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PRAZDROID: A NOVEL APPROACH TO RISK ASSESSMENT AND ZONING OF
ANDROID APPLICATIONS BASED ON PERMISSIONS

ANURADHA DAHIYA∗, SUKHDIP SINGH†, AND GULSHAN SHRIVASTAVA‡

Abstract. The proliferation of Android apps has increased harmful apps that aim to influence user security, privacy, and
device execution. Conventional detection techniques are becoming ineffective in identifying malicious applications as malware has
enhanced its cognition and ingenuity and has reached a point where they are more impervious. Novel approaches based on machine
learning have been provided to detect and classify malware threats. Still, the risk assessment of Android applications is significant
for enhancing user trust and needs more attention. Permissions analysis is an effective way for risk assessment and behaviour study
of Android apps because apps require permissions to access device functionality. In endorsement, this study proposes an approach
(PRAZdroid) for risk assessment using permissions analysis. The proposed approach analyzed the M0droid dataset and computed
five risk levels (Level 0 to Level 4). Statistical analysis is performed for risk levels and achieved 98 .07% classification accuracy
with the Drebin and Anrdozoo datasets.

Key words: Android apps security, Permission analysis, User privacy, Risk assessment, Reverse engineering, Static malware
analysis, Mobile security.

1. Introduction. The world of mobile devices is constantly changing as technology advances. Mobile
users have been pleasured with increasing speed, storage capability, power, and availability of application
services like games and online functioning. Malware attacks, specifically on Android devices, are rising with
the growing favour of mobile devices. The most significant issues with Android are related to security, as
it enriches competence with third-party software and open-source availability. Android apps are considerably
optimistic to hackers as they are incredibly prevalent, with millions of users worldwide. These apps are evolving
more insecure as hackers embed malicious code into them in intricate ways, making it complicated for security
providers to identify and detect malicious apps. Android users can access applications from the official Play
Store and third-party stores like ApkMirror and ApkPure. The official Android platform, Google Play Store,
reported 2.59 million apps during the second quarter of 2023, an 8559.4 % increase from the launch of it [1].

Google enforces several security and privacy policies on apps listed in the Play Store to foster a vibrant app
ecosystem and prevent users from engaging in malicious activity. However, challenges arise to balance security
with developer freedom and user convenience, which eaves new paths for malpractice. Therefore, applications
from the Google Play Store may not always be perfect; some apps from here have also been found to be
malicious. Additionally, certain restrictions exist on accessing the Google Play Store in some places, such as
China, Iran, and Cuba [2]. Alternatively, third-party app stores provide easy downloading and are operated by
different organizations, such as contraption vendors and web service providers. The global diversity of these
third-party stores has paved new paths for malware. According to PurpleSec cyber security report 2022, 98 %
of mobile malware focuses on Android, and 99.9 % of observed mobile malware originated through third-party
application stores [3].

Android uses the permission-based security model, allowing users to accept or reject app access to features
and data through requested permissions. When users enthusiastically install an application, they stop thinking
about the permission updates being asked by the application. They download the desired application and,
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when requested for installation, ignore everything else and initiate using it without considering the security
consequences. Furthermore, the usual users ignore permissions as they do not have technical knowledge of
permissions and their effects; it is challenging for them to make the right decision because both legitimate and
malicious apps may ask for similar permissions [4]. Most of these apps ask for additional permissions and use
user information without their awareness. An example of an additional requested permission is a calculator app
that asks for the device’s location and storage, demands access to the camera and internet, or loads unwanted
packs. The apps that ask for more permissions than necessary can have the potential to transform from a
benign to a harmful one.

However, Google has provided a multi-layered approach encompassing software, hardware, and user-enabled
features for securing Android devices. Even so, Android does not have control of third-party sources, and
downloading apps from these places can create the risk of malicious code or ads for users [5]. Simply detecting
malicious apps is not enough in the present stature of malware progress; there is a need for a risk assessment
system that enhances the capabilities of malware detection systems to inform users about the app’s unreasonable
permission requests and their impacts before app installation. So, this work analyzed the M0droid dataset [6]
of 400 samples (200 benign and 200 malware) using reverse engineering and found 210 permissions. Examining
these permissions using data parsing and set and map procedures results in 33 unique permissions used in
malicious apps, 112 unique permissions used in benign apps, and 65 unique permissions used in both malware
and benign apps. Based on these unique sets of permissions, five risk levels (level 0, level 1, level 2, level 3,
level 4) are assessed.

1.1. Motivation. This work aims to obtain insights into the prediction of malicious Android apps using
an ample permission analysis. The functionality of an app, which can be speculated from its description, is
usually linked to the permissions it requires. Several privacy-invasive and malware applications have been
observed to request more permissions than their alleged needs [7]. The present work took a malicious weather
app, parsed its APK file, and observed that it requests permissions for ”READ_CONTACTS” and ”RE-
QUEST_INSTALL_PACKAGES”. These permissions have no impact on the app’s intended functionality but
may compromise users’ privacy. Existing works have preferred binary classification using important prophets.
However, risk assessment has been overlooked, encouraging the user to lower the unwilling installation of mali-
cious applications. Risk assessment specifies the significant measures to inform the user in the permissive mode
and ensures trust.

The application of rule-based models and transparency of predictions is limited to a few studies such as
Karim et al. [8] adopted an methodology based on association rule mining. The present work leverages data
sources to identify predictive patterns of malicious Android apps. It departs from the conventional use of
predictive regression models by exploiting the potential of rule-discovery techniques to generate patterns that
link malicious permission presence with risk factors. Users can figure out the reasons behind the predictions as
the suggested work uses a collection of rules that describe data and assist in enhanced prediction capability.

The remanent sections of this paper are structured as follows: Section II summarises relevant literature.
Section III delves into an elaborate discussion of the proposed method. Section IV looks at the exploration &
results evaluation of the proposed method. Section V covers the analytical discussion on risk factors. Finally,
Section VI infers the work & provides suggestions for further research.

2. Related work. An efficient risk assessment can generate a risk-based prioritized list of untrusted input
apps. This list helps both users and innovators. Users can install and use low-risk apps, and innovators can
use it to select high-risk apps for further malware analysis. This section involves the miscellaneous practices
introduced in the literature to identify malicious behaviour apps and explore allied risk. Scientific literature on
Android applications risk analysis is confined and predominantly concentrates on permissions. Xiao et al.[9]
suggested permission analysis to recognize the difference between the minimum permissions needed for an app
to perform its work and the requested permissions of that app. This work combined collaborative filtering and
static analysis to find additional permission requests for an app and, based on additional requests, evaluate the
associated risk of the app.

