
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2025 SCPE. Volume 26, Issues 3, pp. 1180–1195, DOI 10.12694/scpe.v26i3.4381

APPLICATION OF BIG DATA ANALYSIS IN INTELLIGENT INDUSTRIAL DESIGN
USING SCALABLE COMPUTATIONAL MODEL

ZHE ZHANG∗AND HESHUAI ZHANG †

Abstract. Smart industrial design’s incorporation of big data analytics is reshaping the manufacturing industry by boosting
product innovation, optimizing design processes, and increasing overall efficiency. Massive amounts of data may be processed
using scalable computing, leading to crucial insights that propel more informed, data-driven design choices. Integrating advanced
analytics into current design workflows, dealing with diverse and large-volume data, and guaranteeing data quality and integrity are
all obstacles to implementing extensive data analysis in industrial design. Many challenges must be solved, including keeping data
secure and meeting the computational needs of real-time processing data. Intelligent industrial design benefits significantly from
scalable computing’s extensive data analysis capabilities, which allow systems to analyze huge quantities of data in real time. Its
dynamic resource allocation achieves efficient resource utilization and optimum performance, guaranteeing that processing power
scales with the demand. This research suggests an Integrated Concentric Framework for Intelligent Industrial Design (ICF-IID)
that applies big data analysis using scalable computational resources. The framework analyses big datasets from different parts
of the design and production process using powerful visualization tools, machine learning algorithms, and predictive analytics.
Adaptive algorithms developed for unique demands in industrial design, strong data management protocols, and a distributed
computing architecture for efficient data processing are essential components. The framework is useful for predictive maintenance,
product lifecycle management, and design parameter optimization in industrial design. The framework may find design defects,
predict equipment failures, and suggest improvements by analyzing historical and real-time data. The efficacy and scalability of
the suggested framework are assessed through simulation analysis. These results show that it can efficiently and accurately process
industrial data on a wide scale. Based on the results, the framework seems useful for making decisions in complicated design
contexts and providing practical insights. The proposed method increases the efficiency ratio of 9.21%. accuracy ratio of 98.32%,
product innovation ratio of 97.65%, scalability ratio of 97.41%, and optimized design process ratio of 96.21% compared to existing
methods.
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1. Introduction. The industrial sector generates enormous amounts of large data in the age of big data,
and this data has ultra-high dimensions [1]. It is a difficult task to handle this ultra-high dimension data,
realize its potential, and create a data flow model appropriate for the modern production setting [2]. Currently,
the intelligent industry design will profit more optimally from big data-driven analysis with the reciprocal
assistance of associated developing technologies against the backdrop of Industry 4.0 [3]. The goal of the data
analysis procedure is to increase design effects and management transparency [4]. According to the internal
organization of the business, industrial design based on big data-driven analysis enhances the operation of the
whole production system [5]. To maximize its financial gains, it efficiently utilizes design production resources
by ICF-IID [6].

Intelligent techniques may be used to extract and refine valuable information from data, which is crucial
in several areas like as product design, scheduling, prognosis and health management, and quality management
[7]. Several obstacles persist in smart manufacturing systems owing to their intricate design and demanding
performance criteria [8]. This special issue is dedicated to exploring scientific paradigms, models, techniques,
and technologies that have a strong theoretical foundation and practical significance in reshaping big data
analytics in the manufacturing industry [9]. The main emphasis of this paper is on intelligence methodologies
and applications for big data analytics in industrial design [10]. These days, business management and industrial
design are very much intertwined. The enterprise’s operations and outcomes are directly affected by the pros
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and cons of design management [11]. An important part of accomplishing corporate goal management is design
management. In the design sector, it’s crucial for the all-encompassing administration of the center’s many
components [12].

Design management encompasses a wide range of activities that are directly tied to enterprise decision-
making [13]. These activities include, but are not limited to, design planning, schedule planning, personnel
management of designers, education, and departmental coordination to effectively convey the enterprise’s pur-
pose, culture, and management policy through design [14]. The enterprise’s official operation of a real-time
linkage industrial design information system software symbolizes the fundamental maturity of industrial design
informatization [15]. However, there are still some procedures to fulfil before the system can be fully maintained
and expanded independently [16]. A real-time connection big data analysis in industrial design information sys-
tem using scalable computational approaches has arrived, and it’s very advantageous in terms of scalability and
simplicity of maintenance [17]. The maintenance cost is little, the workload is light, and even non-professionals
like designers can do a good job at it on their own with just a little instruction with the help of ICF-IID [18].

