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GENETIC ANT COLONY ALGORITHM AND ITS DESIGN AND RESEARCH IN CLOUD
COMPUTING PLATFORM RESOURCE SCHEDULING

DONGHUI MEI∗, WENWEI SU†, YAN SHI ‡, AND YANXU JIN§

Abstract. In order to solve the problems of slow convergence speed and low efficiency in finding precise solutions in existing
cloud computing resource scheduling algorithms, the author proposes a genetic ant colony algorithm and its design and research in
cloud computing platform resource scheduling. The author introduces a hybrid algorithm that integrates genetic algorithms with ant
colony optimization. This approach begins by encoding parameters and seeks the best combination through evolutionary processes.
It effectively merges the ant colony algorithm’s feedback mechanism with the genetic algorithm’s global search capabilities and
rapid convergence. Then, multi-dimensional QoS constraints are proposed according to the needs of different users to perform local
and global updates of pheromones. Finally, comparative simulation experiments were conducted on the cloud simulation platform
CloudSim with simulated annealing algorithm (SA) and basic ant colony algorithm (ACO). The experimental results show that
GAACO has a better time cost than ACO, but the time cost is longer than SA, and as the number of tasks increases, the time gap
becomes larger. Compared with ACO, the time is reduced by 50.8%, and compared with SA, the time difference is 4%. Therefore,
in terms of time cost, this algorithm is better than ACO. The algorithm proposed by the author effectively shortens the completion
time of task scheduling, reduces operating costs, and has superior comprehensive performance.
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1. Introduction. Cloud computing, as a new type of business service model, has received widespread
attention from both industry and academia since its proposal [1]. As research and applications in cloud
computing advance, cloud systems are expanding in scale and growing increasingly complex in their topology.
Moreover, the diverse nature of resources presents significant challenges in efficiently scheduling cloud computing
tasks, making it a critical area of focus in cloud computing research [2].

In recent years, cloud computing task scheduling and optimization algorithms have developed rapidly.
Usually, the first step is to use Map/Reduce to process cloud computing tasks, dividing large-scale tasks into
multiple subtasks, and then scheduling each subtask through Map and Reduce stages [3]. Studies indicate that
scheduling tasks in cloud computing is classified as an NP problem. To address this, heuristic algorithms are
predominantly employed, including optimization algorithms based on genetic algorithms (GA), particle swarm
optimization, and ant colony optimization (ACO). These methods aim to minimize task completion times and
ensure effective load balancing across node resources to better meet users’ practical application requirements.
Each of these algorithms has its own distinct strengths and weaknesses. For instance, genetic algorithms excel
in global search but often require numerous parameters and can be prone to finding local optima. Ant colony
algorithms are strong in local search but may experience slow initial search due to the lack of initial pheromone
levels [4]. Particle swarm optimization offers high efficiency early on but can suffer from slow convergence and
instability later in the process. The genetic ant colony algorithm integrates the genetic algorithm’s global search
strengths with the ant colony algorithm’s local search capabilities, thereby enhancing both the optimization
efficiency and solution quality [5].

In cloud computing environments, resource scheduling problems are highly complex and dynamic, and the
introduction of genetic ant colony algorithm provides a new direction for solving this problem. Through this
algorithm, cloud computing platforms can allocate computing resources more intelligently, maximize resource
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utilization, and reduce operating costs and energy consumption while meeting user needs.
The author’s goal is to design and optimize a cloud computing platform resource scheduling model based

on genetic ant colony algorithm, aiming to improve the efficiency and fairness of resource scheduling [6].

2. Literature Review. With the advancement of technology, high-performance computing has been in-
creasingly applied in fields such as climate simulation, fluid mechanics, molecular dynamics, and bioinformatics
[7]. The speed of data processing and the response time to user demands cannot be effectively improved for
high-performance computing under high-performance concurrency, multiple computing system models, data
and cloud storage.

How to allocate resources, energy-saving scheduling and load balancing for high-performance computing
system platforms is the core of enhancing performance. In order to improve the utilization rate of high-
performance computing systems and reduce system load imbalance, engineering scholars have conducted many
scheduling algorithm studies [8]. Abbasi, S. et al. developed an algorithm that applies genetic algorithms to
manage faults and costs in resource allocation for services. The core idea is to leverage genetic algorithms to
choose the most suitable resources for different services. The algorithm focuses on minimizing both processing
and energy costs, with these costs serving as the objective function to drive the optimization process [9]. Malathi,
K. et al. introduced a genetic algorithm-based system for scheduling independent tasks, which optimizes both
time and resource usage while considering the safety requirements for task allocation.