Deypir and Horri [10] provided a metric that used instances of previously known malicious and non-malicious
apps to estimate the risk of unknown apps instead of using features such as permissions, intents, etc. This
approach presents previously known samples in a high-dimensional feature space. It computes the associated
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risk of an unknown app using its distances to known malicious and non-malicious app instances. The Euclidean
distance measure has been used here to estimate apps’ effectual security risk score. Most device users see that
graphical indications that present the summary of risk or safety scores work better for notifying them than
textual information on permissions. As Dhalaria and Gandotra [11] provided a risk detector for Android apps
using permissions features and an artificial neural network that identifies risk based on the probability of benign
and malware data samples. This work also designed a graphical user interface for uploading and testing the
app’s behaviour.

An adequate approach encourages users to select safe apps from the Android App Stores when the stores
contain different apps for the same functionality with variant risk scores. Sharma and Gupta [12] perused
Android apps using permissions analysis to determine the associated risks. This work initially analyzed the
M0Droid dataset samples permissions requests through reversing and achieved 165 permissions with usage rates
in malware and benign apps. Then, it compared the permissions from both types and quantified the risk into
four factors. The work also performed a statistical evaluation using ANOVA and t-tests to show the mutual
exclusiveness of risk factors. AlOmari et al.[13] looked at the effectiveness of several machine-learning algorithms
in identifying malware for Android devices. Their approach used PCA, normalized the numerical features, and
employed the Synthetic Minority Oversampling Technique (SMOTE) to accomplish higher accuracy. This work
identified Android malware and classified them into five categories: benign, adware, SMS malware, banking
malware, and mobile riskware using the Light Gradient Boosting Model.

Feature reduction assists in deciding the most pertinent features and enhances the machine learning model
results by allowing better distinction between benign and malicious apps. Sharma and Arora [14] provided an
approach that integrates intents & permissions. Normal & malware apps may use the same feature patterns,
but this approach ranks intents & permissions using a Chi-square test based on frequency to find distinctive
features. This work applied various deep learning & machine learning classifiers on the combined ranked
permissions and intents and achieved 98.49 % recognition accuracy. Upadhayay et al.[15] suggested fraudulent
activity recognition using permissions ranking & network traffic features. This work ranked commonly used
permissions in benign & malware apps, then removed the lower-ranked permissions using several thresholds.
It provided impressive results by applying machine learning models on a hybrid feature vector of the best
permissions and network traffic features.

Saracino et al.[16] provided a cross-layer classification model based on machine learning using hybrid fea-
tures, system calls, API, user activity, SMS, and application metadata. This work achieved 96.6 % accuracy with
the Genome, VirusShare, and Contagio datasets. The authors also pleaded that the presented work presents
low-performance overhead and limited battery consumption. Malleswari et al.[17] suggested an approach to
increase user awareness before allowing any permission. This work considered individual evaluation of the
permissions, negotiation of permissions, & the relative significance of permissions. The work recommended a
risk score derived with the assistance of fuzzy AHP based on permissions asked by the application.

The above-discussed approaches are a slight part of suggested and implemented detection methods; with
constantly updating technology, attacks are expanding rapidly and elongating the urge for new approaches. For
example, malware applications can auto-root themselves on devices and install other applications without the
user’s consent. This indicates the need for improved permission-based Android security methods to alert users
to malicious activity.

3. Proposed method. The main goal of the presented work is to extract prediction conventions for
Android apps to identify the risk level while installing them. The presented methodology is named PRAZdroid
as Permission-based Risk Analysis and Zoning of Android apps, which consists of four parts collection of data,
data pre-processing and aggregation, data analysis, and prediction, as shown in Fig. 3.1.

Various apps are collected from diverse sources during the data collection phase. These sources have
been identified with the help of relevant literature expressed by Dahiya et al.[18]. The data aggregation and
pre-processing phase has extracted permissions from app APK files and constructed permission groups based
on their use in apps. Data analysis involves rule discovery algorithms to extract hidden patterns from the
labelled training dataset. These patterns reveal the relationship between the occurrence of classes and which
combination of aspects led to a lower or higher risk of malware occurrence. In the last prediction phase, an
assessment is executed to evaluate the performance of predictions, and the end users are notified about the
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Fig. 3.1: PRAZdroid - Research Methodology

apps’ associated risks.

3.1. Data collection. The data has been downloaded from three different sources, and an overview of
them is presented in Table 3.1. These data sources are freely available online, requiring permission from the
respective research committee. Downloading AndroZoo data samples requires the API key of the authorized
user and the SHA256 value of the required app. Similarly, Drebin requires user login details of authorized users.
The present work has been analyzed with a substantial collection of 400 M0droid, 1350 AndroZoo, and 1350
Drebin app samples.

The permissions of apps from the M0droid dataset have been explored for training purpose. For testing
Drebin and Androzoo data collection have been taken, as Fig. 3.2 visualizes these sources and summarises the
information they provide about apps. Drebin contributes sample files of malware apps and feature vectors of
a large collection of malware and benign apps; with these sample files and feature vector permissions of apps
can be identified. Current work collected 1350 malware sample files from Drebin. Androzoo bestows a large
collection of apps in the form of apk files with information about the Virustotal detection mark, size of apk,
scan date, source of that apk, etc. It also provides app metadata in the form of manifest permission lists, etc.
From metadata and apk of apps, permissions can be extracted. The apps with a virus total detection value of
zero are considered benign apps; similar 1350 benign apps are taken from Androzoo.

3.2. Data aggregation and pre-processing. Android has followed a permission policy with predefined
permissions to perform specific activities. Any program can ask for the necessary authorizations. The required
permissions are specified by Android programs in the Android Manifest. In their manifest file, applications must
specify which permissions they want or need [21]. Android permissions control necessary access to application
data. Without the required permissions, data stored on the computer cannot be accessed. An Android app
is distributed through a packaged APK (Android Package Kit), which bundles all the essential resources to
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Table 3.1: Data sources

Source Description
M0droid [6] This dataset is bundled with an adequate approach for Android malware recognition by leveraging behavioural

analysis. It generated signatures for apps based on their system call requests, normalized the generated
signatures using z-score and median algorithms, and identified malware by comparing behavioural signatures
with blacklist signatures. The dataset contains 400 samples of apps, with 200 malware and 200 benign apps.