The main objective of this paper is as follows:
∗ To improve product innovation and design processes using big data analytics. The framework aims to

handle enormous data sets to provide critical insights that result in better, data-driven design decisions
using scalable computing and sophisticated analytics.

∗ The ICF-IID framework efficiently processes data and combines robust visualization capabilities by
developing adaptive algorithms, robust data management protocols, and a distributed computing ar-
chitecture.

∗ To provide useful insights for decision-making in complicated design settings by efficiently and correctly
processing large-scale industrial data, predicting equipment failures, finding design errors, suggesting
changes, etc.

The remaining of this paper is structured as follows: In section 2, the related research work of intelligent
industrial design is studied. In section 3, the proposed methodology of ICF-IID is explained and in section 4,
the efficiency of ICF-IID is discussed and analysed.

2. Related Studies. Industrial design is an approach to professional conduct that uses market research
as a compass and addresses the human-product coordination connection in depth; its research is centered on
the entire creation of products. Industrial design is an all-encompassing behaviour for product development
that considers market demands, laws and regulations, economic considerations, etc., in addition to the four
main points of the American Outstanding Idea Award: design innovation, aesthetic expression, environmental
protection, and the degree to which manufacturers and users benefit.

Internet of Things (IoT). Connected sensors, devices, and services constitute what is known as the IoT.
This network aims to enhance associated systems by sharing data and information over the Internet. By lowering
prices, boosting functionality, expanding access to resources, and strengthening automation, the technologies
linked to the IoT have greatly enhanced the quality of several current applications. Industries’ embrace of the
Internet of Things has sparked the fourth industrial revolution by Ahmed, S. T. et al., [19]. More and more,
the emergence of the Industrial IoT holds the promise of better industrial management, optimized processes,
and safer workers. Nevertheless, there are several big problems with the Internet of Things implementation
that make it impossible to realize the full potential of Industry.

Deep Learning Technology (DLT). The goal of this project is to find the best design by developing a unified
technique that uses simulation and ANN to estimate the functions of design parameters and assess the designs’
performance by Chan, W. L. et al., [21]. This goal may be achieved by creating an integrated ANN technique.
This approach uses the simulation to generate training instances for ANNs, which are then utilized to forecast
the design’s performance. The presentation also includes the methodology’s structure and implementation
approach in terms of both estimate and assessment of the design, the results demonstrate that the established
technique works admirably.

Fuzzy Clustering Algorithm (FCA). With the help of cloud computing, it built a modern accounting data
analysis platform. To make clustering of modern accounting data Ting, W. et al., [22] used the FCA. This
improved the capacity for statistical analysis and parallel computing. Accounting data’s statistical analysis
capabilities and parallel computing efficiency are both enhanced by the intelligent data analysis platform,
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Table 2.1: Summary of the existing methods

according to the simulation findings.
Cloud Computing (CC). Bohlouli, M. et al., [23] uses CC infrastructure to focuses on the idea of continuous

research in delivering a knowledge integration service for collaborative product design and development. This
article explains how cloud computing may help with knowledge integration as a service by offering features like
knowledge mapping, merging, searching, and transferring in the product design process. Users are supported
by the proposed knowledge integration services, which provide real-time access to resources for knowledge.
Accessibility, efficiency, reduced costs, shorter time to result, and scalability are some of the benefits of the
framework.

Convolutional Neural Networks (CNNs). Hyperparameter settings for CNNs and how they affect the relia-
bility of fault detection findings. CNN is a revolutionary advancement in image processing that eliminates the
need for human intervention or specialized process expertise. Instead, it uses hierarchical learning algorithms
to autonomously produce robust features from large datasets of training data. Applying the suggested strategy
yields minimal false alarm rates and great results for fault identification by Weimer, D. et al., [24].

Artificial Intelligence Technology (AIT). Li, B. H. et al., [25] assess the new era of ’Internet plus AI’ and
its fast-paced core technology development considering studies into AI’s recent industrial applications. This
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era is causing a sea change in the manufacturing industry’s models, means, and ecosystems, and it is also
driving advancements in AI. Based on the integration of AI technology with information communications,
manufacturing, and associated product technology, then suggest new models, methods, and forms of intelligent
manufacturing, intelligent manufacturing system architecture, and intelligent manufacturing technology system.
Table 1 shows the summary of the existing methods.