Currently, a range of metaheuristic algorithms, including genetic algorithms, are employed to address task
scheduling challenges [10]. Chu, L. et al. developed a collaborative scheduling model for managing multiple
equipment resources at automated container terminals, aiming to reduce completion time and enhance loading
and unloading efficiency. Their comparison of particle swarm optimization and genetic algorithms demonstrated
that their proposed algorithm significantly boosts both global and local search capabilities in finding optimal
solutions. Furthermore, their findings show that the collaborative scheduling approach, which takes into account
mixed processes, effectively enhances the efficiency of automated container terminal operations. This research
offers valuable insights for optimizing loading and unloading processes and improving coordinated scheduling
at automated docks [11].

However, genetic algorithms have better search space solution capabilities and require more local parame-
ters, making it easy to obtain locally excellent solutions; Ant colony algorithm has better ability to search for
exact solutions, but due to insufficient initial pheromones, the initial search for solutions is slower. In response
to the above shortcomings, the author proposes a genetic ant colony algorithm and its design and research in
cloud computing platform resource scheduling. The genetic ant colony algorithm, which combines user multi-
dimensional QoS (quality of service) constraints, integrates user needs into the algorithm in mathematical form,
and uses genetic algorithm to encode heuristic factors, expected heuristic factors, and pheromone volatility co-
efficients. In the process of evolution, the optimal combination is found, which improves the convergence speed
and global search ability of the ant colony algorithm, and optimizes the virtual machine resource load and user
comprehensive cost.

3. Method.

3.1. Problem description of cloud computing resource scheduling. Virtualization has fundamen-
tally transformed cloud computing compared to traditional distributed resource scheduling models. As illus-
trated in Figure 3.1, cloud computing resource scheduling involves breaking down each task into multiple
independent subtasks [12].

Upon receiving a request, the system allocates a specific amount of virtual resources, with each subtask
being assigned to a corresponding virtual resource node.

In cloud computing, resource scheduling is defined as follows: Tasks are segmented into independent sub-
tasks and assigned to m virtual resource nodes for executio, where m < n.

Let T = {t1, t2, · · · , tn} represent the set of subtasks, where tj(0 < j ⩽ n) represents the jth subtask.
Let VM = {vm1, vm2, · · · , vmm}, represent the set of virtual resource nodes, where vmi(0 < i ⩽ m)

represents the i-th virtual resource node, and each tj can only execute on one vmi.
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Fig. 3.1: Resource Scheduling in Cloud Computing

The correspondence between T and VM can be represented by the allocation matrix X as

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xm1 xm2 · · · xmn

 (3.1)

Here xij represents the correspondence between tj and vmi, xij ∈ {0, 1},
∑m

i=1 xij = 1, i ∈ {1, 2, · · · ,m}, j ∈
{1, 2, · · · , n}, indicating that if tj is executed on vmi, xij = 1, otherwise, xij . The expected time for tj to
complete on vmi is represented by ETij , which corresponds to the allocation relationship matrix X [13,14]. The
ET matrix is

ET =


ET11 ET12 · · · ET1n

ET21 ET22 · · · ET2n

...
...

...
ETm1 ETm2 · · · ETmn

 (3.2)

If the starting time of vmi is ci, then the expected completion time of vmi’s processing task is CTi =
ci +

∑n
j=1 ETij × xij , where i ∈ {1, 2, · · · ,m} and j ∈ {1, 2, · · · , n}. Define CTmax = max{CTi}, CTmin =

min{CTi}. Therefore, the expected time to complete the total task is CTmax, and the fitness function of the
total task completion time is

fCT =
CTmax − CTmin∑m
j=1(CTi − CTmin)

(3.3)

Similarly, the total cost completed by ti on vmj is represented by ECij . Let Aij represent the resources
occupied by ti on vmj , then ECij is positively correlated with the time consumed ETij and the resources
occupied Aij . Let its correlation coefficient be ξ, then

ECij = ξ × ETij ×Aij (3.4)

Corresponding to the allocation relationship matrix X, the EC matrix is

EC =


EC11 EC12 · · · EC1n

EC21 EC22 · · · EC2n

...
...

