camera) and
collapsing the right-hand side (corresponding to the part of the scene closest to the camera). The coordinates
at the distorted space are transformed in new coordinates at the remapped space. The operations involved in
the process are additions, multiplications, divisions and trigonometric operations (sine and tangent).

Fig. 2.1. (a) Coordinates transformation; (b) Original and remapped image of an overtaking sequence.

Figure 2.1a shows the coordinates transformation that is required in order to correct the perspective dis-
tortion due to the projection of the 3D scene onto a 2D surface. Figure 2.1b shows an example of a re-sampled
image from the real-world application described in Section 4.

The blurred appearance of the left-hand side of the image is generated by the interpolation process necessary
to resize a small portion of the original image into a larger area. The interpolation method used here is the
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truncated Taylor expansion, known as local Jet [12]. In the remapped scenario the mean speed of a car that is
actually overtaking at a constant relative speed is more constant along the sequence. Furthermore, each point
that belongs to the rigid body moves approximately at the same speed (Figure 2.2). On the other hand, on
the right-hand side of the remapped image, we are subsampling the original image, which means that aliasing
effects may occur.

Fig. 2.2. Space Variant Mapping makes stable the speed along the sequence. On the left plot we represent the x position of
the centre of the car along the constant-speed overtaking sequence. We see that although the overtaking sequence speed is constant
the curve is deformed (constant speed is represented by a line) due to the perspective distortion. On the other hand, the right plot
shows the same result on a remapped sequence. In this case the obtained overtaking speed is constant (accurately approximated by
a line with a slope that encodes the speed).

The advantage of SVM is that the effect of perspective is compensated through the remapping scheme and
the acceleration artefact is removed. In the real-time application described in Section 4, we have manually
marked the overtaking car position along a scene, in this way it is easy to compute the centre of the marked
area, i. e. the overtaking car, and its speed. Figure 2.2 shows the compensation effect on the speed of the centre
of the overtaking car.

Furthermore SVM reduces the difference between the extracted speeds of the front and rear of an overtaking
car. Finally, the remapped image is easier to interpret using motion estimation information.

3. Hardware implementation. We use conventional cameras that provide 30 frames per second and
256 gray levels. The processed image size is of 640 x 480 pixels. The prototyping computing platform has 2
SRAM banks and a Xilinx Virtex-II FPGA (XC2V1000 device) [13]. This device allocates 1 million system
gates distributed in 5,120 slices and 40 embedded memory blocks of a total of 720 Kbits.

The whole system has been implemented on the FPGA device (see Figure 3.1). This system includes the
processing stages (space variant mapping, motion detection algorithm [14] and specific circuits for packing and
unpacking temporal data) and the interface elements (frame-grabber, memory management units and VGA
output interface).

The complete system is designed with independent processing modules. The architecture design adopts a
fine grain pipeline structure for all modules. Specific communication channels are used in order to connect the
modules with each other.

In this way, space variant mapping (SVM) constitutes a pre-processing stage before the motion estimation
module. The architecture of the whole system allows changing modules of the datapath if necessary, i. e. we
can use different modules implementing diverse motion-detection algorithms with the same system.

SVM architecture is also implemented as a fine grain pipeline structure to ensure a successful connection
with the motion extraction module at 1 pixel per clock cycle. Motion primitives are computed using a fine grain
pipeline structure that consumes 1 cycle per stage. If necessary, it is possible to reduce the parallelism in the
SVM module (and consequently its efficiency) to fit the processing performance of the motion-detection module
requirements (if other motion estimation schemes are used). Alternatively, we can replicate the SVM module
and split the image to send parts of the original image to the different SVM units increasing the processing
velocity if further performance is required. Therefore the architecture is modular and scalable. Figure 3.1 shows
the data flow of the integrated system.
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Fig. 3.1. Complete system: motion detection after correcting the distortion by space variant mapping preprocessing.

SVM uses several multiscalar units consistent with the goal. To transform each pixel coordinates the
operations that take place are additions, multiplications, divisions and trigonometric operations (sines and
tangents). To compute sine and tangent we use a look up tables, and to compute the divisions we use optimized
cores customized for our application. Each core computes one division and consumes one cycle. We use two
division cores. Figure 3.2 shows the pipeline structure of the modules related with perspective distortion
correction. Rectangles represent multiscalar units. Rectangles on a column are working in parallel. Rectangles
on a row represent different pipeline stages. Numbers in brackets are the number of micropipelined stages. The
final block represents the motion estimation datapath.

Fig. 3.2. Data flow and pipelined structure of the perspective distortion correction datapath.

The SVM module takes 12 pipeline stages, and only one division core that produces 28 clock cycles of
latency.