An industrial revolution is underway, propelled by the convergence of IoT, DLT, ANN, FCA, CC, CNNs,
and AI. All of these technologies work together to make better decisions, analytics, and data processing [27].
Evidence from both theoretical and practical research shows that they are useful for analyzing data in real-time,
finding design optimization opportunities, and detecting defects. Industries may boost accuracy, efficiency, and
scalability by using these cutting-edge approaches. This will encourage innovation and help them stay ahead
in the ever-changing technology market [28].

3. Proposed Method. The use of data-driven models is vital in modern manufacturing for managing the
enormous amounts of information it generates. An all-inclusive approach involves processes such as collecting,
storing, scrubbing, integrating, analyzing, mining and visualizing data. This paradigm promotes intelligent
manufacturing since big data analysis supported by real-time dynamic perception leads to accurate decision-
making. A parallelized k-means clustering method utilized for real-time data classification and analysis might
be an adaptive algorithm in the ICF-IID framework. Here, the algorithm groups massive industrial process
information into smaller ones according to shared characteristics, including product specs or production metrics.
It learns from fresh data by constantly recalculating cluster centroids to see patterns and modify spontaneously.
The ability of the framework to incorporate current data insights is essential for intelligent industrial design
because it allows for decision-making that synchronizes with changes in operations that occur in real-time. It
introduces a data-driven model to deal with the huge amount of information that is produced in manufacturing
process. The technique encompasses data gathering, archiving, cleansing, integration, analysis, mining and
visualization. In this case correct decision making in production setting’s through big data driven analysis and
real-time dynamic perception establishes a new model for intelligent manufacturing.

Speeding up distributed data processing among the suppliers and consumers improves the speed at which
they communicate while emphasizing on gaining standardized interaction of Data. The first step towards in-
dustrial production’s decision making process is creation of an exhaustive database alternatives from which
choices can be made. Bill of materials, demand list, production planning, manufacturing job management, and
other similar datasets comprise the industrial decision database’s input data for decision tasks. Manufacturing
businesses may gain a competitive edge by making more informed decisions with the use of verification stan-
dards and larger decision databases on industrial big data platforms. Before properly coupling simulation and
optimization, intelligent manufacturing systems determine the important production characteristics to create
a plausible production plan. Digital twins, which are essentially digital representations of physical objects,
allow for optimization of simulations by reflecting the current state of physical operation in real time and by
conducting simulation operations on virtual duplicates to generate fresh ideas is shown in figure 3.1.

F =

y11 · · · y1k
...

...
y22 · · · y2k

+

c11 · · · y1k
...

...
c22 · · · y2k

 (3.1)

where y stands for variable design qualities y22 and c for restrictions or conditions c21, the equation 3.1 matrix
form encompasses the many interconnected aspects of the design process y2k. The combined effect of design
features and limitations is shown by adding up these matrices y1k, which emphasizes their collaboration F and
overall influence on the design output.

mL = π(yp + rs) + Zm =∝ (wk[jv−1, zx]− tr) (3.2)

The goal of optimization metric for the design, denoted by equation 3.2, mL, is affected by the sum of the design
parameter yp and the scaling factor rs, with the adjustment made by π. Incorporating an additional adjustment
factor denoted as Zm into the design process, this term is derived from ∝ a proportionality constant—and is
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Fig. 3.1: Big data-driven intelligent decision making in industrial design

multiplied by the weighted difference within the measured variables wk[j(v−1), zx] and tra temporal factor—to
reflect real-time and historical data.

Wq = ∂(∝ (n− fq+1) + kw) = ∀mq
c−d([jp−1, zk] + df ) (3.3)

The scale factor ∝v, the constant n, the function f(q + 1) representing the next design repetition, and
another constant kw are all components of the function that yields the weight or influence factor Wq. In a
range ∀mq

c−d, this weight represents the impact of previous iterations jp−1, zk and an extra factor df , and it is
equal to the universal quantification (∀).