...
ECm1 ECm2 · · · ECmn

 (3.5)
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Let ECi be the cost of processing task vmi, where i ∈ {1, 2, · · · ,m} is ECi =
∑n

j=1 ECij × xij . So, the
fitness function of the total cost of task expenses is

fEC =

∑m
i=1 ECi∑m

i=1

∑n
j=1 ECij

(3.6)

The resource scheduling adaptation function of the optimization algorithm is

Ffitness = a× fcr + b× fEC (3.7)

In the formula: a+ b = 1, 0 ⩽ a, b ⩽ 1. The goal of the algorithm is to find a suitable matrix X that minimizes
the value of Ffitues.

3.2. Genetic Ant Colony Algorithm for Solving Cloud Computing Task Scheduling. The foun-
dational model of the ant colony algorithm was developed by Italian researcher DIRIGO, drawing inspiration
from the natural foraging behavior of ants. This behavior demonstrates self-organization and is effectively a
solution to the shortest path problem, making it applicable to classic NP problems like the Traveling Salesman
Problem (TSP) [15]. On the other hand, the genetic algorithm (GA) emulates Darwinian natural selection
and genetic principles to search for optimal solutions through simulated evolution. By integrating genetic al-
gorithms with ant colony algorithms, it is possible to enhance the global search capabilities and convergence
speed of the ant colony approach.

The general process of using genetic ant colony algorithm to solve cloud computing task scheduling problems
is as follows. Let αq, βq, γq be the values of the heuristic factor, expected heuristic factor, and pheromone
volatilization coefficient corresponding to the q-th generation of the genetic population after encoding, crossover,
mutation, and decoding, respectively. The heuristic factor signifies the influence of accumulated data as ants
move, while the expected heuristic factor indicates the weight assigned to this heuristic information during
the selection of virtual machines. The heuristic factor, expected heuristic factor, and pheromone volatilization
coefficient are encoded in binary, with each parameter occupying 20, 20, and 40 binary bits, respectively; When
selecting chromosomes, use roulette wheel to describe n virtual machines in the data center using G(V,E),
where V is the set of virtual machines and E is the set of virtual machine task execution time. Assuming there
is an ant in the system, the ant’s selection of the next task execution virtual machine is determined based on
the amount of information on each virtual machine. Use taboo table to represent the virtual machines that the
ant has already selected, and allowedk = {V − tabuk} to represent the virtual machines that ant k can choose
next, when the number of tasks exceeds the number of virtual machines, each virtual machine may be selected
multiple times. The heuristic function ηis(t) = 1/Dij represents the expected transfer of ant k from virtual
machine i to virtual machine s at time t, and τis(t) represents the residual information from virtual machine i
to virtual machine s at time t. Initially, the information is the same, that is τis(0) = const[16]. The probability
pkij(t) of ant k transferring from virtual machine i to virtual machine j is:

pkij(t) =


|τij(t)|αq |ηij(t)|βq∑

j∈allowedk
|τij(t)|αq |ηij(t)|βq

j ∈ allowedk

0 j ̸= allowedk
(3.8)

When ants are in motion, in order to avoid excessive accumulation of pheromones, they need to update
their pheromones after completing each scheduling, which can be done according to the following rules:

τij(t+ n) = (1− γq)τij(n) + ∆τij(n) (3.9)

∆τij(n) = Q/multiQoSp (3.10)

In the formula: Q is the intensity of pheromones; multiQoSp refers to multidimensional QoS constraints [17].
Considering the specifics of cloud computing task scheduling, the enhancements of the genetic ant colony

algorithm over the standard ant colony algorithm are primarily evident in the following areas:
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1. The heuristic factors, expected heuristic factors, and pheromone volatility coefficients have undergone
cross variation in the genetic population, increasing the likelihood of understanding and improving
global search capabilities.

2. In terms of pheromone updates, global and local updates have been carried out, while also incorporating
the requirements for cost, time, system load, and service quality in cloud computing task scheduling,
proposing multidimensional QoS constraints.

