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LARGE-SCALE INTELLIGENT NETWORK ATTACK DETECTION BASED ON
HIERARCHICAL SYMBOLIC DYNAMIC FILTERING

WEI LI BO FENG | AND LINA WANGH

Abstract. Smart grid technology enhances grid security, reliability, and efficiency. In order to ensure efficient and reliable
power distribution, it must address new vulnerabilities brought about by digital communication technology. In this paper, a new
Energy Efficient Anomaly Detection (EEAD) technique is proposed, which uses HSDF pre-processing and HMM learning. A
number of subsystems are initially created within the system. Hierarchical symbolic dynamic filtering (HSDF') converts time series
data into symbol sequences and then learns the causal relationship between the nominal characteristics of subsystems. Then the
converted sequences will be fed to the Hidden Markov model (HMM) which detects the anomaly by calculating the occurrence
probability of the current observation based on the trained network. Simulation results on an IEEE 118 bus system to verify the
performance of the suggested method under various operating conditions such as False Positive Rate, Detection rate, Accuracy,
and True Positive Rate.

Key words: Hierarchical symbolic dynamic filtering, Hidden Markov model, Energy Efficient Anomaly Detection, Smart grid,
Network

1. Introduction. The smart grid is still in its early stages of development, but as a cyber-physical network
and essential service, it is vulnerable to threats that are not anticipated and that arise when attackers insert
inaccurate, fraudulent, or malware information. The smart grid technology became added to enhance the
prevailing energy gadget via modernization. Various strength control and operation strategies are utilized in
the clever grid era to reap the very best feasible benefits [1]. These management and operations technologies
include smart meter implementations and consumer applications, smart inverters, production meters, generators
that generate renewable energy, and resources. Various energy savings in the grid centers will be installed.

Smart grid safety, security, and tracking will be improved by advanced monitoring and SCADA (supervisory
control and data acquisition) systems. However, energy systems are susceptible to cyberattacks that may
compromise the security of the grid [ 2]. Therefore, cyberattacks can cause computer viruses and anomalies
that compromise the security and resilience of smart grid systems. Cyberattacks can damage equipment by
overloading it, or generating erroneous requests and generating large amounts of energy. Additionally, malicious
attacks can also cause false-negative results that affect false overload conditions in the power grid [3]. Therefore,
real-time detection of cyberattacks is essential to ensure the reliable performance of critical infrastructures,
including the smart grid.

Targeted cyberattack detection and resilience to attacks require constant monitoring of the online system.
The literature suggests solutions to protect electrical systems and work. However, they are theoretically ex-
pensive, technically difficult, and not suitable for large and complicated circuits [4]. These challenges present
opportunities for information analytics methods like machine learning that use Al to tackle complex struc-
tured datasets to detect and prevent cyberattacks. Attack detection measures should be investigated as such
malicious activity adversely affects the safe and reliable operation of SGs [5].

In order to resolve these drawbacks, this research proposes a novel Energy Efficient Anomaly Detection
(EEAD) technique, which promotes safety by detecting cyberattacks on the smart grid. This proposed EEAD
technique system consists of the following major contributions:

e In this paper, a new Energy Efficient Anomaly Detection (EEAD) technique is proposed, which uses
HSDF pre-processing and HMM learning.
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e A number of subsystems are initially created within the system. Hierarchical symbolic dynamic filtering
(HSDF) converts time series data into symbol sequences and then learns the causal relationship between
the nominal characteristics of subsystems.

e Then the converted sequences will be fed to the Hidden Markov model (HMM) which detects the
anomaly by calculating the occurrence probability of the current observation based on the trained
network.

The remaining section of the research is structured as defined. The literature review is represented in
section 2. The proposed method is represented in section 3. Section 4 represents the experimental results and
Section 5 summarizes the conclusion.

2. Literature survey. Energy efficient anomaly detection techniques has increased the risks imposed by
serious cyber security attacks such as timed attacks, coordinated. Many studies have been conducted to solve
this problem. Among those, some of the techniques have been reviewed in this section.

In 2019 Karimipour, H., et al [6] Presented an unsupervised online anomaly identification algorithm that
develops effective computational methods for identifying relationships of cause and effect between subsystems by
using SDF| time series data partitioning, and feature extraction techniques. Results confirm system performance
with 99% accuracy, 98% TPR, and less than 2% FPR.