∂q−p = ∀(mw+1qs+pq)− Sg+1 = δ(Zq[jp−1, ap] + d1q) (3.4)

Except for a scaling factor Sg+1, the equation 3.3, mw+1qs+pq captures the overall impact of incremental
modifications ∂q−p and their interaction with designer parameters Zq[jp−1, ap]. Applying d1q a proportional-
ity constantto the impact of the variable Zq classified by prior iteration and an adjusted factor equals this
differential.

min

q∑
i=1

(∇m + ∀dq − 1), p, w + 1Cv > hjk+1 + lqw − (m+ sgt) (3.5)

In the previous iteration, the design parameter ∀dq had a universal impact, and the equation 3.4, ∇m represents
a gradient of a design metric. The design constraint Cv is tested against a function including hjk+1, lqw, and
other variables in the conditional component m+ sgt representing additional modifying factors.

The incorporation of Big Data into smart manufacturing is seen in figure 3.2. The gathering of accessible
big data from places like sensor data and log files is crucial to this. All these places add to the mountain of
data that smart manufacturing processes need. Smart manufacturing adopts big-data techniques to address
major issues involving traffic reduction and optimal timeframes for increased efficiency in operations and flow
of information. Saving Big Data is an important part of this process as well as preserving relevant & significant
ones. For effective use of Big Data applications in smart manufacturing there are certain requirements or criteria
that must be met like Completeness and Correctness when gathering Big Data from different sources. To ensure
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Fig. 3.2: Big data in smart manufacturing

completeness one has to ensure that he or she captures all possible required variables whereas correctness means
coming up with reliable results from accurate input values only thus excluding any form of errors or mistakes
due to inaccurate computations being used. Smart manufacturing uses Big Data for the precise collection facts
about traffic, management traffic, efficient storage.

Fr =

q∑
i=1

Tl+ ∝k −

√√√√1

s
+

Q∑
k=1

(ek + em1)−
Pcorrect

Q
+ (1− k) (3.6)

The variables Tl+ ∝k reflect a complicated error-related component containing individual error terms ek and
an extra error modifier em1, while the time or task-based factor Tl and the scaling constant pcorrect/Q are
represented by the equation , (1 − k). In addition to a linear term ∝k, the equation includes an adjustment
factor (ek + em1) that represents the accuracy of forecasts or corrections over Fr occurrences.

M(k) = −
q∑

i=1

s(jk) + log es(z1− z2)− 1 +

e∑
k=1

ks+ 1w (3.7)

Equation 3.7 sums up the cumulative effect of design parameters M(k) across s(jk) iterations, with the impact
of particular design changes (z1−z2) accounted for by the logarithmic term loges(z1−z2). The scaling factors
ks and the incremental factor 1w are included in the equation, along with constant adjustments and an extra
summation k = 1. To maximize the total design metric M(k), this formulation takes into account several
factors.

f(b, w) =

√√√√ q∑
k=1

(fs+ pj)− (1 +mt)− 1

1− g − z1
+ (kp− wa) (3.8)

The effects of factors fs and pj, modified by constants 1 and mt across q iterations are aggregated in the square
root term 1

1−g−z1 . An extra scaling and weighing factor are included in the linear term (kp − wa), while a
non-linear adjustment is introduced by the fraction.

vef(m, k,we) = qs(n+ 1) + phj(F, kp)− g−jpy + hjvp (3.9)
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Fig. 3.3: Proposed method of ICF-IID

The exponential function phj(F, kp) is reliant on parameters F and kp, whereas the scaling factor qs applied
to an increased variable (n + 1) is represented by qs(n + 1). An exponentially decaying component affected
introduced by the term g−jpy, and an alteration based on another design component hjv−p indexed.

Data Sources are at the beginning of the data lifecycle diagram showing how it moves through several phases
in a structured system aiding in decision-making/choice-process/participation/selections/determinations. The
first step is to collect data from multiple sources, making sure to get the right information. After collection,
the data is sent to Data Storage and kept in a secure database for easy management and retrieval purposes.
At this stage, it involves transforming raw data into another form that can be used in future analysis purposes.
Making sure that such information has been properly cleaned and organized, prepares it well for further analy-
sis. Following the data processing in Figure 3.3, there is a subsequent examination or study with results. This
helps identify trends, correlations and patterns within the studied dataset. Such findings go to scalable com-
puting, visualization, and reporting, where they are made less complicated for understanding (scalability) and
simultaneously thoroughly explain all-important aspects of these reports. The Decision Support gets enhanced
by such reports which add value to guiding both strategic and operational decisions on useful insights gained
through efficiency of big data utilization in smart manufacturing processes; hence providing good results for
decision making process towards improving efficiency and effectiveness of data-driven workplaces. Using this
structured approach, which entails a continuous flow of data from collection through decision-making, ensures
effectiveness and efficiency in data-driven workplaces.

