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ACDPSNET: ADAPTIVE CROSS DOMAIN POLARITY ASPECT LEVEL LEARNING
SCALABLE COMPUTING MODEL FOR SENTIMENT CLASSIFICATION AND

QUANTIFICATION

JHANSI RANI T∗, SWAPNA NEERUMALLA†, AKUNDI SAI HANUMAN ‡, B. VEERASEKHAR REDDY §, AND KAYAM
SAIKUMAR¶

Abstract. Automatic sentiment classification, identifying opinions as positive, negative, or neutral, is essential across diverse
applications. However, applying a sentiment classifier trained on labeled data from one domain to a different domain often
leads to degraded performance, as domain-specific language terms common in the source domain may not appear in the target
domain. This research proposes an Adaptive Cross-Domain Polarity-Specific Network (ACDPSNet) for sentiment classification and
quantification across domains. The model leverages labeled data from the source domain alongside labeled and unlabeled data from
the target domain to build a robust, adaptable domain adaptation framework. Sensitivity to sentiment is enhanced by embedding
polarity-specific sentiment annotations into semantic vectors, enabling accurate computation of distributional similarities between
terms. The framework integrates a classifier that is both domain-specific and domain-invariant to ensure accurate analysis and
classification. ACDPSNet achieves notable performance improvements, with an accuracy of 98.76%, recall of 97.85%, throughput
of 96.94%, and a positive learning expression rate of 97.76%, demonstrating significant advancements over existing approaches.
These metrics underscore ACDPSNet’s effectiveness in adapting to new domains, achieving high sentiment quantification accuracy,
and enhancing cross-domain polarity detection.

Key words: Polarity, Domain Transfer, Scalable computing Pivot Model, Domain Adaptation and Cross-Domain Sentiment
Classification

1. Introduction. The increasing importance of sentiment analysis across various applications has led to
significant research interest in this field. Traditional studies often emphasize predicting the sentiment of entire
texts, ranging from paragraphs to individual phrases [1]. However, accurately discerning sentiment towards
specific aspects within a text is essential, as it requires an in-depth understanding of the contextual language
surrounding those aspects. This challenge, known as automatic sentence-level sentiment classification [2], is
crucial for applications such as market analysis, opinion mining, and contextual advertising.

Cross-domain sentiment classification is particularly challenging because it involves applying classifiers
trained on one domain (source domain) to a different domain (target domain). This challenge entails two
significant issues: identifying the common characteristics between the source and target domains and developing
a learning framework that incorporates this relatedness. In our research, we propose a hybrid approach for
emotion classification across domains to address these challenges effectively.

In sentiment analysis, accurately determining the polarity of opinions at the aspect level is critical, espe-
cially when dealing with the complexities of language, context, and topic variations across different domains.
Traditional sentiment classification methods often struggle to maintain accuracy in cross-domain scenarios,
where these variations can significantly impact performance. The challenge is even greater when the objec-
tive extends beyond classification to quantification—estimating the prevalence of each sentiment class within a
dataset.
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Fig. 1.1: Positive, Negative and both neural

Adaptive Cross-Domain Polarity Aspect-Level Sentiment Classification and Quantification represents a
pivotal area of research, aimed at overcoming these challenges. This approach focuses on developing models
that can adapt to new domains with minimal labeled data while providing robust sentiment quantification.
By leveraging the potential of cross-domain transfer learning, these models can be effectively applied to new
domains, thereby enhancing both classification accuracy and the reliability of sentiment quantification.

Polarity classification. Figure 1.1 illustrates the outcomes of our proposed research, which focuses on
developing and evaluating adaptive methods that not only classify sentiment at the aspect level but also
quantify the distribution of sentiment across different domains. This dual approach is particularly important in
scenarios where understanding both the intensity and distribution of sentiment is as crucial as identifying the
sentiment itself. By addressing these challenges, our research contributes to the broader objective of creating
more flexible and accurate sentiment analysis systems capable of operating effectively across a wide range of
domains and contexts.