3.3. Establishment of Multidimensional QoS Constraint Function. The ordinary ant colony al-
gorithm does not impose multidimensional QoS constraints when solving problems, but in the actual cloud
computing scheduling process, there are corresponding requirements. Therefore, the author added multidimen-
sional QoS constraints in three aspects: cost, time, and reliability, and established corresponding constraint
functions. Let Kbest be the set of tasks that allocate all current tasks to the best performing virtual machine,
Kwoos be the set of tasks that allocate all current tasks to the worst performing virtual machine, p be the
number of the current ant, K be the task allocation scheme for the p ant with the number, Kj be the resource
number assigned to the Kj-th task, and k be the number of current tasks to be allocated. Based on this, the
author proposes the following hypotheses: Assumption 1 uses Tmin to represent the time cost of allocating all
current tasks to the best performing resources, Tmax to represent the time cost of allocating all current tasks
to the worst performing resources, Tc to represent the time cost of using genetic ant colony algorithm for task
scheduling, and Tres to represent time constraints, which are mathematically defined as:

Tminp =

∑k
i=1 Ji(length)

k · V mbest(mips)
+

∑k
i=1 Ji(inputfileSize)

k · V mbest(bw)
+

∑k
i=1 Ji(outfileSize)

k · V mbest(bw)
(3.11)

Tmaxp
=

∑k
i=1 Ji(length)

k · V mworst(mips)
+

∑k
i=1 Ji(inputfileSize)

k · V mworst(bw)
+

∑k
i=1 Ji(outfileSize)

k · V mworst(bw)
(3.12)

Tcp =

k∑
i=1

Ji(length)

k · V mKj(mips)
+

k∑
i=1

Ji(inputfileSize)

k · V mKj(bw)
+

k∑
i=1

Ji(outfileSize)

k · V mKj(bw)
(3.13)

TresKj
=

Tcp − Tminp

Tmaxp − Tminp

(3.14)

Assuming that Cmin represents the cost cost of allocating all current tasks to the best performing resources,
Cmax represents the cost of allocating all current tasks to the worst performing resources, Cc represents the
cost of using genetic ant colony algorithm for task scheduling, and Cres represents the cost constraint, their
mathematical definitions are:

Cminp
=

∑k
i=1 Ji(length)

k · V mbest(mips)
· perofmips+

∑k
i=1 Ji(inputfileSize)

k · V mbest(bw)
· perofbw +

∑k
i=1 Ji(outfileSize)

k · V mbest(bw)
· perofbw

(3.15)

Cmaxp
=

∑k
i=1 Ji(length)

k · V mworst(mips)
· perofmips+

∑k
i=1 Ji(inputfileSize)

k · V mworst(bw)
· perofbw+

∑k
i=1 Ji(outfileSize)

k · V mworst(bw)
· perofbw

(3.16)

Ccp =

∑k
i=1 Ji(length)

k · V mKj(mips)
· perofmips+

∑k
i=1 Ji(inputfileSize)

k · V mKj(bw)
· perofbw +

∑k
i=1 Ji(outfileSize)

k · V mKj(bw)
· perofbw

(3.17)

CresKj
=

Ccp − Cminp

Cmaxp − Cminp

(3.18)
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Table 3.1: Parameters of Genetic Ant Colony Algorithm

Parameter symbols Parameter meaning Parameter values
evolutionNum evolutional generation 100

population Genetic population size 10
m Number of ants 30
Pc crossover probability 0.34
Pm mutation probability 0.09
ℵmax Maximum Inspiration Factor 1.00
βmax Expected maximum inspiration factor 2.00
γmax Maximum evaporation coefficient of pheromones 0.10

Q Pheromone intensity 50.00

In the formula, perofmips represents the cost of executing instructions per unit time; Perofbw is the cost
per unit time bandwidth [18].

Assuming 3Res is the quantified reliability value when using genetic ant colony algorithm for task scheduling;
ResRes is a reliability constraint, and its mathematical definitions are:

Resp =
1

500

k∑
i=1

Ji(length)

V mKi
(mips)

(3.19)

resResKj = Resp/antSize (3.20)

Among them, antSize is the size of the ant population.
Assuming 4λ1, λ2, λ3 are weight coefficients (λ1 + λ2 + λ3 = 1) for cost, time, and reliability, which can be

adjusted according to user requirements, the author selects three coefficients of 0.3, 0.4, and 0.4, respectively.
The final multidimensional QoS constraint function is defined as:

multiQoSp = λ1 · Tresp + λ2 · Cresp + λ3 · resResp (3.21)