Ukp =

∑s
h j + pw

2

√
1− pu+

( g+fg∑
u

ng
)
− (ks− pw) (3.10)

The average impact of parameters
∑s

h j + pw iterations, modified by a factor involving kpu, is computed using
ks-pw. The second term,

∑s
h j + pw, denotes the total impact of ng across a wider range of values g + fg, and

the last term, 1− kpu, takes into consideration further adjustments for scaling and weighting. Optimizing the
overall model metric Ukp, this equation balances several impacts for increased design efficiency by integrating
these aspects.

k(as,w = zw,q|y2) =
fsw(rf , gp)∑W
l=1(kq + 1)

− fst(1 + phj) (3.11)
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Fig. 3.4: Process flow of integrated concentric framework for intelligent industrial design

Within the context of zw,q, the equation 3.11, zw,q, denotes a conditional term that is reliant on as,w. The
complex function fsw(rf , gp) may be computed by

∑W
l=1(kq +1), while the iterative corrections can be seen in

the denominator, which accumulates over W in terms of fst(1 + phj).

HC = hk +WK+pk −De = Du
f+1 − (Fh+jk + Vm(l + 1))− (qw + yq) (3.12)

The equation 3.12 shows the additive parts that go into HC, and De is the element that subtracts from it.
While Fh+jk subtracts the combined impact of Vm(l + 1), the. Finally, the design process is reflected when
qw + yq makes more modifications.

N(∀+ ∝) = +

Q∑
v=1

log r(mq|avp−1)− Za(yz + prst)− ∂q+1(j + kt) (3.13)

The variables that affect are represented by the equations N(∀+ ∝). The amount being calculated is (mq|avp−1).
The sum of the logarithmic evaluation of complex equations involving Za(yz + prst), with dependents on
∂q+1(j + kt).

r = 1−
∑f

x m2 +G−K

p− q3
+

1

12
−

2∑
b=1

(C4
l +Dm)− (rsg −mkp) (3.14)

A complex ratio modified by p and q3 is computed using the equation 3.14
∑f

x m2 +G−K, which influences
the main term C4

l +Dm at the beginning of the equation. The constant factor is represented by (rsg −mkp).
The figure 3.4 shows how data is used in industry design and manufacturing process thus giving a good

foundation. The starting point for all these processes are data sources which encompass the entire design
and production processes. Data collection and management takes these inputs into account, with an eye
on maintaining the accuracy and reliability of the collected information. Once data has been collected, it
is processed using a distributed computing architecture. This design stresses efficient processing and scalable
computing so as to efficiently manage massive amounts of data. The next step involves using data analysis tools



1188 Zhe Zhang, Heshuai Zhang

such as visualization tools, machine learning, predictive analytics etc., to examine the processed data. These
tools help in pattern recognition so that can make some educated presumptions. Through adaptive algorithms
and strong data management, the ICF-IID incorporates analytic insights into its design processes. Predicative
maintenance; Product lifecycle management; design parameter optimization are some of framework uses that
results in useful output at end of it all. The smooth transition from practical implementations to industrial
designs and manufacturing efficiency optimizations made possible by this systematic approach as depicted by
figure 3.4.

Um = ΠS
p∂R(cf+ ∝q −rs) + ΠT

p∝W (bn − Uy+1) +
1

4
(a(e)+ ∝1−q (m)) (3.15)

In the intelligent designing framework, the metric Um is defined by equation 15. The design process is en-
capsulated by the iterative adjustments and complexity of cf+ ∝q −rs, which is a product of equations or
transformations involving (bn − U(y + 1)). Their respective products illustrate additive contributions and
iterative dependencies via the expressions (a(e)+ ∝1−q (m)).

lim
n→∞

(1 +
1

w
)pk = fmsew +Hwp(lq, vrst) + log ep(k + 1) (3.16)

The parameters pk determine the exponential growth of the equation 16, 1 + 1/w. This exponential growth
rate is estimated to be fmsew according to the equation, which is probably a function involving elements
Hwp(lq, vrst). A compounded influence on the growth behavior is suggested by the complicated dependence
logep(k + 1) for Analysis of the efficiency ratio.