Aspect-level sentiment classification (ASC) is a nuanced task in sentiment analysis that aims to determine
the polarity—positive, neutral, or negative—towards specific opinion targets within a sentence. For example,
in the sentence ”Average to good Thai food, but terrible delivery,” the opinion targets are ”Thai food” and
”delivery,” with corresponding sentiments being positive and negative, respectively. The advent of deep learning
in natural language processing (NLP) has significantly advanced ASC tasks, with neural network models often
outperforming traditional machine learning techniques. These deep learning models have demonstrated superior
performance in ASC due to their ability to capture complex patterns in the data. Given the specific requirements
of ASC, particularly the need to distinguish between sentiments expressed towards different targets within the
same context, recent studies have increasingly incorporated attention mechanisms into deep learning models.
These attention-based approaches improve sentiment prediction by focusing on sentiment-laden words that are
relevant to specific targets.

However, the effectiveness of deep learning models heavily depends on the availability of sufficient training
data. In practical applications, generating aspect-level training data requires extensive manual annotation,
which limits the size of available public datasets and, consequently, the performance of neural network models.
On the other hand, large volumes of document-level sentiment classification (DSC) labeled data are available
from many online review platforms, offering rich emotional insights and semantic patterns. This presents an
important research question: how can the valuable knowledge contained in DSC data be harnessed to enhance
ASC tasks, especially when aspect-level resources are limited. The core challenge in cross-domain sentiment
classification is training a classifier on one or more source domains and effectively applying it to a different
target domain. Our proposed framework, named Adaptive Cross-Domain Polarity Aspect-Level Sentiment
Classification and Quantification (ACDPASCQ), addresses this challenge by integrating various methodologies.
It employs co-training on target unlabeled data to achieve invariant classification and analysis, extracts both
domain-invariant and domain-specific aspects from the target domain data, and identifies significant polarity
words that are consistent across domains.

The objectives the work follows:
1. Transferable Information Across Domains
2. Identification of Target Features from Source and Target Domains
3. Classification and Analysis of Cross-Domain Sentiment

By integrating these approaches within the ACDPASCQ framework, we aim to provide a comprehensive
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solution to the challenges posed by cross-domain sentiment classification.

2. Related work. The field of sentiment classification systems is generally divided into two main cat-
egories: single-domain classifiers [2] and cross-domain classifiers [3]. Our research centers on document-level
cross-domain sentiment classification [4]. In this context, a classifier is initially trained for single-domain
sentiment categorization using labeled data specific to the application domain [4]. For example, Turney [5]
introduced an approach using point-wise mutual information to assess the sentiment of a word by analyzing
its co-occurrence with manually selected positive (e.g., fine, wonderful, fantastic) and negative (e.g., dreadful,
unpleasant, weak) words. While single-domain sentiment classification has been extensively explored [6], recent
advancements in domain adaptation techniques have brought cross-domain sentiment classification into focus.

The objective of sentiment classification is to assign an emotional polarity to a given text, typically cat-
egorized as positive, negative, neutral, or into more nuanced categories. This area has garnered significant
attention in recent years [7], particularly because real-world texts often involve multiple target entities or spe-
cific aspects of a topic. Customer reviews serve a dual purpose: they help other customers make informed
decisions and assist online retailers in predicting sales [8] and understanding customer preferences [9]. This
understanding enables retailers to craft effective marketing strategies to boost revenue. However, the sheer vol-
ume of reviews across diverse domains on these platforms presents a challenge in efficiently extracting the most
relevant information. Consequently, researchers have increasingly focused on developing automated methods
for cross-domain aspect-based sentiment classification [10].

The primary challenge in cross-domain aspect-based sentiment classification lies in the discrepancy between
the training and testing data, which originate from different domains and thus exhibit distinct characteristics
[11]. Previous studies have explored two main approaches to address this issue: data-based and feature-based.
The data-based approach focuses on constructing a training dataset that closely resembles the target data.
Typically, this involves generating pseudo-labels for the target data and incorporating these labeled target data
into the training set [12]. However, the effectiveness of this approach heavily depends on the quality of the
generated pseudo-labels, which directly impacts the model’s performance. A feature-based approach has been
proposed [13] to overcome the limitations of the data-based approach. Rather than generating pseudo-labels,
this approach seeks to identify domain-independent features shared between the source and target domains.
These features often include syntactic dependency relations and domain-independent words [14]. Researchers
have employed models such as Conditional Random Fields [15] and Recurrent Neural Networks [16] to encode
syntactic dependency relations. For domain-independent words, higher weights are assigned to these words
than domain-specific ones [17].