Drebin [19] It is widely used for Android malware analysis and detection research, including many apps from benign and
various malware families, FakeInstaller, DroidKungFu, Opfake, Kmin, Plankton, etc. This dataset is bundled
with an adequate approach that integrates static analysis & machine learning. It provides feature vectors for
1,29,013 samples, of which 1,23,453 are benign and 5,560 malware. It also provides 5,560 malware sample files
from 179 families and family labels for these files.

Androzoo [20] It is a massive dataset of Android apps that serves as a worthwhile resource for researchers, application
analysis, and security assembled from various sources, including Anzhi, Appchina, PlayDrone, Google Play
Store, Slideme, VirusShare, etc. It is constantly updated to reflect the evolving landscape of Android apps
and labels them malicious or harmless based on analysis by various antivirus products. Ample metadata,
including VirusTotal reports, static code analysis, manifest permissions, and behavioural analysis accompany
each app.

Fig. 3.2: Data sources essence

operate the app. AndroidManifest.xml file is the part of the APK that describes important details of the
application, such as the Application name, Required permissions, Version information, Package name, etc [22].

Firstly, the present work performed reverse engineering using ApkTool [23] as described in Algorithm 1
to analyze the permissions sought by Android apps in the M0droid dataset. ApkTool is an emphatic reverse
engineering tool for Android applications, which has been used here to extract manifest files. Fig. 3.3 shows
the manifest file of a benign app from the collection that discloses the list of required permissions and provides
valuable particulars about the app’s possible behaviour & data access. These extracted manifest files of each
malware and benign app have been read and parsed using the Python library BeautifulSoup with an ’XML’
parser to pull the respective permissions of apps. All elements that start with <uses-permission> have been
searched, as shown in Fig. 3.4 these specify the permission. The value of the ’android:name’ distinctive from
each <uses-permission> element has been extracted. Permissions of benign and malware apps have been
collected in respective benign and malware archives with their computation of uses. The similarity of these
archives has been measured using statistical measures Jaccard similarity, which is calculated as the entirety of
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Algorithm 1 Manifest Extraction from APKs
Input:

M = {M1,M2,M3, . . . ,Mn} // APK of Android malware applications
B = {B1, B2, B3, . . . , Bn} // APK of Android benign applications

Output:
ManifestB = {ManifestB1,ManifestB2,ManifestB3, . . . ,ManifestBn} // AndroidManifest.xml for benign apps
ManifestM = {ManifestM1,ManifestM2,ManifestM3, . . . ,ManifestMn} // AndroidManifest.xml for malware apps
procedure :

Initialize empty lists for Manifest files:
ManifestB ← emptylist
ManifestM ← emptylist
function extract_manifest(apk)

Run ApkTool(apk) to extract AndroidManifest.xml
if ApkTool returns SUCCESS then

return extracted AndroidManifest.xml
else

return ”Extraction Failed”
end if

end function
for each APK Bi in benign applications B do

ManifestBi ← extract_manifest(Bi) // Extract manifest of benign APK
Append ManifestBi to ManifestB

end for
for each APK Mi in malware applications M do

ManifestMi ← extract_manifest(Mi) // Extract manifest of malware APK
Append ManifestMi to ManifestM

end for
return ManifestB,ManifestM // Return the lists of manifests for benign and malware apps

end procedure

Fig. 3.3: Sample of manifest file

the intersection divided by the entirety of their union, as shown in Eq.(3.1).

Jaccard Similarity(B,M) = |B ∩M |/|B ∪M | (3.1)

The calculated similarity of 0.30 showed that 30% of permissions have been commonly used in both malware
& benign applications. This measure shows that the commonly used permissions are significant and require
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Fig. 3.4: Requested permissions

Fig. 3.5: Top-requested permissions of Android apps

regard for the soundest analysis, so three lists have been prepared as malware, benign, and common permissions
with a presence fraction. Fig. 3.5 shows an overview of the top permissions sought by benign & malicious apps.
This data represents the permissions that are sought exclusively by benign apps (benign permissions), those
solely demanded by malicious apps (malware permissions), and permissions that are commonly sought by both
types of apps (common permissions).

3.3. Data analysis. These sets of permissions are dissected with JRip (RIPPER) and PrefixSpan (Prefix-
projected Sequential Pattern Mining) models to discover hidden rules for indicating the risk of malware occur-
rence. These rules are extracted in the “IF-THEN” form as demonstrated in Eq.(3.2). In this statement, P is
the premise, and Q is the consequence. This means that Q is correlated with P because if P is satisfied, then
Q is true.

IF (P is X) THEN (Q is Y ) (3.2)

Relating Eq.(3.2) to permission-based malware analysis problems, it can be penned as an occurrence of
risky permission assets for the malware specified in Eq.(3.3).

IF (Risky permission is Present) THEN (App is Malicious) (3.3)

A rule consists of various interconnected elements and their coverage. These extracted rules are amal-
gamated to form the rule set for the final classifier. The training set is prepared with five attributes i.e.,
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permission, benign frequency, malware frequency, malware ratio, and class. The malware ratio is fixed for only
benign and only malware permissions, while for common permissions, it has been computed with benign and
malware frequency as specified in Eq.(3.4).

Malware ratio =
Malware frequency of permission

Benign frequency of permission
(3.4)

With the prepared training set, a supervised data mining algorithm JRip has been trained using the WEKA
tool [24] to induce rules. JRip [25] is a rule-based classifier that acquires rules explicitly from the training data
in IF-THEN statements form for making predictions. It generates rules through four steps i.e., growth, pruning,
optimization, and selection. Growth starts generating one rule by adding attributes to the rule until the stopping
criteria are met. Pruning shortens each rule by removing redundancy. Optimization tries to generate more
rules from the ruleset, and the selection phase selects effective rules. Repeated Incremental Pruning to reduce
error, Interpretability of rules, efficiency with large datasets, and stability with multiclass problems make JRip
a satisfactory choice.

The Explanatory variables are discretized into Negligible(N), Minor(M), Moderate(MD), Likely(L), and
Very likely(VL) based on histograms of these. The model has been trained using a 5-fold cross-validation.
Precision, Accuracy, F-measure, & Recall metrics are produced in each round. Accuracy is a common indicator
used to evaluate the classification effectiveness of a model in terms of the overall proportion of correct predic-
tions. Recall determines the proportion of factual positive instances correctly identified. Precision reflects the
proportion of accurate positive prophecies. F-measure combines recall & precision calculated as the harmonic
mean of these. The influence of rules is quantified using support and confidence criteria. Support directs to the
frequency of occurrences in the dataset that support a particular rule, and confidence refers to the frequency
with which a rule statement is true.