Qekp−q =

x∑
l=1

qj+k − log p2(k − 1) + EPFg(q) − sf+qw (3.17)

Iterations x of the equation 3.16 l = 1 include terms qj+k, which probably represent variables or parameters
associated. A logarithmic function impacting k is introduced by logp2(k − 1), and EPFg(q) reflects a function
sf+qw on Analysis of the accuracy ratio.

RQD2 =
1

e+ s(p− q)
+

r∑
p=1

pk(m, q) + yqw(2− p)−Gr
h+2 (3.18)

The inverse relationship is represented by equation 3.17, 1
e+s(p−q) influences the first term of RQD2, which is

reliant. The expression pk(m, q) is a general formula that changes the equation depending on yqw(2− p). It is
likely a function requiring Gr

h+2 on Analysis of product innovation.
A complete data processing structure to aid in decision-making is shown in figure 3.5. The process starts

with data being fed into the system from numerous sources. After that, the data is processed and analyzed
by using various components. Key components in deriving useful insights from data are analysis reports and a
query engine. These technologies make it possible to query and analyse enormous databases in depth, which
in turn generates useful results. To effectively manage large data sets, a programming model is used that
employs a parallel, distributed algorithm on a cluster. To improve speed and accuracy, this approach makes
sure that data processing is scalable and done in parallel. A Distributed False Token of Database is used to
guarantee quick management and retrieval of data for big, unstructured databases, such those maintained by
NOSQL. The storage infrastructure is provided by the Hadoop Distributed File System which offers dependable
and strong storage capabilities for large datasets. For the dispersed components to function in tandem, the
dispersed Configuration and Synchronization Service keeps an eye on their synchronization and coordination.
Data is delivered to Decision Makers after processing and analysis so that they may make data-driven choices.
This methodical procedure guarantees the efficient collection, processing, analysis, and utilization of data from
several sources to enhance strategic decision-making.

y(b) = c0 +

1−∀∑
q=1

(
cdsin

n∂Z

W
+ de cos+

wCZ

N

)
+ z(mq) + r (3.19)



Application of Big Data Analysis in Intelligent Industrial Design Using Scalable Computational Model 1189

Fig. 3.5: Flow chart of scalable computing platform in industrial big data processing

A constant base value that influences y(b) is represented by the equation 3.19, c0. These trigonometric
functions are modified by the parameters cdsin

n∂Z
W and de cos+

wCZ
N and are included in the terms that are

aggregated in the summation. The expression z(mq) implies a product with the addition of an offsetting
constant denoted by r for Analysis of the scalability ratio.

max(y, z)C =

∑e
h=1(f − es)

K
−R(rse− fg) + a(m− srt) (3.20)

Within the intelligent designing framework f-es, equation 3.20 determines a metric C and specifies a maximizing
condition y,z. In this case K, the cumulative term across rse − fg iterations a(m − srt) , and C is adjusted
according to the Analysis of Optimized Design Processes.

In smart manufacturing with big data that solve critical issues like efficient timelines, traffic mitigation
among other problems associated with data management improves operations greatly. Allowing production to
run smoothly without any hindrances only when comprehensive accurate information is available for all types
of data involved in industrial sectors Structured systems improve strategic and operational decision-making in
industries through collecting, processing and analyzing.
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Fig. 4.1: Graphical representation of efficiency ratio

4. Result and Discussion. The employment of large data analytics by ICF-IID is transforming the
manufacturing industry in three ways. It does this by improving product innovation, streamlining design process
and increasing overall efficiency. The system uses scalable computer resources to analyze massive datasets using
predictive analytics and machine learning methods to give useful insights. Data variety, quality and real-time
processing are some of the issues which this method tries to address. Smart factory predictive maintenance
systems may use cross-validation to evaluate the model’s generalizability across various machines and operating
situations. Manufacturers may find areas for improvement by splitting the data into smaller groups and
evaluating the model on each of them. This validation approach is essential to optimize manufacturing processes,
decrease downtime, and increase overall efficiency in Industry 4.0 contexts.

4.1. Dataset Description. When people leave a company, it could be because of natural causes like
retirement or resignation, or they might be due to unforeseen circumstances like a shift in the company’s target
demographics that will lead to laying off workers. This phenomenon is known as employee attrition. An organi-
zation’s performance is significantly affected by the high incidence of staff attrition. A company’s competitive
advantage is often its workers’ tacit knowledge, which they take with them when they depart. The expense
of business interruption, recruiting, and training new employees falls on the company when employees leave.
However, a more retained staff eventually results in lower recruiting and training expenses and a more seasoned
workforce overall. To reduce employee turnover, modern organizations have shown a strong interest in studying
the factors that contribute to employee churn. Consequently, to improve their HR strategy, organizations
should aim to forecast employee loss and identify the main causes of attrition [26].