By leveraging domain-independent information, connections between the source and target domains are
established, enabling the trained model to perform well across both domains. Aspect-level sentiment classifi-
cation (ASC) has seen significant advancements, particularly with the adoption of deep learning methods that
enhance the precision and accuracy of sentiment analysis at a granular level [18]. Traditional approaches to
ASC often relied on supervised learning techniques that required substantial amounts of annotated data, posing
limitations, especially when adapting models to new domains with scarce labeled data.

Cross-Domain Sentiment Analysis. This area of research has emerged to address the challenge of transfer-
ring knowledge from a source domain, rich in labeled data, to a target domain with limited or no labeled data.
Early works, such as those by [19], utilized domain adaptation techniques to reduce discrepancies between do-
mains, enabling more effective sentiment classification across different contexts. These foundational approaches
paved the way for more sophisticated methods that incorporate deep learning.

Deep Learning and Attention Mechanisms. The advent of deep learning has introduced neural networks as
the backbone for ASC. Models such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs) have been widely adopted for their ability to learn features from data automatically. Attention mech-
anisms have further enhanced ASC by allowing models to focus on relevant text parts when making sentiment
predictions. Attention-based models, such as the Hierarchical Attention Network [20] and the Aspect-Based Sen-
timent Classification model [21], have significantly improved capturing sentiment at the aspect level. Domain
Adaptation Techniques: Recent studies have explored various domain adaptation techniques in conjunction with
deep learning to improve cross-domain ASC. Models like Transfer Learning with Fine-Tuning and Adversarial
Training for Domain Adaptation have shown promise in transferring sentiment knowledge from one domain
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to another, improving classification accuracy in the target domain. These methods are particularly effective
when domain-specific language and context differ significantly. Sentiment Quantification: Beyond classification,
sentiment quantification has become an important research area. The goal is not just to classify sentiment but
to quantify sentiment distribution across different categories within a dataset. Traditional sentiment quantifi-
cation methods, such as those proposed by [22], relied on aggregated document-level predictions. However,
recent advancements have integrated quantification techniques with deep learning models, allowing for a more
accurate estimation of sentiment prevalence in diverse domains. Challenges and Future Directions: Despite
these advancements, challenges remain in achieving robust cross-domain ASC and sentiment quantification.
One of the main difficulties is the heterogeneity of language and sentiment expression across domains, which
can lead to reduced model performance. Future research will likely focus on developing more sophisticated
domain adaptation techniques, possibly leveraging unsupervised or semi-supervised learning to reduce reliance
on labeled data [23]. Additionally, integrating quantification with ASC in a unified framework remains an open
research question with the potential to significantly enhance the practical applicability of sentiment analysis
models in real-world scenarios [24]. The existing models are facing issues with misclasses balancing and batch
normalization. The open-source dataset used by earlier models can drop its MAP (Mean Average Precision)
and performance [25]. The limitations of existing models can be crossed over through custom deep-learning
models with benchmark dataset training.

3. Proposed Methodology. This paper first evaluates the adaptive cross-domain polarity aspect level
sentiment classification and quantification (ACDPASCQ) framework for domain adaptation. We design a
polarity of aspect-level sentiment analysis by deriving the polarity of words for labeled and unlabelled data
with a pivot model. Classification of labeled and unable data across domains using domain invariant and specific
classifier.