An additional analysis has been performed to understand the sequential relationship between permissions
acquired by apps. These findings can be helpful in better understanding the occurrence of malware. The
transactional dataset for both malware and benign apps has been prepared as shown in Table 3.2. The malware
transactional dataset includes each malicious app permissions request as a transaction. Similarly, the benign
transactional dataset includes each benign app permissions request as a transaction. These datasets are used
as input for the popular sequential pattern-mining algorithm PrefixSpan [26], which leads to only one pass
through the data sequence to identify frequent items. PrefixSpan reduces search space and improves efficiency
by promoting a divide-and-conquer process instead of a pattern-growth process that directly projects the
database based on frequent prefixes. The outcomes of this analysis revealed patterns of permissions used that
contribute to preparing the rule set for the final classifier.

3.4. Prediction. The observations of prefixspan and rules extracted from JRip are converged to construct
the ruleset for defining the final classifier. The rule set creation and risk prediction process is shown in Fig. 3.6
The frequent sub-sequences of permissions used in malware & benign apps and their behavioural analysis facts
extracted using rule predictor provide a pleasing base for ruleset creation. The risk level of an app is evaluated
by examining its requested permissions. Each requested permission is compared with the predefined ruleset,
and a corresponding score is given based on the matching. If permission matches the critical group rules, assign
its score value as critical. Similarly, the matching of permissions with neutral, high, and low group rules is
assigned with neutral, high, and low scores. Permissions that do not match any rules are assigned a default
score.

Now, the risk level of the app is estimated based on frequencies of scores assigned to its requested permis-
sions. A positive critical score classifies the app as a level 4 risk, and the frequency of the critical score is the
risk value that indicates the severity of the risk at this level. Apps with naught critical scores and a positive
high score are classified as level 3 risk. The frequency of the high score shows risk severity at this level. The
app with naught critical, high scores and a positive neutral score is classified as level 2 risk. The frequency of
the neutral score shows the risk severity of the app at this level. Similarly, naught critical, high, and neutral
scores with a positive low score classify an app as a level 1 risk, and the frequency of the low score reveals
risk severity. An app with all other scores naught and a positive default score is believed to be a normal app
without malicious activity, classified as level 0. The default score frequency reveals the app’s potency.
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Table 3.2: Sample of the transactional datasets

Malware

<”android.permission.INTERNET”,”android.permission.READ_PHONE_STATE”,”android.permissi
on.READ_CONTACTS”>
<”android.permission.CALL_PHONE”,”android.permission.INTERNET”,”android.permission.REA
D_PHONE_STATE”,”android.permission.READ_CONTACTS”,”android.permission.ACCESS_NET
WORK_STATE”>

transactional <”android.permission.READ_PHONE_STATE”,”android.permission.ACCESS_NETWORK_STATE”,
dataset ”android.permission.SEND_SMS”,”android.permission.INTERNET”,”android.permission.WRITE_E

XTERNAL_STORAGE”,”android.permission.INSTALL_PACKAGES”,”android.permission.DELET
E_PACKAGES”>
<”android.permission.ACCESS_WIFI_STATE”,”android.permission.INTERNET”,”android.permissi
on.READ_PHONE_STATE”,”android.permission.WRITE_EXTERNAL_STORAGE”,”android.permi
ssion.ACCESS_NETWORK_STATE”>
<”android.permission.WRITE_EXTERNAL_STORAGE”,”android.permission.INTERNET”,”androi
d.permission.READ_PHONE_STATE”,”android.permission.READ_SMS”,”android.permission.SEND
_SMS”,”com.software.application.permission.C2D_MESSAGE”,”com.google.android.c2dm.permission
.RECEIVE”,”android.permission.RECEIVE_SMS”,”android.permission.WAKE_LOCK”>

..................................

Benign

<”android.permission.INTERNET”,”android.permission.VIBRATE”,”android.permission.ACCESS_
COARSE_LOCATION”,”android.permission.READ_CALENDAR”,”android.permission.WRITE_EX
TERNAL_STORAGE”>
<”android.permission.INTERNET”,”android.permission.ACCESS_WIFI_STATE”,”android.permissi
on.ACCESS_NETWORK_STATE”,”android.permission.WAKE_LOCK”,”android.permission.WRIT

transactional E_EXTERNAL_STORAGE”,”android.permission.RECEIVE_BOOT_COMPLETED”,”com.android.
dataset vending.CHECK_LICENSE”>

<”android.permission.INTERNET”,”android.permission.ACCESS_NETWORK_STATE”>
<”android.permission.INTERNET”,”android.permission.ACCESS_NETWORK_STATE”,”android.p
ermission.RECEIVE_BOOT_COMPLETED”,”android.permission.GET_ACCOUNTS”,”android.per
mission.WAKE_LOCK”,”com.mobiusx.live4dresults.permission.C2D_MESSAGE”,”com.google.andro
id.c2dm.permission.RECEIVE”,”android.permission.VIBRATE”>
<”android.permission.RECORD_AUDIO”,”android.permission.VIBRATE”,”android.permission.WA
KE_LOCK”,”android.permission.READ_PHONE_STATE”,”android.permission.CAMERA”,”android
.permission.WRITE_EXTERNAL_STORAGE”,”android.permission.INTERNET”,”android.permissi
on.SEND_SMS”,”com.android.vending.CHECK_LICENSE”,”android.permission.CALL_PHONE”>

..................................

4. Results and discussion. As depicted in the prediction phase, the risk of an unknown app is identified
based on a request for permission analysis using rule-based classification. This section describes the results
of the risk classification process. The JRip data mining model identified underlying patterns as “IF-THEN”
rules displayed in Table 4.1. The importance of rules has been determined based on support and confidence
measures. Comparative support is the frequency with which the antecedent of a rule appears in the training
dataset. The outcome of the JRip model evaluation with 5-fold cross-validation showed a precision of 0.935,
recall of 0.957, and f-measure of 0.946. These obtained rules discovered the substance of predictor as benign
frequency, malware frequency, and malware ratio.

Glimpsing at the extracted rules, almost equal malware and benign frequency values directly correlate
with low-peril events. Similarly, negligible malware frequency correlates with no peril, and negligible benign
frequency correlates with high peril. The default rule specifies that no peril is induced when the predecessor of
any other rule does not match.