4.2. Analysis of Efficiency Ratio. Evaluating the efficacy of ICF-IID in processing and exploiting large
data relies heavily on the examination of the efficiency ratio. Finding the sweet spot between the amount of
computing resources used and the results obtained is the main goal of efficiency ratio analysis. Due to its use
of scalable computer resources, ICF-IID effectively analyses massive datasets. It then uses predictive analytics
and machine learning techniques to obtain actionable insights. Part of this evaluation involves tracking how
long it takes to process data, how accurate the predictions are, and how well the system handles data streams
that are updated in real-time. The simulation results show that ICF-IID framework maintains its efficiency at
high levels with a good tradeoff between resource utilization and high quality output as explained by equation
17. Supporting decision-making in complex design contexts, and allowing realistic, data-driven changes, the
efficiency ratio of the framework optimizes design processes and improves product innovation so that industrial
data can be dealt with correctly and fast. The figure 4.1 shows that proposed method for ICF-IID has increased
throughput by 99.21% when compared with other existing simulation studies.
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Fig. 4.2: Graph of accuracy ratio

Fig. 4.3: Graphical representation of product innovation

4.3. Analysis of Accuracy Ratio:. A measure that can be used to evaluate how reliable the frame
work is in analyzing big data is through its accuracy ratio within ICF-IID. This determines how close or far
away were the results from actual ones as indicated by this ratio. Therefore ICF-IID aims at providing accurate
information concerning problems such as design flaws; equipment malfunctions; optimization possibilities among
others through use powerful machine learning algorithms coupled with predictive analytics. This implies that
anticipation outcomes are compared using historical versus live calculations based on Equation 17 thus enabling
outputs generated from it follow trends exhibited in available data set most appropriately.. High accuracy level
of fault identification as well as predictive maintenance confirms resilience and competence of algorithms’ and
protocols’. In view of these findings, according to simulation studies conducted on ICF-IID, its high accuracy
ratio makes it more credible in its forecast thus aiding in informed decision-making on industrial design. This
means that the framework provides correct and useful information for improving manufacturing and design
processes. In figure 4.2, ICF-IID’s proposed method of gaining an accuracy ratio is 98.32%.

4.4. Analysis of Product Innovation. In figure 4.3, ICF-IID is a framework for intelligent industrial
design that employs big data analytics and powerful computing resources to drive product innovation. It does
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Fig. 4.4: Graphical illustration of scalability

this by analyzing large datasets collected at different points in the design and manufacturing processes that
have led to groundbreaking success stories. With machinelike learning algorithms combined with predictive
analytics one can identify trends, anticipate consumer needs, propose changes to designs that would keep on
improving as shown by equation 19.

Both new product creation and the improvement of current product quality & functionality are accelerated
by this method. By being able to evaluate historical data in real-time, shortening time-to-market while increas-
ing competitiveness quick prototyping coupled with iterative design changes become a reality. The framework
focuses on data quality and integrity thereby ensuring practical Reliable solutions can be obtained through such
an approach since it considers all those aspects of data usage you put out here earlier on concerning reliability
or validity as well as others in your answer so far. Finally, ICF-IID allows firms to make decisions based
on data leading to sustainable product innovation satisfying ever-changing market demands. The proposed
methodology improves the ratio of product innovation by 97.65% in ICF-IID.

4.5. Analysis of Scalability Ratio. By its scalability ratio, one can see if an ICF is capable of managing
increasing data and complexity loads without losing any performance. On the other hand, this ratio gives in-
sights into the scalability of the framework to accommodate many design processes and datasets. Consequently,
large volumes of data are effectively handled by ICF-IID using scalable computing resources to ensure that no
matter how much load comes in they hold up performance. The distributed computing architecture is explained
in figure 9 which forms the basis for its capacity where resources can be optimized and parallel processing can
take place. Thus, whatever its complexity or size of data, processing speeds and accuracy remain high within
it. It means that ICF-IID has a good scalability ratio according to simulation results; therefore, it may be used
with confidence in industries experiencing growth. This is why modern industrial design environments rely on
this framework as it offers the potential for sustainable expansion as well as innovation. Thus, this leads to a
scaling ratio equals 97.41% shown in figure 4.4.