Aspect-Level Sentiment Classification. In the early research on aspect-level sentiment classification (ASC),
the primary methodologies were heavily dependent on feature engineering. For example, Kiritchenko et al.
[9] utilized n-gram features and developed new lexical resources, integrating these features into classification
models using Support Vector Machines (SVM). Similarly, Yi and Zhou [10] designed sentiment feature vectors by
calculating sentiment values and employed models such as Naive Bayes and SVM for training. Although these
methods achieved notable results, their performance was largely contingent on the quality of manually crafted
features, which demanded significant time and effort in feature design. The advent of deep learning addressed
these limitations by enabling neural network models to automatically learn crucial sentiment features from text
based on sentence vectors, eliminating the need for manual feature construction. Dong et al. [4] were among
the first to apply Recurrent Neural Networks (RNNs) to ASC, improving sentiment classification accuracy by
using RNNs to extract sentiment polarity from text and integrating syntactic structure information to support
the model. Xue et al. [3] introduced a convolutional neural network (CNN) model with a gating mechanism
that selectively outputs emotional features through convolutional layers. To mitigate the issue of gradient
explosion associated with RNNs, Tang [2] proposed the use of Long Short-Term Memory (LSTM) networks,
which model the left and right contexts of a given opinion target to extract sentiment information. However,
due to the fine-grained nature of ASC, these models often struggled to effectively capture the relationship
between the context and the specified opinion target. To address this challenge, subsequent research focused
on incorporating attention mechanisms to capture target-dependent sentiment contexts. Wang [5] proposed an
attention-based LSTM that enhances relevance by concatenating aspect word vectors with context vectors and
then applying self-attention to extract sentiment knowledge specific to the aspect word and its context. Xu [11]
introduced a dual attention module, combining global and local attention to capture different granularities of
interaction information between aspects and contexts. Lin [12] utilized multi-head target-specific self-attention
to better capture global dependencies and introduced target-sensitive transformations to address target-specific
sentiment. Liu [13] further refined sentiment feature extraction by employing multi-head attention to capture
semantic information between words related to the specified aspect and replaced the softmax function in the
classification layer with SVM to improve feature representation in high-dimensional space. Li [6] integrated
syntactic dependency information with semantic information, facilitating interaction between aspect words and
sentences through attention-based graph convolutional networks (GCNs). Huang [14] developed a contextual
location weighting function that considers the positional information of aspect words within the context, thereby
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reducing the influence of surrounding words on sentiment polarity. Despite the significant improvements in
ASC performance brought about by these deep learning-based methods, they remain highly dependent on the
availability of data. The limited size of existing ASC datasets constrains the ability of these supervised models
to realize their full potential. To overcome this limitation, this paper proposes leveraging the Document-Level
Sentiment Classification (DSC) task to transfer a large amount of sentiment knowledge, thereby mitigating the
impact of insufficient data on ASC performance.

Transfer Learning. Transfer learning aims to utilize knowledge from one or more related tasks (source
tasks) and apply it to a different but related target task. Transfer learning techniques in natural language
processing (NLP) are generally categorized into three main types: instance transfer, model transfer, and domain
adaptation. These methods have been successfully implemented in various NLP subtasks, including machine
translation [14], question-answering systems [16], and speech recognition [17]. Model transfer has become a
well-established method for leveraging knowledge from document-level tasks to support aspect-level tasks.

Model transfer is often employed in multi-task learning, where data from multiple related subtasks are used,
and shared modules are applied to learn the relationships between these tasks, thereby extracting additional
useful information. For instance, Xu [18] introduced a pre-training plus multi-task learning model. This
approach first involves training on a document-level dataset using a shared BiLSTM module to obtain pre-
trained weights. These weights are then retained as initialization parameters for the shared part of the model.
Subsequently, aspect-level data are fed into the pre-trained model to train both tasks simultaneously, allowing
for fine-tuning of the weights.

To enable the flexible application of document-level knowledge, Chen [32] proposed a model based on
transfer capsules. Unlike the method used by Xu [18], Chen’s approach employs multi-task learning with
heterogeneous datasets [20], where both document-level and aspect-level datasets are fed into the model simul-
taneously. The shared parameters are dynamically optimized, and at the upper layer of the model, semantic
capsules and dynamic routing are combined with the transferred knowledge.

While these methods are highly effective, they are limited by the hard parameter sharing inherent in vanilla
model transfer (VMT) [21] used within the shared modules. This hard sharing can lead to a scenario where
the shared module negatively impacts learning in the target task due to differences in tasks and data. In
contrast, our auto-adaptive model transfer method addresses these discrepancies, allowing the model to learn
more refined and relevant information from the auxiliary task, thereby enhancing the accuracy of ASC.