Additional analysis has been performed for pattern mining using PrefixSpan to detect frequent sequences of
permissions for malware and benign apps. A sample of the output results for malware & benign applications is
given in Table 4.2. These frequent sequences showed that a relevant portion of the malware applications
requested ”READ_PHONE_STATE”, ”ACCESS_NETWORK_STATE”, ”SEND_ SMS”, ”INTERNET”,
”WRITE_EXTERNAL_STORAGE”, ”INSTALL_PACKAGES”, and ”DE LETE_PACKAGES” permissions
together. Similarly, a relevant portion of the benign applications requested ”READ_PHONE_STATE”, ”WRITE_EXTERNAL_STORAGE”
, ”ACCESS_NETWORK_STATE”, and ”INTERNET” permissions together. Notable malware applications
requested only a single permission Internet or Internet and Phone State Access together to perform malicious
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Fig. 3.6: Rule-based prediction

Table 4.1: Rules identified by JRip

Rule Comparative Support
VL malware ratio and M benign frequency ⇒ medium peril 11

MD malware ratio ⇒ medium peril 18
[MD,M] benign frequency and [MD,M] malware frequency ⇒ low peril 20

N malware frequency ⇒ no peril 75
L malware ratio ⇒ medium peril 12

VL benign frequency and M malware frequency ⇒ very low peril 31
N benign frequency ⇒ high peril 33
M malware ratio ⇒ very low peril 22

[VL,L] benign frequency and [VL,L] malware frequency ⇒ low peril 29
default rule ⇒ no peril 45

activity. Further, malware applications frequently requested to read launcher settings and manage shortcut
permissions.

The frequent benign sequences revealed that benign applications typically focused on providing basic func-
tionality and enhancing the user experience. The frequent sequence of permissions ”RECEIVE_ BOOT_COM
PLETED”, ”WAKE_LOCK”, ”VIBRATE”, and ”WRITE_EXTERNAL_STORAGE” together produce a re-
sponsive user experience. The combination of permissions ”CHANGE_WIFI_STATE”, ”BLUETOOTH”, and
”BLUETOOTH_ADMIN” enhances wireless connection functionality. Although some similarities are found in
the permission requests of malware & benign apps, the frequent sequence & combination of permissions assist
in revealing distinct patterns for both. Permission combinations for malware are typically broader and more
sensitive, whereas benign app combinations are more closely aligned with user-focused functionalities.

Based on rule-based segmentation and permission analysis through frequent sequences, a rule set shown in
Table 4.3 is constructed to identify the risk level of an app. The permissions related to a feature have been
grouped together and assigned a risk score based on their uses in performing malicious and normal activity and
part of frequent sequences of benign and malware apps.
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Table 4.2: Sample of sequential rules extracted by PrefixSpan algorithm

Frequent

”android.permission.INTERNET”,”android.permission.READ_PHONE_STATE” support = 16
”android.permission.READ_PHONE_STATE”,”android.permission.ACCESS_NETWORK_STATE”,
”android.permission.SEND_SMS”,”android.permission.INTERNET”,”android.permission.WRITE_E
XTERNAL_STORAGE”,”android.permission.INSTALL_PACKAGES”,”android.permission.DELET
E_PACKAGES” support = 80
”com.android.launcher.permission.UNINSTALL_SHORTCUT”,”com.android.launcher.permission.RE
AD_SETTINGS”,”com.htc.launcher.permission.READ_SETTINGS”,”com.motorola.launcher.permiss
ion.READ_SETTINGS”,”com.motorola.dlauncher.permission.READ_SETTINGS” support = 23
”android.permission.INTERNET” support = 16
”android.permission.ACCESS_NETWORK_STATE”,”android.permission.READ_PHONE_STATE”,
”com.fede.launcher.permission.READ_SETTINGS”,”com.lge.launcher.permission.INSTALL_SHORT

sequences of CUT”,”com.lge.launcher.permission.READ_SETTINGS”,”com.motorola.dlauncher.permission.INST
permissions ALL_SHORTCUT”,”com.motorola.launcher.permission.INSTALL_SHORTCUT” support = 15
for malware ”android.permission.INTERNET”,”android.permission.ACCESS_NETWORK_STATE” support=20
apps ”com.fede.launcher.permission.READ_SETTINGS”,”com.lge.launcher.permission.READ_SETTINGS”

,”org.adw.launcher.permission.READ_SETTINGS”,”com.motorola.launcher.permission.INSTALL_SH
ORTCUT”,”com.motorola.dlauncher.permission.INSTALL_SHORTCUT”,”com.lge.launcher.permissi
on.INSTALL_SHORTCUT” support = 18
”android.permission.ACCESS_WIFI_STATE”,”android.permission.READ_PHONE_STATE”sup.=15
”android.permission.ACCESS_NETWORK_STATE”,”android.permission.ACCESS_WIFI_STATE”,
”android.permission.RECEIVE_BOOT_COMPLETED”,”android.permission.VIBRATE”,”android.p
ermission.WAKE_LOCK” support = 18
”android.permission.ACCESS_WIFI_STATE”,”android.permission.INTERNET”,”android.permission
.READ_PHONE_STATE”,”android.permission.RECEIVE_BOOT_COMPLETED”,”android.permissi
on.SEND_SMS”,”android.permission.WRITE_EXTERNAL_STORAGE” support = 17
”android.permission.INSTALL_PACKAGES”,”android.permission.READ_PHONE_STATE”sup.=40
”android.permission.READ_PHONE_STATE”,”android.permission.RECEIVE_BOOT_COMPLETE
D”,”android.permission.SEND_SMS”,”android.permission.WAKE_LOCK”,”android.permission.WRI
TE_EXTERNAL_STORAGE” support = 28
”android.permission.ACCESS_WIFI_STATE”,”android.permission.READ_PHONE_STATE”,”com.an
droid.launcher.permission.INSTALL_SHORTCUT”,”com.android.launcher.permission.UNINSTALL_
SHORTCUT”,”com.lge.launcher.permission.INSTALL_SHORTCUT”,”com.lge.launcher.permission.R
EAD_SETTINGS” support = 15
”android.permission.ACCESS_NETWORK_STATE”,”android.permission.ACCESS_WIFI_STATE”,
”android.permission.INTERNET”,”android.permission.READ_PHONE_STATE”,”android.permissio
n.RECEIVE_BOOT_COMPLETED”,”android.permission.WAKE_LOCK”,”android.permission.WRI
TE_EXTERNAL_STORAGE” support = 31