In 2019 Sakhnini, J., et al [7] presented a feature selection (FS) method that analyses three different
supervised learning methods. Each technique can be used in three different ways. These techniques have been
based on IEEE 14-bus, 57-bus, and 118-bus systems to evaluate their versatility. A simulation study reveals that
combining supervised learning and FS heuristic methods improves the performance of classification algorithms
for detecting FDI attacks.

In 2019 Geris, S. et al [8] presented an Anomaly detection method based on feature clustering combined
with a linear correlation coefficient algorithm (FGLCC). The suggested method uses decision trees as classifiers.
To verify the performance, we applied the proposed method to an IEEE 39 bus system. The outcome confirms
the higher accuracies (96%) and detection rate (97%) with a minimum false positive rate (1.65%) comparable
to existing techniques.

In 2020 Acosta, M.R.C., et al [9] presented a DR-based ML scheme to detect SCA threads in SG networks.
To overcome the computational complexity caused by the multi-dimensional space of large-scale energy sys-
tems, we apply the KPCA method to convert the data into low-dimensional space. The numerical outcome
demonstrates that the suggested scheme outperforms modern approaches and improves accuracies in detecting
stealthy cyberattacks in smart grid measurements.

In 2020 Al-Abassi, A., et al [10] presented a deep learning-based technique called Ensemble Stacked Au-
toEncoder (ESAE) that aims to address the problem of information imbalance. This technique develops a
deep represents learning model to generate accurate balanced represents, which leads to high performance on
unbalanced information. Using IEEE 14-bus, 30-bus, and 57-bus system test cases, the suggested technique is
evaluated for all degrees of data imbalance.

In 2020 Gunduz, M.Z. et al [11] presented IoT-based smart grid threats, and possible solutions are analyzed.
It provides a detailed overview of the smart grid cyber security state, focusing on types of cyberattacks. Spe-
cial emphasis is placed on discussing and researching network vulnerabilities, attack mitigations, and security
requirements. The aim is to gain a deeper understanding of cybersecurity vulnerabilities and solutions and to
provide guidance for future research directions of cybersecurity in smart grid applications.

In 2020 Dou, C., et al [12] presented a mechanism that combines variable-mode decomposition (VMD) and
machine learning. For the cause of figuring out the traits of FDIA, VMD is used to decompose the gadget
country time collection into a hard and fast of additives with specific frequencies. The simulation outcomes
reveal the effectiveness and robustness of our method.

In 2021 Monday, H.N., et al [13] presents a method for detecting distributed denial of service (DDoS) attacks
on smart grid infrastructure. For the cause of figuring out the traits of FDIA, VMD is used to decompose the
gadget country time collection into a hard and fast of additives with specific frequencies. The simulation
outcomes reveal the effectiveness and robustness of our method. The experimental consequences show that the
proposed technique detects DDoS assaults with a higher detection rate and a totally low false alarm rate.

In 2021 Khazaei, J. et al [14] Presented A two-level mixed linear programming (BMILP) model has been
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Fig. 3.1: Overall block diagram of the proposed EEAD Method

designed for accurately simulating false data information (FDI) for the purpose of traversing various transmis-
sion lines and causing power outages in large-scale networks. Compared with the present study, the suggested
model assumes that the attackers have limited access to the measurement buses. It models attacks on targeted
transmission lines that go undetected using the existing DC state estimation method.

In 2023 Bahadoripour, S., et al [15] presented a multimodal network attack detection model proposed to
analyze the network and sensor methods of the ICS environment and construct an abstract generic representa-
tion based on these methods. The results of using the Safe Water Treatment (SWaT') technique demonstrate
that the suggested model can existing unimodal models by achieving an accuracy of 0.99, recovering 0.98 and
f-measure of 0.98, showing the effectiveness of using both methods in a combined model to detect network
attacks.

From the above reviews, is found that these methods possess some drawbacks such as the computational
complexity caused by the multi-dimensional space of higher-scale energy systems. In order to overcome these
drawbacks a novel Energy Efficient Anomaly Detection technique is proposed in this section.

3. Proposed method. This paper proposes an Energy Efficient Anomaly Detection (EEAD) technique,
which uses HSDF pre-processing and HMM learning. A number of subsystems are initially created within the
system. Hierarchical symbolic dynamic filtering (HSDF) converts time series data into symbol sequences and
then learns the causal relationship between the nominal characteristics of subsystems

Then the converted sequences will be fed to the Hidden Markov model (HMM) which detects the anomaly
by calculating the occurrence probability of the current observation based on the trained network. The overall
block diagram for the suggested technique has been given in Figure 3.1.