Domain Adoption. A set of ns fully named Ds = (xs 1, ys 1) and (xs ns, ys ns) = Rd = Y chosen from the
Ps(X, Y) array make up the root domain. Also divided into nl (nl ns) categorized points is the aim data. Dl t
= (xt 1, yt 1), xt nl, yt nl Nu (nu nl) unlabelled points and Ru Y from the distribution Pt(X, Y) Du t is equal
to (xt nl+1,yt nl+1), The objective is to build a classifier for target data using the source domain data and a
few selected target domain data.

In this section we present CMD parameters used to calculate the variance between two Random variables
in the distribution of probabilities. Here, we extract the domain-specific and Domain invariant representation
from the target domain instances. Finally, demonstrate how these two interpretations can be mixed using the
co-training framework shown in figure 3.1.

3.1. Central Moment Discrepancy (CMD). Zellinger et al. (2017) suggested the CMD parameter
to calculate the difference between two (high-dimensional) random variables in the probability distributions.
Let X and Y be random samples bounded at the interval [a,b]N with p and q, the corresponding probability
distributions. The CMD regulator CMDK is specified as

CMD(X,Y ) =
1

|b− a|
∥E(X)− E(Y )∥2 +

1

|b− a|k
k∑

k=2

∥Ck(X))− Ck(Y )∥2 (3.1)

The vector of analytical expectations based on the X sample is denoted by

E(X) = 1|X|PxϵXx. (3.2)

Ck(X) = (E(

n∏
i=1

)Xi − E(Xi))
ri)ri≥0,

n∑
i

ri = k (3.3)
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Fig. 3.1: Proposed model Block Diagram

Is the matrix of all kth order sequence main co-ordinate times X. The implicit interpretation of this equation
is that whenever two distributions of probabilities are close, There will be a closer core moment of greater order.

3.2. Retrieve Domain Specific and Domain Invariant Representations. Our goal in this work is
to obtain both a domain-specific counterpart and a domain-invariant representative for every target instance.
Using two separate mappers, Et and Ec, respectively, Data is converted into a unique hidden space for the
desired domain and a domain-invariant hidden space.

Hs
spe = Et(Xs,Θ

t
e) (3.4)

Ht
spe = Et(Xt,Θ

t
e) (3.5)

Ht
spe = Et(Xt,Θ

t
e) (3.6)

Hs
inv = Et(Xs,Θ

c
e) (3.7)

Ht
inv = Et(Xt,Θ

c
e) (3.8)

The goal domain-specific mapper in this case is Et stands for the mapper that is domain invariant, and Ec.
The related parameters are defined by Θ c

e and Θ t
e Encode signifies the subscript e. Depending on the hidden

Ht
invandH

t
spe representations, we are creating an autoencoder for the examples of target domains:

Xt = Dt(H
t
inv,H

t
spe,Θ

t
d) (3.9)
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As far as parameters are concerned,Θ t
d the d subscript denotes decoding. The resulting reconstruction

failure is the mean square error described as:

Lrecon =
1

nt

nt∑
i

1

k

∥∥Xi
t −Xi

t

∥∥2 (3.10)

where Xi t is the target domain data, for instance, ith, and k is the input function vector component. Remember
that in this task, the auto-encoder receives only target instances, as our goal is to obtain accurate information
about the target domain. The hidden representation of the (H − invs) source data and the (H − invt) target
data have the CMD regularizer added. The corresponding loss will be explained as follows:

Lsim = CMDk(H
s
inv,H

t
inv) (3.11)

Ec is encouraged to encode domain-specific invariant features when this loss is minimized since it will force the
Hs

inv,H
t
inv distributions to be identical. The loss in question will be explained as follows:

Ldiff = −CMDk(H
s
spe,H

t
spe) (3.12)

Minimizing the error allows Hs
spe propagation to vary from Ht

spe which in effect enables Et to encode different
domain features.

3.3. Polarity of Words in the Labelled Source Domain. The statistically significant correlation
between a word and a class label is supported by the chi-square test. We give each word in the domain a
polarity orientation based on this relationship. Since the target domain data is unlabelled, a χ2 check cannot
be utilized to determine the words’ meaning. However, we exploit the fact that only some terms in the target
domain that are known to be significant in the source domain need to be characterized as meaning in order
to acquire SCP terms across domains. It is presumed that a term that meets the χ2 test criteria for relevance
in the source domain and appears frequently (nearly) in the target domain is also significant. According to
the χ2 test, the source domain is also significant in the target domain when it appears more frequently than a
particular threshold (nearly).

countt(significants(w)) > Θ ⇒ significantt(w) (3.13)

The labelled source (s) domain’s significance of the word w is guaranteed by [significant]-s, whereas [count]-s
provides the normalized count of the w in t. Using this supposition as a foundation, we fix the value of Θ.