Frequent

”android.permission.INTERNET”,”android.permission.ACCESS_NETWORK_STATE”,”android.per
mission.WRITE_EXTERNAL_STORAGE”,”android.permission.READ_PHONE_STATE”support=45
”android.permission.RECEIVE_BOOT_COMPLETED”,”android.permission.WAKE_LOCK”,”andro
id.permission.VIBRATE”,”android.permission.WRITE_EXTERNAL_STORAGE” support = 19
”android.permission.ACCESS_COARSE_LOCATION”,”android.permission.ACCESS_FINE_LOCATI
ON” support = 23
”android.permission.READ_CONTACTS”,”android.permission.CALL_PHONE”,”android.permission
.READ_SMS”,”android.permission.WRITE_SMS” support = 15

sequences of ”android.permission.ACCESS_WIFI_STATE”,”android.permission.READ_PHONE_STATE”,”androi
permissions d.permission.WRITE_EXTERNAL_STORAGE” support = 25
for benign ”com.android.browser.permission.READ_HISTORY_BOOKMARKS”,”com.android.browser.permissi
apps on.WRITE_HISTORY_BOOKMARKS” support = 10

”android.permission.CHANGE_WIFI_STATE”,”android.permission.BLUETOOTH”,”android.permis
sion.BLUETOOTH_ADMIN” support = 15
”android.permission.WRITE_EXTERNAL_STORAGE”,”com.android.vending.CHECK_LICENSE”

support = 23
”android.permission.CHANGE_WIFI_STATE”,”android.permission.WRITE_SETTINGS”,”android.p
ermission.WRITE_SYNC_SETTINGS” support = 17
”android.permission.GET_TASKS”,”android.permission.RESTART_PACKAGES” support = 16
”android.permission.READ_CONTACTS”,”android.permission.WRITE_CONTACTS”,”android.per
mission.WRITE_EXTERNAL_STORAGE” support = 15
”com.android.vending.BILLING”,”android.permission.WRITE_EXTERNAL_STORAGE”support=20
”android.permission.GET_ACCOUNTS”,”android.permission.USE_CREDENTIALS”,”android.perm is-
sion.MANAGE_ACCOUNTS” support = 18
”android.permission.VIBRATE”,”com.android.launcher.permission.INSTALL_SHORTCUT”sup.=14
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Table 4.3: Overview of the rule set used for evaluation

Rule statement Description Assign
score

”android.permission.WRITE_SMS”/”android.permission.REA
D_SMS”/”android.permission.RECEIVE_SMS”/”android.per
mission.SEND_SMS”

Allows control of SMS communication such as
message reading, sending new ones, and spoil-
ing incoming messages.

High/
Neu-
tral/Low

”android.permission.ACCESS_COARSE_UPDATES”/”androi
d.permission.ACCESS_FINE_LOCATION”

Allows to access location information for re-
spective scenarios.

Default

”com.motorola.dlauncher.permission.READ_SETTINGS”/”co
m.motorola.dlauncher.permission.INSTALL_SHORTCUT”/”c
om.motorola.launcher.permission.INSTALL_SHORTCUT”/”co
m.motorola.launcher.permission.READ_SETTINGS”/”com.lge
.launcher.permission.INSTALL_SHORTCUT”/”com.lge.launch
er.permission.READ_SETTINGS”

Allows the creation of shortcuts on the home
screen of the respective launcher and the
reading of the configuration of the respective
launcher.

Critical

”android.permission.READ_CONTACTS”/”android.permissio
n.WRITE_CONTA CTS”/”android.permission.CALL_PHONE”

Allows control of contact management and
calling features.

Low

”android.permission.DELETE_PACKAGES” Allows system-level access to delete other apps
(packages) from the device.

Critical

”android.permission.ACCESS_NETWORK_STATE”/”android
.permission.INTERNET”

Allows to check network availability and con-
nect to the internet.

Default

”android.permission.CHANGE_WIFI_STATE”/”android.perm
ission.ACCESS_WIFI_STATE”/”android.permission.CHANGE
_NETWORK_STATE”

Allows to control the Wi-Fi and network status
of the device.

Neutral/
Low

”android.permission.MODIFY_PHONE_STATE”/”android.pe
rmission.PROCESS_OUTGOING_CALLS”

Allows control of the phone’s state and be-
haviour, and outgoing calls.

Neutral

”android.permission.ACCESS_LOCATION_EXTRA_COMMA
NDS”/”android.permission.ACCESS_COARSE_LOCATION”/
”android.permission.ACCESS_MOCK_LOCATION”

Allows the creation of mock location providers
and access to location information and addi-
tional location provider information.

Neutral/
Low

”com.software.application.permission.C2D_MESSAGE”/”com.
rvo.plpro.permission.C2D_MESSAGE”/”com.p1.chompsms.pe
rmission.C2D_MESSAGE”/”com.samsungmobileusa.magnacar
ta.permission.C2D_MESSAGE”

Allows access to the communication channels
of respective apps, such as allowing access to
push notifications and messages.

Critical

”android.permission.WRITE_SETTINGS”/”android.permissio
n.WRITE_SECURE_SETTINGS”/”android.permission.CHAN
GE_CONFIGURATION”/”android.permission.MODIFY_AU
DIO_SETTINGS”

Allows to modify the system settings for re-
spective requests.

Low/
Default

”android.permission.WRITE_EXTERNAL_STORAGE” Allows writing on device’s shared storage loca-
tions.

Default

”android.permission.STATUS_BAR”/”android.permission.INT
ERNAL_SYSTEM_WINDOW”/”android.permission.ADD_SY
STEM_SERVICE”

Allows modification of core system behaviours,
overlaying of system UI elements, and addition
of new system services.

Critical

”com.android.browser.permission.READ_HISTORY_BOOKM
ARKS”/”com.android.browser.permission.WRITE_HISTORY
_BO OKMARKS”

Allows to read and modify the significant in-
sight of online activities such as browsing his-
tory and stored bookmarks.

High/
Neutral

”android.permission.GET_TASKS”/”android.permission.KILL
_BACKGROUND_PROCESSES”/”android.permission.RESTA
RT_PACKAGES”

Allows to access the information of running
tasks and control of other applications.

Low

”android.permission.REBOOT”/”android.permission.BACKUP” Allows to control reboot and backup processes. Critical
”android.permission.BROADCAST_SMS”/”android.permissio
n.BROADCAST_WAP_PUSH”

Allows to control notifications of incoming
SMS and WAP PUSH messages.

Low

”com.facebook.katana.provider.ACCESS”/”com.mominis.perm
ission.preferences.provider.READ_WRITE”

Allows access to the respective app’s data
providers.