3.1. Preprocessing. Pre-processing is a method used to enhance specific aspects and remove unwanted
distortions from the input image. Here, the Hierarchical Symbolic Dynamic Filtering (HSDF') has been proposed
in Energy Efficient Anomaly Detection (EEAD) technique.

3.1.1. Hierarchical Symbolic Dynamic Filtering (HSDF'). Inference is an approach to estimating
the probability of assigning a slow-time epoch 7, to a class D™ € D(here, D = {D™Vm = 1,--- , R} is the set
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of present classes) or a newly created class DPF1. Let the symbol sequence for the current slow-time epoch be
U,,. Afterward, the probability of class D™ for the present epoch 7, is provided by u(U., ) as demonstrated in

the previous article. Pr(D™, Um|l77:) which is similar to Pr(D™, Um|17}:) in this instance because all current
classes are finished and identified the symbols sequence , can be utilized to represent the following probability
for class determination. Using this configuration, acquire the information that follows:

Pr(D™|U,.) o p(Us, [U™)Nm =1,--- R (3.1)

It uses the Chinese Restaurant Process (CRP) to introduces the occurrence of a new type D*! with the CRP
hyperparameter ,, as follow (noted that the epoch-specific hyperparameter test 7,,).

R R R
Hoy, (DR+1‘UTTL) =Tn Z w(U-, [U™) = Z fr, (D™Uz,) = (1 = 7n) Z wUr, [U™) (3.2)
m=1 m=1 m=1

Here, we introduce the concept of sticky into the proposed algorithm based on the fact that practical
systems usually cannot oscillate their operating point or internal parameter conditions every slow period. In
the current context, this means that if a slow-time epoch 7,,_1 belongs to a class, D € D, there is a high
probability that the stream data is new at epoch 7,, also belongs to D*. This concept is incorporated into the
formula by giving a positive trend for the final seen classes D as follow:

R
>+, (D™U;,), iy, (D7|U,)} (3.3)

r
m=1

r
1—

1, (DU, ) = max(

Here, 0 < r < 1 is the coefficient of adhesion. Note that the rationale for this fit is to ensure some minimal
probability for the final seen classes D and this context, the suggested wording confirms,

:u’)’n (DT | UTn )
R —_ =
>y Hy (D™(U-,)

This can be verified by considering the extreme cases, here i, (D”|ﬁ;) before applying the stickiness factors.
According to numeric simulation outcomes in the remaining section, the "stickiness” adjustment substantially
decreases "hunting behaviour” in the process of class detection and development. Quantitatively, "predatory
behaviour” in detection and layering processes has been substantially reduced by the ”tracking” adjustment.
The numeric simulation outcomes in the remaining section will illustrate.

Lastly, the p, (D™|U,,) factors are normalized to obtained the posterior probabilities Pr(D™|U,,) for
each class as occurs:

(3.4)

pa (D |Ur,)
Sy, (DU,

A random sample is generated from this distribution for identity determination and class generation at test
time 7,.

Pr(D™|U,,) = (3.5)

3.2. Learning HMM (Hidden Markov Model). Here, the pre-processing of hierarchical index dynamic
filtering checks whether the anomaly detection is an attack or not. Hidden Markov models (HMMs) are
doubling stochastic procedures characterized by undetected (hidden) state processes that can be discovered
through an additional set of stochastic events generated by a set of observations. A set of hidden states
s ={s1, -+ ,sn} derived from observations of the network, here D is the no.of states in the modelling image,
permits HMM to characterize system dynamics. Strictly speaking, an HMM can be officially explained by the
unknown parameters § = {m, A, B}, Where m € RN is the initial probability vector that determines the initial
probabilities of the system in various states; A € RV*Y is the transition probability matrix associated with
the change of state of the latent variables; B is the issue opportunity matrix representing the probabilities of
predicting a particular price in array S.
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The hidden state sequences that expose a potential state s; of (™ across duration are particularly repre-
sented as X (™ = [Xl("), ‘e 7Xl(n)], where 1 < ¢ < M. The probabilities of transition from a state s, to the
state s, for 4,5 € {1,---, M}, is provided by the formula a,, , = R(X; = $;n|Xi—1 = s»), which is utilized to
determine the entries of the transition probabilities of matrix A. Lastly, the density function of the probability
distribution of the time-sample Z; at time t, while Z; is in the state s,,,, determines the entries of the emission
probabilities of matrix B, which is expressed by by, ; = R(Z;|X; = sm). A mixture of Gaussian distributions
is assumed as the emission probability distribution B in the proposed analysis, with M multivariable standard
densities. Often, changes in vegetation life cycles influence the set of states s. The anomalous discrimination
within the AD-primarily based totally HMM that arbitrates among the 2 hypotheses is described as follows:

HO: Anomalies are absent
H1: Anomalies are present,

where under hypothesis H1, a given graph Z(™ is considered the capacity of a given package is then followed

as
R(Z™0) = oo REZOIXOVRXD.0) = 5 o o T,

"'=Xl(n
aXl("),xén) . ~ag?l)_1,X§"), I

(3.6)

The HMM method parameter vector was determined by increasing the logging capability, in order to
accurately represent and learning the temporal framework of the fundamental information for AD.

G
0 = argy maxlog Z R(Z™)9) (3.7

n=1

where 6 is an improved parameter vector to describe X.

4. Result and discussion. This segment presents the experimental analysis of the suggested approach
to Energy Efficient Anomaly Detection (EEAD) techniques. Here, it describes the Performance metrics, Case
study, and Testing System.

4.1. Performance Metrics. In this section, the performance of the suggested technique under various
operating conditions such as Detection Rate, True Positive Rate, Accuracy, and False Positive Rate.

4.1.1. Accuracy. The accuracy of all correctly predicted categories to the dataset’s actual classifications
represents the prediction algorithm’s accuracy. Equation 4.1 determines the model’s accuracy.

TP+TN
TP+TN+FP+ FN

4.1.2. True Positive Rate. The true positive result is one in which the model correctly predicts the
positive outcome. Equation 4.2 determines the model’s true positive rate.

TP
True Positive Rate(TPR) = TP+ FN (4.2)

(4.1)

Accuracy =

4.1.3. False Positive Rate. In the positive class, the FPR measures the percentage of incorrect predic-
tions. Equation 4.3 determines the model’s False positive rate.

FP
False Positive Rate = FPLTN (4.3)

4.1.4. Detective Rate. It is the proportion of true positive to all non-self-results discovered by the
detecting array, here TP and FN are the totals for true positive and false negative samples, respectively.
Equation 4.4 determines the model’s Detection rate.

Detection rate = TPTP + FN (4.4)
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4.2. Case Studies. In this section, case research below distinct working situations is simulated to confirm
the effectiveness of the suggested method. Case 1 is modelled as a physical network system with multiple agents
based on the IEEE 118 bus model, each containing a generator. Figure 4.4 shows that stored energy represents
energy that can be injected into the system from various smart grids. The attack strategy involves overloading
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Fig. 4.5: Measurement residual and cyber-attack

lines 27-32 and 80-99. Figure 5 shows the attack area. Residues normalize under normal operating conditions
due to errors and network attacks presented. It can be seen that all the measurement residues resulting from
the cyberattacks have approximately the same amplitude as those measured under normal operating conditions,
which implies that conventional residue testing can’t detect stealthy cyber-attacks.

4.3. Testing System. A description of the case studies is provided by Matpower. The case studies are
all assumed to be fully observable.

To ensure the accuracies of ancient information, the measurement model has been secured. Providing meter
protection for large smart grids is very costly due to their thousands of meters. It recognizes crucial meters
and safeguards them based on the most effective PMU placement to decrease expenses. It also imagines that
a typical day won’t bring any changes to the network topology.
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4.4. Computational complexity comparison. The computational complexity of the self-recognition
module was tested using various parameters. Specifically, we compared complexity based on runtime and
different input sizes by simply changing the k parameter. As shown in Figure 4.6, the execution time keeps
changing, but the linear complexity can usually be maintained for different input sizes. This is mainly because
in the branch I of the self-perception model, linear projection can be effectively used to obtain a k-dimensional
sequence that can be computed in relation to latent nodes. So, the complexity can be greatly reduced to O(n).

5. Conclusion. In this section, a novel Energy Efficient Anomaly Detection (EEAD) technique is proposed,
which uses HSDF pre-processing and HMM learning. A number of subsystems are initially created within the
system. Hierarchical symbolic dynamic filtering (HSDF) converts time series data into symbol sequences and
then learns the causal relationship between the nominal characteristics of subsystems. Then the converted
sequences will be fed to the Hidden Markov model (HMM) which detects the anomaly by calculating the
occurrence probability of the current observation based on the trained network. Simulation results on an IEEE
118 bus system to verify the performance of the suggested technique under various operating conditions such
as False Positive Rate, Detection rate, Accuracy, and True Positive Rate.
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