Word Polarity in the Target Unlabelled Domain. Positive words typically exist in polar corpuses with other
positive words, whereas negative words typically occur in conjunction with other negative words (Sharma et
al., 2015). Mikolov et al. (2013) discovered that nearby words, such ”go” and ”to,” had a higher degree of
similarity in their meaning vectors than far-off words or words that are not nearby. Using the publicly available
word2 and the skip-gram model toolbox, we measured the context vector (conVec) of a word (w) (Mikolov et
al., 2013).7. This model predicts words within a given window by using the Huffman code of each word as an
input to a log-linear classifier with a persistent projection layer. Equation 3’s decision-making process outlines
how to assign polarity to an unknown term in the target domain.

If(cosine(conV ec(w), conV ec(PosP ivot)) > cosine(conV ec(w), conV ec(NegPivot))) ⇒ Positive (3.14)

If(cosine(conV ec(w), conV ec(PosP ivot)) < cosine(conV ec(w), conV ec(NegPivot))) ⇒ Negative (3.15)

3.4. Pivot Selection Method. We found empirically that a polar term that has the largest percentage
in the corpus offers more coverage by using context vector to estimate the polarity orientation of other terms.
Furthermore, it is discovered that a polar term with the highest frequency in the target domain works better
as the pivot for input term polarity detection. A few phrases in the electronics domain are shown in Table
3.1 whose polarity orientation is determined by similarity scores acquired using PosPivot and NegPivot. The
inferred polarity orientation of the words along with the cosine-similarity scores using PosPivot (excellent) and
NegPivot (bad) is shown in table 3.1.
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Table 3.1: The inferred polarity orientation of the words

word Great Poor Polarity
Noisy 0.03 0.24 Neg
Crap 0.04 0.28 Neg
weak 0.05 0.21 Neg

Defective 0.21 0.70 Neg
Sturdy 0.43 0.04 Pos
Durable 0.44 0.00 Pos
perfect 0.48 0.20 Pos
Handy 0.60 0.21 Pos

3.5. Domain Transferable Knowledge. To determine the importance and polarity of terms in the
labelled source data and the unlabelled target data, the suggested algorithm makes use of the previously
discussed techniques. Significant, consistent polarity (SCP) characteristics are a group of phrases that are
relevant in both fields and have the same polarity orientation. These features are used to classify attitudes
that are cross-domain. The weights learned by the classification algorithm for the SCP features in the labeled
source domain can be reused in the unlabelled target domain for sentiment classification because SCP features
have clear impacts in both domains. Based on the cosine correlation function, it differentiates the positive or
negative polarity.

Algorithm 1 Aspect Level Domain Adaptation
Input:

• Ls: Instances labeled in the source domain
• Lt: Instances labeled in the target domain
• Ut: Unlabeled instances in the target domain

Representations:
• Hs

inv: Invariant representation for Ls

• Ht
inv: Invariant representation for Lt

• Ht
spec: Specific representation for Lt

Steps:
1. Train Classifier: Train classifier Fc on labeled instances Ls and Lt using invariant representations Hs

inv and
Ht

inv.
2. Classify Unlabeled Data: Apply classifier Fc to predict labels for instances in Ut.
3. Select High-Confidence Predictions:

• Identify instances in Ut with the highest confidence scores.
• Select positive instances p and negative instances n to form the subset U t

c containing these high-confidence
predictions.

4. Train Specific Classifier: Train a separate classifier Ft on Lt using the specific representation Ht
spec.

5. Refine Predictions on Ut:
• Apply classifier Ft to predict labels for instances in Ut.
• Select positive instances p and negative instances n with the highest confidence scores, resulting in a

subset U t
t .

6. Update Unlabeled Set and Target Labels:
• Remove instances in U t

c and U t
t from Ut.