Table 1 summarizes the main performance and hardware cost of the system implemented. The hardware
costs in the table are estimates extracted from the ISE environment. Note that the maximum clock frequency
advised by the ISE environment is limited to 36.1 MHz (Table 1). This is because we use a specific core for the
division that limits the global frequency of the whole pipelined structure. However, the circuit frequency fully
allows computation at camera frame-rate.

One of the important bottlenecks for FPGA processing capability is the external memory access. There are
several reasons to use the external SRAM: first of all, conventional cameras interlace the image (they send even
rows first and then odd rows of a scanned image). Therefore, in order to compute the image it is necessary to
previously de-interlace the image, i. e. to arrange the rows in properly appearance order. Furthermore, SRAM
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Table 3.1

Hardware cost of the different stages of the described system. The global clock of the design is running at 31.5 MHz, although
the table includes the maximum frequency allowed by each stage. The data of the table has been extracted using the ISE environment.

Pipeline Stage Number of Slices % Device Occupation Max. Fclk.(MHz)
Frame-Grabber 753 14 75.9

Memory Management Units 581 11 53.8
Space-Variant Mapping 838 16 36.1

access is shared by space variant mapping modules and motion detection modules. Finally, the synchronization
among different modules related to different clock frequencies (frame-grabber, VGA, etc.) is done with external
memories.

Using exclusively embedded memory blocks becomes not possible due to the image size. Therefore, the
necessity of storing data in external SRAM banks forces us to design a module that allows the writing and
reading to/from the SRAM banks as efficiently as possible. This process of storing/recover data is sequential
and consumes 2 cycles per pixel (1 cycle is consumed in assigning the address and 1 cycle is consumed in
transferring the data). The access control is carefully designed. We define different reading and writing ports
using a double-buffer technique to avoid temporization problems. We use a micropipelined architecture to access
two different ports. A state machine feeds the reading/writing ports sequentially, achieving a performance of
one data per cycle. Furthermore, it is feasible to store several pixels at each memory address due to the memory
word size. In this way we can reduce the number of external memory accesses. For this purpose we use specific
packing and unpacking circuits in the pipelined architecture (see Figures 3 and 4).

4. Real-world application. One of the most dangerous operations in driving is to overtake another
vehicle. The driver’s attention is on the road, and sometimes he does not use the rear-view mirror or it is
unhelpful when an overtaking car is at the blind spot. Therefore an automatic alarm system is of interest in
these scenarios.

Systems based on vision would be very effective in driving assistance; in fact the driver himself uses vision
and represents a good proof of the concept. We place a camera onto the real-view mirror to cover the blind
spot area. If an overtaking vehicle approaches the host car it is detected as forward moving features, while
the rest of the patterns in the camera visual field move backwards due to the ego-motion of the host vehicle.
Therefore motion provides useful cues to achieve an efficient segmentation in this application framework. In this
context, the sequences taken with a camera fixed onto the driver’s rear-view mirror are strongly deformed by the
perspective, and reducing the deformation effect is necessary in order to enhance the segmentation capabilities
of a motion-based vision system.

We define two different methods to deal with the perspective distortion. On one side, we use space variant
mapping method, and on the other side, for validation purposes we use an alternative bio-inspired method based
on neural integration of information.

Many studies suggest that the integration of local information allows the discrimination of objects in a
noisy background [15, 16, 17, 18]. The mechanism of this integration in biological systems is almost unknown.
We define velocity channels based on motion patterns of the image that seem to correspond to independent
moving objects (rigid bodies) [19]. Each velocity channel computes a population of features moving coherently
(by sharing velocity and direction in a local area). The velocity channels are processed in a competitive manner
and the one that integrates a maximum number of features moving coherently in an area becomes salient. In
this way, low quality motion-detection estimations, i. e. errors, are filtered.

The system has been tested on real overtaking sequences in a wide speed range.

The “centre of mass” of obtained features (moving coherently) is used to validate the quality of moving
features. We manually mark the overtaking car by drawing a rectangle (around it). We calculate the distance
between the centre of mass and the centre of the rectangle. This distance is normalized by dividing it by the
radius of the minimum circle containing the rectangle in each frame. This distance is what we call Quality

Measure (QM). If the centre of mass falls into this circle this QM is below 1. In this case we assume that we
are detecting the overtaking vehicle accurately. In other cases the QM is higher than 1, motion detection has
dominant noisy patterns (motion detection is assumed to be of low quality) leading to incorrect estimations.
Figure 4.1a shows the QM along the sequence when velocity channels method is adopted, and Figure 4.1b shows
QM throughout the sequence when the space-variant mapping method is adopted.
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Fig. 4.1. Quality measurement plot of a sequence adopting: (a) Velocity-channels method; (b) Space-variant-mapping method.