4.6. Analysis of Optimized Design Processes. Big data analytics are used by ICF-IID to enhance
the design process, making overall product development faster and more accurate. This is how predictive
analytics, machine learning algorithms and advanced visualization capabilities were integrated into all parts of
the design process through such a framework. The reason it helps designers make better choices when creating
their designs is that it systematically explored huge amounts of information from multiple sources, trying
to establish relations among them one after another. Therefore, quick prototyping iteration and refinement
enabled by optimization will save time as well as money compared to conventional design procedures while
designers often send out updated designs based on new information due to real-time analysis (fast feedback).
Additionally, the framework supports anticipative corrective actions during predictive maintenance and lifecycle



Application of Big Data Analysis in Intelligent Industrial Design Using Scalable Computational Model 1193

Fig. 4.5: Graph of optimized design process

management so that designers must constantly update their products to not only meet market demand but also
reduce possible risks associated losses., thus providing manufacturers with a significant competitive advantage
in relation to ICF-IID which leads to improved design process, shorter time-to-market and more innovation.
Figure 4.5 exhibits an increased optimized design process ratio by 96.21% in the suggested method proposed
for ICF-IID.

In this paper, simulation results improves the evaluation metrics: the scalability ratio of 97.41%, optimized
design process ratio of 96.21%, product innovation ratio of 97.65%, and efficiency ratio of 99.21%. These out-
comes demonstrate that the framework can manage intricate design settings, guaranteeing strong, data-driven
advancements in production. The results show that computational efficiency has improved, opening the prospect
of more comprehensive and responsive real-time data processing in intelligent industrial design. Increased opti-
mization of designs is the result of using big data analysis, which in turn allows for more informed and accurate
decision-making. The scalable computing architecture is also highly adaptable and can handle data of varying
amounts and complexity, making it ideal for use in a wide range of industrial applications. The suggested
technique benefits real industrial applications because these innovations result in demonstrable advantages,
including higher processing speed, more significant resource usage, and cost-effectiveness.The suggested system
could need more resources or more advanced optimization methods to handle large or complicated datasets
without compromising scalability. Secondly, certain organizations may not be able to adopt the technique
due to its high computing resource requirements. Finally, with inadequate data, big data analysis could not
work as well, which might affect the design process results. The methodologies utilized need further validation
across many industrial areas to prove their efficacy and wide application. Finally, there is a possibility that
this approach’s integration into present industrial workflows would be difficult and resource-intensive, requiring
substantial changes to the way processes are conducted.

5. Conclusion. The area of computer-aided industrial design has seen a surge in activity because of the
expanding reach and popularity of global information technology as well as the slow but steady process of
business informatization. This paper explores the industrial design information systems that use real-time
links are still in their initial stages. There is a dearth of computer-assisted research on industrial design from
an information resource and interface design perspective when it comes to design performance and system
integration. Furthermore, there is a dearth of information systems tailored to the requirements of industrial
designers, product consumers, and interaction designers, and the integration of such systems into businesses is
almost non-existent. With the goal of enhancing industrial design’s intelligent impact, this article integrates
spatial digital technology to build the community’s system structure. Experimental studies confirm that the



1194 Zhe Zhang, Heshuai Zhang

spatial digital technology-based intelligent industrial design system improves industrial design and has a positive
impact on the field.

Boosted decision-making and forecasting capabilities offered by big data analysis are rapidly becoming
essential components of intelligent production systems. Since big data adds value to a wide range of goods
and systems by incorporating state-of-the-art technology into more conventional production processes, it is an
important future viewpoint for the academic and business communities. This article discusses important ideas,
frameworks, technologies, and applications. Further investigation is required into the following areas: data
gathering methods; data categorization and analysis mining techniques; solutions to the data island issue; and
relevant industrial design data. Because of the importance of making accurate decisions in industrial design,
one of the field’s primary challenges is developing algorithm models that can give useful recommendations at
each step of the research and development process based on the relevant data gathered from different tests.
The proposed method increases the efficiency ratio of 9.21%. accuracy ratio of 98.32%, product innovation
ratio of 97.65%, scalability ratio of 97.41%, and optimized design process ratio of 96.21% compared to existing
methods.
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