• Add the selected high-confidence instances U t
c to Lt and assign their predicted labels.

7. Repeat Steps 2–6 until the desired performance is achieved on the development dataset.
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3.6. Domain invariant and specific classifier. This model’s training is divided into two parts, with
one for the domain invariant classifier, Fc, and one for the domain-specific classifier, The training objective for
Fc is to minimize the following failure concerning parameters

Θ = Θc
e,Θ

c
e,Θ

t
d,Θ

t
c (3.16)

L = Lrecon(Θ
c
e,Θ

t
e,Θ

t
d) + αLc(Θ

c
e,Θ

t
c) + γLsim(Θc

e) + λLdiff (Θ
t
e) (3.17)

where the weights α, γ, and λ control how the words of loss are connected.L(Θ) denotes that throughout training
on the parameters, failure, L, is balanced. Moreover, Lc indicates that the domain’s invariant representation
is not classified. Described by the ground-truth class ’s negative log-likelihood for instances of both source
domain and target domain

Lc =
1

ns + lt

ns∑
i=1

−Y i
s logFe(Y

i
s

∣∣∣∣∣Ec(L
i
s)) +

1

ns + lt

Lt∑
i=1

−Y i
t logFe(Y

i
t

∣∣∣∣∣Ec(L
i
t)) (3.18)

The dynamic number of target data tagged in each iteration is shown by Y I t, which is the one-hot encoding
of the class label for the source in the example. The training challenge for Ft is to minimize the subsequent
parameter failure.

Θ = Θc
e,Θ

c
e,Θ

t
d,Θ

t
c (3.19)

L = Lrecon(Θ
c
e,Θ

t
e,Θ

t
d) + βLc(Θ

c
e,Θ

t
c) + γLsim(Θc

e) + λLdiff (Θ
t
e) (3.20)

where the weights γandλ correspond to the classifier’s weights, the weight β and Fc control the classification
failure portion. In contrast, Lt is the domain-specific representation based on the target domain’s negative
log-likelihood of the ground-truth class.

Lt =
1

lt

lt∑
i=1

−Y i
t logFt(Y

i
t |Et(L

i
t)) (3.21)

The cosine of the angle formed by the two vectors that represent the lexical items u and v is what this represents.

τ(v, u) =

∑
wϵΓ(v)f(u,w)

∥u∥ ∥v∥
(3.22)

∥v∥ =
√∑

wϵΓ(u)(f(v, w))2, ∥u∥ =
√∑

wϵΓ(u) > 0(f(u,w))2 (3.23)

Here, Γ(v) = {x|f(v, x) > 0} is the collection of features (x) in the feature vector for element v that have
positive pmi values. Cosine similarity is a commonly utilized relatedness metric in many natural language
processing tasks. We cluster related terms using Lin’s proposed similitude measure. For word clustering tasks,
this metric has been demonstrated to perform better than various other comparisons. Computed in the manner
shown below:

τ(v, u) =

∑
wϵΓ(v) ∩ Γ(u)(f(v, w) + f(u,w))∑
wϵΓ(v)(f(v, w) +

∑
wϵΓ(u)f(u,w)

(3.24)

Last equation defines this measure of relatedness, which is the one put out in this study. Similar to Lin’s
estimate of similarity and Cosine similarity, this relatedness estimate is asymmetric.

We build a baseline relatedness measure in the last equation by swapping the two arguments, u and v,
to show the asymmetric existence of the connection measure presented in previous equations. The following
formula accurately determines the inverted baseline:

τ(v, u) =

∑
wϵ {x|f(u, x) > 0} f(u,w)∑
wϵ {x|f(v, x) > 0} f(u,w)

(3.25)
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Fig. 3.2: Correlation between relatedness scores

Table 4.1: Equally balanced between positive and negative.

Review Type Description
Positive Reviews expressing positive sentiment
Negative Reviews expressing negative sentiment
Unlabelled Reviews without assigned sentiment
Processed Reviews that have undergone preprocessing
Balanced Preprocessed reviews with balanced labels

Remember that this baseline gives higher relative scores to expansion candidates, commonly included in user
feedback, since the denominator consists of the sum of point-wise reciprocal knowledge values for terms co-
occurring with correlation sources shown in figure 3.2.