When the velocity channels method (VC) is used, motion detection is accurate from frame 138 to 175, and
when the space variant mapping (SVM) method is adopted, motion detection is accurate from frame 89 to the
end of the sequence. In fact accurate detection occurs when the overtaking vehicle begins to be dangerously
close (see Figure 4.1).

We used four sequences to test the space variant mapping scheme. The results are summarized in Figure 4.2.
The first and the fourth sequences were taken with a CCD camera on a sunny day. In the first sequence the
overtaking car approaches from the distance and in the fourth, it suddently appears into our line of vision. The
second and third sequences are HDR ones. The second one corresponds to a cloudy day with some mist and the
other was taken in twilight conditions. These two sequences show overtaking processes by far-away cars with
their lights on.

Figure 4.2 shows that motion detection is done properly from a vehicle size of 10660 pixels with the VC
method and 3216 pixels with the SVM method. This size is only approximate, taken as it is from the size of
the confidence rectangle used to calculate QM. The data in the next column represents the number of features
detected moving rightwards, on which the estimation is based.

In the HDR sequences the cars have their lights on, and adverse weather conditions reduce noisy detection.
The best detected features belong to the overtaking car lights and allow an early success in the tracking task
with both methods.

SVM constitutes a good method for medium distances in all weather conditions, even when the cars have
no lights on that facilitate their detection.

5. Conclusions. We have presented a perspective distortion correction for a vision-based segmentation
system.

Using a real-world sequence of a car moving at constant speed we showed that the SVM considerably reduces
the spurious acceleration effect due to perspective projection and improves motion estimation results.

We have compared the results of Space-variant mapping method with a bio-inspired one based on neural
integration of information. Adopting space variant mapping method the results based on motion information
are improved.

We have designed a pipelined computing architecture that takes full advantage of inherent parallelism of
FPGA technology. In this way we achieve computing speeds of 36.1 Mpixels (for instance, around 30 frames
per second with 1280x960 image resolution) that allow fully computation at camera frame-rate (25-30 frames
per second).

The architecture is modular and scalable.

This contribution is a good case of study that illustrates how very diverse processing stages can be finely
pipelined in order to achieve high performance.
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Fig. 4.2. Results of the two methods applied to four different sequences. “1st frame of successful tracking” represents image
number in a sequence from which the motion detection is of high quality, i. e. QM is below 1. “Vehicle size” is the number of
pixels inside the manually drawn rectangle that contains the overtaking car in the “1st frame of successful tracking”.

Finally the hardware resources of the system are not very high. Therefore, the presented approach can be
considered a moderate cost module for the real world application of the overtaking car monitor.
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[8] F. Aubépart and N. Franceschini, Bio-inspired optic flow sensors based on FPGA: Application to Micro-Air-Vehicles,

Microprocessors and Microsystems 31(6), (2007), pp. 408–419.
[9] P. Chalimbaud and F. Berry, Embedded active vision system based on an FPGA architecture, EURASIP Journal on

Embedded Systems, volume 2007 (2007), Special Issue on Embedded Vision System.
[10] H. Mallot, H. H. Bulthoff, J. J. Little and S. Bohrer, Inverse perspective mapping simplifies optical flow computation

and obstacle detection, Biol. Cybern., 64 (1991), pp. 177–185.
[11] S. Tan, J. Dale and A. Johnston, Effects of Inverse Perspective Mapping on Optic Flow, in ECOVISION Workshop, 2004,

(Isle of Skye, Scotland, UK).
[12] L. Florack, B. ter Harr Romeny, M. Viergever and J. Koenderink, The Gaussian Scale-Space paradigm and the

multiscale local Jet, Int. J. Comp. Vis. 18 (1996), pp. 61–75.
[13] www.xilinx.com

[14] S. Mota, E. Ros, J. Dı́az, R. Rodriguez and R. Carrillo, A space variant mapping architecture for reliable car segmen-
tation, Lecture Notes in Computer Science 4419 (2007), pp. 337–342.

[15] H. B. Barlow, The efficiency of detecting changes of intensity in random dot patterns, Vision Research, 18(6) (1978),
pp. 637–650.



394 Sonia Mota, Eduardo Ros and Francisco de Toro

[16] D. J. Field, A. Hayes and R. F. Hess, Contour integration by the human visual system: evidence for local “association
field”, Vision Research, 33(2) (1993), pp. 173–193.

[17] J. Saarinen, D. Levi and B. Shen, Integration of local pattern elements into a global shape in human vision, in Proceeding
of the National Academic of Sciences USA, Vol. 94, 1997, pp. 8267–8271.

[18] C. D. Gilbert and T. N. Wiesel, Intrinsic connectivity and receptive field properties in visual cortex, Vision Research, 22(2)
(2005), pp. 125–177.

Edited by: Javier Dı́az and Dorothy Bollman
Received: December 14th, 2007
Accepted: December 27, 2007