3.4. Simulation experiment. In order to test the performance of the algorithm proposed in this article,
the CloudSim 3.0.2 cloud simulation platform from a certain university’s grid laboratory was used in the ex-
periment, and simulation comparisons and result analysis were conducted with the basic ant colony algorithm
(ACO) and simulated annealing algorithm (SA). In the cloud simulation platform, first create a new MyAll
ocateTest class for initial configuration of the cloud environment, including the creation of the data center, ini-
tialization of the scale parameters of cloud computing tasks, task size and input/output data file size, creation of
virtual machine resources. Each virtual machine resource encompasses attributes such as CPU count, memory
size, bandwidth, and instruction processing speed. CloudSim objects are instantiated to introduce cloud com-
puting tasks, and three algorithms—GAACO, ACO, and SA—are implemented within the DatacenterBroker
class [19]. The parameters pertinent to the genetic ant colony algorithm are detailed in Table 3.1.

Compare the performance of genetic ant colony algorithm from four aspects, namely average time cost,
average cost, algorithm service quality, and system resource load rate. At the beginning, the task size is 10,
the cloud computing resources are 10, the virtual machine storage size is 10GB, the memory size is 256MB,
the number of CPUs is 1, the bandwidth is 1000MB, the unit time bandwidth cost is 0.01 yuan/s, and the
unit time instruction cost is 0.01 yuan/s. The task size is tested in increments of 10. The quality of algorithm
services is reflected through multiQoS. Define the resource load rate as:

sysuse =
1

n

√√√√ n∑
i=1

(usei − useAvg)2 (3.22)

In the formula: usei is the load of the i-th resource; useAvg is the average load of the system; n is the number
of resources [20].



1892 Donghui Mei, Wenwei Su, Yan Shi, Yanxu Jin

Fig. 4.1: Average time cost of each algorithm

Fig. 4.2: Cost of each algorithm

4. Results and Discussion. With an increase of 10 tasks, the average time cost for each algorithm is
computed, as illustrated in Figure 4.1. The results reveal that GAACO performs better in terms of time cost
compared to ACO, although it still takes more time than SA. Additionally, as the task count grows, the time
difference between GAACO and SA becomes more pronounced. Compared with ACO, the time is reduced by
50.8%, and compared with SA, the difference is 4%. Therefore, in terms of time cost, this algorithm is better
than ACO, but not significantly different from SA.

The cost of each algorithm under different task quantities is shown in Figure 4.2. As the number of tasks
increases by a multiple of 10, it can be seen that the differences between the algorithms are not significant, with
an average cost difference of only about 1%.

The experimental results of the service quality of each algorithm are shown in Figure 4.3. It can be seen
that the service quality of this algorithm and SA slowly increases with the increase of task quantity, while ACO
shows a sharp upward trend in a straight line. Service quality is a comprehensive indicator of cost, time, and
reliability. It can be seen that GAACO’s overall performance is better than ACO and SA, with reductions of
14.3% and 76.7%, respectively.

The experimental results of the system load of each algorithm are shown in Figure 4.4. It can be seen that
the system load of ACO has been maintained at a high level, while the system load of GAACO is higher than
SA but significantly better than ACO. The average system load of GAACO is reduced by 50.1% compared
to ACO. Combining Figures 4.1-4.3, it can be seen that SA is more inclined towards an average scheduling
approach, where the number of tasks allocated to each virtual machine is basically the same. Therefore, the
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Fig. 4.3: Service Quality of Various Algorithms

Fig. 4.4: Load of each algorithm system

load obtained using equation (3.22) is 0. However, cloud computing task scheduling often requires cost, time,
and reliability to be balanced based on user requirements, which is reflected in QoS. In summary, the algorithm
proposed by the author can better meet the needs of customers in the actual scheduling process.

5. Conclusion. The author introduces the genetic ant colony algorithm and explores its application in
resource scheduling on cloud computing platforms. After a thorough investigation into cloud computing task
scheduling, the proposed algorithm is evaluated against the basic ant colony algorithm and simulated annealing
algorithm across four dimensions. The findings indicate that the new algorithm outperforms the other two,
offering superior balance in terms of time cost, cost efficiency, reliability, and system load. This makes it a
highly effective method for meeting the multi-dimensional QoS requirements of users.
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