Critical

”android.permission.UPDATE_DEVICE_STATS”/”android.pe
rmission.READ_PHONE_STATE”/”android.permission.DEVI
CE_POWER”

Allows to access device information such as
phone status and power usage details, and to
control statistics updates.

Low/
Default

”android.permission.FLASHLIGHT”/”android.permission.VIB
RATE”/”android.permission.EXPAND_STATUS_BAR”/”and
roid.permission.SET_WALLPAPER”/”android.permission.WA
KE_LOCK”/”android.permission.DISABLE_KEYGUARD”

Allows to control the device features for respec-
tive requests.

Neutral/
Low/
Default

”android.permission.ACCESS_GPS”/”android.permission.ACC
ESS_LOCATION”

Allows to access device location information. High

Continued on next page
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Continued from previous page
Rule statement Description Assign

score
”com.android.launcher.permission.READ_SETTINGS”/”com.
android.launcher.permission.INSTALL_SHORTCUT”/”com.an
droid.launcher.permission.UNINSTALL_SHORTCUT”/”com.f
ede.launcher.permission.READ_SETTINGS”/”org.adw.launch
er.permission.READ_SETTINGS”/”com.htc.launcher.permissi
on.READ_SETTINGS”

Allows to read information about the home
screen setup, and to create and remove short-
cuts on the home screen of the respective
launchers.

Critical/
High/
Low

”android.permission.SET_DEBUG_APP” Allows to configure another app for debugging. Default
”android.permission.BROADCAST_STICKY”/”android.permi
ssion.READ_LOGS”

Allows to access device logs and broadcast per-
sistent messages.

Neutral/
Low

”android.permission.WRITE_APN_SETTINGS” Allows modification of APN (Access Point
Name) network configuration settings.

Neutral

”android.permission.PROCESS_INCOMING_CALLS”/”androi
d.permission.PROCESS_CALL”

Allows access to interact with and manage
phone calls.

Critical

”android.permission.CAMERA”/”android.permission.GET_AC
COUNTS”/”android.permission.RECEIVE_BOOT_COMPLE
TED”/”android.permission.BLUETOOTH”

Allows to access different features and capabil-
ities of the device.

Low/
Default

”android.permission.INSTALL_PACKAGES” Allows to initiate the installation of other ap-
plications.

Critical

”android.permission.SYSTEM_ALERT_WINDOW”/”android.
permission.RECORD_AUDIO”

Allows the creation of overlay windows and
recording of conversations.

Low

”android.permission.BATTERY_STATS”/”android.permission
.READ_OWNER_DATA”

Allows monitoring of device-specific informa-
tion and power usage.

Critical

”com.android.vending.CHECK_LICENSE”/”com.android.ven
ding.BILLING”

Allows to access services of Google Play Store. Default

”android.permission.REORDER_TASKS”/”android.permissio
n.SET_PROCESS_LIMIT”/”android.permission.SET_ALWAY
S_FINISH”/”android.permission.CLEAR_APP_USER_DATA”
/”android.permission.CLEAR_APP_CACHE”

Allows to control the application management. Critical/
High

”android.permission.READ_EXTERNAL_STORAGE”/”andro
id.permission.MOUNT_UNMOUNT_FILESYSTEMS”/”androi
d.permission.PERSISTENT_ACTIVITY”

Allows control of the device’s storage. Low

”android.permission.RECEIVE_WAP_PUSH”/”android.permi
ssion.WRITE_SECURE”/”android.permission.DELETE_CAC
HE_FILES”

Allows modification of secure system settings,
deletion of cache files, and processing of WAP(
Wireless Application Protocol) push messages.

Critical

”android.permission.RECEIVE_MMS”/”com.google.android.c
2dm.permission.RECEIVE”

Allows to receive notifications from google
servers and multimedia messages services.

Low

The main contribution of this research work is to classify Android apps into five different risk levels based
on static behaviour analysis. An investigation is performed with benign AndroZoo apps and malware Drebin
apps. To analyze the results, risk level 4 is classified as malware, and risk level 0 is classified as benign. First,
all permissions whose benign frequency was zero with a positive malware frequency and whose benign frequency
was less than or equal to one with a frequency of malware greater than or equal to 23 were placed at the critical
level. With each decreasing risk level, permissions were added by increasing the benign frequency by 7 and
reducing the malware frequency by 7. The results obtained from this analysis is shown in Table 4.4.

Then, three less-risky permissions were moved from critical to high level, and three high-risky permissions
were moved from default to low level, the results of which are shown in Table 4.5. Once again, three less-
risky permissions were moved from critical to high level, and three high-risky permissions were moved from
default to low level, the results of which are shown in Table 4.6. Tables 4.4-4.6 show the matrix, where each

Table 4.4: Malware & benign risk level

Class Level0 Level1 Level2 Level3 Level4 Total
Malware 86 123 524 57 560 1350
Benign 518 490 228 33 81 1350
Total 604 613 752 90 641 2700
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Table 4.5: Malware & benign risk level

Class Level0 Level1 Level2 Level3 Level4 Total
Malware 34 175 524 81 536 1350
Benign 355 653 228 51 63 1350
Total 389 828 752 132 599 2700

Table 4.6: Malware & benign risk level

Class Level0 Level1 Level2 Level3 Level4 Total
Malware 24 185 524 101 516 1350
Benign 316 692 228 86 28 1350
Total 340 877 752 187 544 2700

Fig. 4.1: Accuracy by different level

Table 4.7: Confusion matrix

Class Malware Benign Total Accuracy
Malware true negative false negative 1350 98.22 %
Benign false positive true positive 1350 97.92 %
Total 1354 1346 2700 98.07 %

cell represents the proposition of each class (Malware and Benign) with corresponding levels. Most malware
samples have been predicted at higher risk levels, with a small portion misclassified at lower levels. Similarly,
most benign samples have been correctly classified at lower risk levels, with a small portion misclassified at
higher levels. The respective accuracy, recall, and precision for different risk levels are shown in Figs. 4.1-4.3.

The work performance has been evaluated with parameters sensitivity, specificity, and accuracy, as in Eqs.
4.1 to 4.3 & the confusion matrix shown in Table 4.7. True positive is the correct classification of a positive
outcome, and false negative is the misclassification of a positive outcome as negative. Similarly, true negative is
the correct classification of a negative outcome, and false positive is the misclassification of a negative outcome
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Fig. 4.2: Precision by different level

Fig. 4.3: Recall by different level

as positive.