Using the relatedness measure, we create a sentiment-sensitive thesaurus by listing lexical items v that
co-occur with u 4 (i.e., f(u, v) > 0) for each lexical element u in descending order of the relatedness values
τ(v, u).

4. Experiment model.

4.1. Dataset. This work evaluates the suggested approach with alternative sentiment classification models
using the multi-domain sentiment dataset from Amazon product reviews. The dataset comprises product
reviews of mobiles, kitchen sets, books, and electronics. Each review has a rating of (0 to 5 stars). The
reviewers are transferred into positive, negative, and moderate labels. The product review dataset contains
labeled and unlabelled data; the proposed framework extracts the features to determine the aspect levels using
polarity and pivot models. In this experiment, one or more other domains serve as sources, and we choose each
domain as the target domain. Reviews of the source domain and destination domain differ according to the
data records they pertain to. To implement proposed framework, we have designed a framework using Python
based packages, we adopted the machine learning packages to determine the results we divide the data into
the three models, train (60%), validation (20%) and test (20%). The dataset samples and experiment were
conducted at the KL University Hyderabad data center.

4.2. Results and Discussion. Figure 4.1 depicts the sentiment classifier for different electronic source
domains. The accuracy is high for the kitchen domain for a single source. The accuracy is high for mobile and
kitchen domains when two sources are combined, but when all three source domains are integrated, the best
accuracy is obtained.

Figure 4.2 depicts the classification accuracy of target-labeled data against many source domains.
Figure 4.3 depicts that SU+ and TU+ denote both source and target domains for unlabelled data.SU- and

TU+ denote only a Target domain exists. The higher accuracy is achieved when source and target unlabelled
data is used, and poor performance is achieved when source and target unlabelled data is not used.

The sentiment classification for various target domains using the Adaptive Cross Domain Polarity aspect
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Fig. 4.1: Accuracy on the effect of multiple source domains

Fig. 4.2: Effect on source domain labeled data

Fig. 4.3: Impact of Unlabelled Data’s Source and Target Domains

Table 4.2: Sentiment classification for various target domains

Author Technique +ve Learning Expression Rate Accuracy Recall F-score
Murugappan et.al [13] DWT and KNN 45.87 82.32 80 81
Taran et.al [19] CIF and MC-LS-SVM (MH) 67.85 86 76 78.1
Krishna et.al [20] TQWT and ELM (MH) 78.65 87.1 80.1 82.5
Bajaj et.al [21] FAWT and KNN 87.43 86.1 85.9 83.1
Proposed (ACDPSNet) 97.76 98.76 97.85 96.94

level is shown in Figure 4.4 above and table 4.2.
Figure 4.5 briefly explains the performance measures of the proposed model compared with other models.
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Fig. 4.4: Adaptive Cross-domain Polarity aspect-level sentiment quantification and categorization performance.

Fig. 4.5: Performance measures

5. Conclusion. Our research highlights the importance of incorporating domain-specific knowledge into
domain adaptation tasks for sentiment classification and quantification. The proposed Adaptive Cross-Domain
Polarity-Specific Network (ACDPSNet) demonstrates that by integrating polarity-specific sentiment annota-
tions into semantic vectors and utilizing both labeled and unlabeled data from multiple domains, we can
significantly enhance the model’s ability to adapt to new domains. Our approach effectively addresses the
common challenges of feature mismatch in cross-domain sentiment analysis, achieving notable improvements in
accuracy, recall, throughput, and positive learning expression rate compared to existing methods. The findings
of this study suggest that domain-specific information, often overlooked in favor of domain-invariant techniques,
can be crucial for improving performance in domain adaptation scenarios, even when in-domain labeled data
is sparse. This represents a significant shift from traditional methods that rely heavily on domain-invariant
features. By successfully leveraging domain-specific information, our approach not only improves the robustness
of sentiment classification models but also offers a scalable solution for various domain adaptation challenges.
Future work could explore the application of this framework to other complex cross-domain tasks, further re-
fining the adaptive mechanisms and exploring the integration of additional contextual factors. The promising
results of this research indicate that ACDPSNet has the potential to be a valuable tool in the development of
more adaptable and accurate sentiment analysis systems across diverse domains.
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