Sensitivity =
True positive

Total positive
= 97 .92% (4.1)

Specificity =
True negative

Total negative
= 98 .22% (4.2)
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Table 4.8: Statistical comparison of benign and malware apps at different risk levels

Malware Mean: 270.0, Median: 185.0, Std: 210.39676803601333
Benign Mean: 270.0, Median: 228.0, Std: 234.25797745220973
Pearson Correlation -0.35015232234884325
Risk Level 0 Difference = -292, Ratio = 0.0759493670886076
Risk Level 1 Difference = -507, Ratio = 0.26734104046242774
Risk Level 2 Difference = 296, Ratio = 2.2982456140350878
Risk Level 3 Difference = 15, Ratio = 1.1744186046511629
Risk Level 4 Difference = 488, Ratio = 18.428571428571427
Chi-square statistic 1099.355365399867
p-value 1.0445110871782864e-236

Table 4.9: Post-hoc Pairwise comparison

Level 0 vs Level 1 Chi2 Statistic: 32.95461756214981 p-value: 9.433542164126035e-09 Adjusted p-value (Bonferroni):
9.433542164126036e-08 Significant? Yes

Level 0 vs Level 2 Chi2 Statistic: 364.77674116066646 p-value: 2.5673262468768854e-81 Adjusted p-value (Bonfer-
roni): 2.5673262468768853e-80 Significant? Yes

Level 0 vs Level 3 Chi2 Statistic: 144.4108830167345 p-value: 2.8890715869634067e-33 Adjusted p-value (Bonferroni):
2.8890715869634066e-32 Significant? Yes

Level 0 vs Level 4 Chi2 Statistic: 674.747436073428 p-value: 9.27222763054354e-149 Adjusted p-value (Bonferroni):
9.27222763054354e-148 Significant? Yes

Level 1 vs Level 2 Chi2 Statistic: 386.8297061006291 p-value: 4.055656994876432e-86 Adjusted p-value (Bonferroni):
4.0556569948764324e-85 Significant? Yes

Level 1 vs Level 3 Chi2 Statistic: 83.30100038987347 p-value: 7.046393820082156e-20 Adjusted p-value (Bonferroni):
7.046393820082156e-19 Significant? Yes

Level 1 vs Level 4 Chi2 Statistic: 727.7937629862088 p-value: 2.7035449277334716e-160 Adjusted p-value (Bonfer-
roni): 2.7035449277334714e-159 Significant? Yes

Level 2 vs Level 3 Chi2 Statistic: 15.825440927996633 p-value: 6.94622342675924e-05 Adjusted p-value (Bonferroni):
6.94622342675924e-04 Significant? Yes

Level 2 vs Level 4 Chi2 Statistic: 124.59595077718842 p-value: 6.238825620876588e-29 Adjusted p-value (Bonferroni):
6.238825620876588e-28 Significant? Yes

Level 3 vs Level 4 Chi2 Statistic: 173.2655691717622 p-value: 1.4320964914080645e-39 Adjusted p-value (Bonferroni):
1.4320964914080645e-38 Significant? Yes

Accuracy =
(True positive + True negative)

(Total positive + Total negative)
= 98 .07% (4.3)

The chi-square test has been conducted to analyze the relationship between risk levels and app type
(benign/malware)—the statistical analysis observations for malware and benign apps are shown in Table 4.8.
A negative Pearson Correlation value indicates the inverse relationship between benign and malware apps.
The large chi-square statistics value (1099.36) with a vastly smaller p-value indicates strong evidence of a
relationship between app type and risk level. Initial chi-square showed apps are not distributed randomly;
there is a significant difference between malware and benign app distribution across risk levels. Further, a
Post-hoc Pairwise comparison has been performed to know the significant differences between every possible
pair of risk levels, the observations of which are shown in Table 4.9. These observations indicate significant
differences between risk levels particularly at extreme levels.

Comparative analysis sheds light on the exploration process and the subsequent interpretation of the
outcomes. Table 4.10 compares this work with the existing approaches based on the analytical framework,
identification of risk categories, and data representatives. The results show that the presented work identified
five risk levels for Android apps and performed well compared to existing works.

This research enhanced Android users’ awareness of the need to understand the permission requests of apps,
as allowing inappropriate permissions can put users at risk of malware attacks. The limitation is that this work
focuses only on the permission requests of apps; if an app does not request any permissions, it becomes difficult
to identify the exact nature of that app. Additional static features extracted from the manifest file analysis,
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Table 4.10: Comparison with previous works

Approach Analytical framework Identified risk categories Data
Set

Probabilistic risk detec-
tor [11]

Static permissions analysis and artificial neural network
model

Four (no, low, medium, and
high risk)

3547

AndroShield [27] Hybrid of static (code scanning) and dynamic (run-time
behaviour) analysis for vulnerability detection

Three (low, medium, high) 70

RNPDroid [12] Static permissions analysis and ANOVA and T-test Four (no, low, medium, & high
risk)

400

Focused on repacked
malware samples [28]

Static source code analysis and fuzzy hash of reverse-
engineered code

Three (benign, suspicious, ma-
licious)

3490

PRAZdroid (proposed) Static permissions analysis, demeanor rule mining
(JRip), and frequent pattern identification (PrefixSpan)

Five (level 0, level 1, level 2,
level 3, & level 4)

3100

such as intent filters, can be selected to extend this research.

5. Conclusion and future work. Android accessibility features and user‐friendly nature make it an
incredible platform for everyone. Although the Android ecosystem is growing and offers users a wide range of
applications to cover every plausible aspect of life, there is a potential threat in the form of malware. Attackers
influence Android users by injecting different menaces into Android applications. Malicious things pose as
seemingly benign applications and cause disturbance by stealing data, causing system disruptions, and risking
users’ privacy. Promptly identifying and diminishing these risks remains a major challenge. It is complicated to
determine the intentions of an app without using it, but every app requires permission authentication to access
the user’s device. Users are invited to grant an app’s privileges through the requested permissions. Attackers
mislead users to carry out malicious activities as other infiltration methods are nearly closed. The users ignore
security concerns and allow these permissions because technical skills about the permissions and their impacts
are needed to make a correct decision, and malicious apps may request permissions similar to benign ones.
Therefore, this work analyzed the permissions requested by Android apps and identified risk levels. These
risk levels are identified based on 210 extracted permissions, of which 33 permissions are requested only by
malicious apps, 112 permissions are requested only by benign apps, and 65 permissions are requested by both
malware & benign apps. In the future, the scope of analysis can be expanded to include monitoring resource
usage, runtime behaviour of apps, intent activities, and network traffic patterns. In addition, big data analytics
techniques can handle and process large amounts of app data efficiently.
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