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NEAR INFRARED SPECTROSCOPY DETECTION OF SOYBEAN FATTY ACID
CONTENT BASED ON NEURAL NETWORK COMBINED WITH GENETIC

ALGORITHM
LI MIN∗, QI XIAOCUI†, LI RONGYAO‡, WANG RUFENG§, AND YU DANDAN¶

Abstract. In order to solve the problem of poor performance in rapid analysis of soybean fatty acid content using traditional
methods, the author proposes a near-infrared spectroscopy detection method for soybean fatty acid content based on neural network
combined with genetic algorithm. The author first collected sample spectra and preprocessed them using mean centralization and
Savitzky Golay smoothing differentiation method. Then, the optimal band was selected through segmented combination modeling,
and genetic algorithm was used to further screen wavelength points sensitive to content prediction modeling. Finally, the spectral
data was decomposed using principal component analysis (PCA), and the score matrix was input into a 3-layer neural network for
training. The optimal model was established through parameter optimization. The experimental results show that the calibration
relative analysis error RPD of the model based on genetic algorithm combined with neural network is, indicating that the model
has good prediction accuracy and stability. To further validate the model’s reliability in practical applications, the correlation
coefficient R between the predicted values and the standard values within the model’s prediction range was found to be 0.986,
indicating a strong linear relationship between them. The relative deviation of each value is less than 2%, and the standard
deviation of the difference is 0.0091. Paired t-test =1.2706 was performed on both methods, which is less than =2.354. This
indicates that there is no significant difference between the analysis results of this method and the standard method, verifying the
strong predictive ability of the model in practical applications. The model designed by the author can accurately and efficiently
complete near-infrared spectroscopy detection.
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1. Introduction. Soybean Glycine max (L.) Merr. is an important source of plant protein and oil for
humans, with an oil content of around [1]. It is the main raw material for the plant oil processing industry.
Soybean oil contains a large amount of unsaturated fatty acids, which are beneficial to human health and
have attracted widespread attention. However, due to the generally high content of linolenic acid in soybean
oil, reducing its storage period, and improving the fatty acid composition from a breeding perspective is an
effective method. Therefore, improving the fatty acid composition has become an important part of soybean
quality breeding [2]. In the past, gas chromatography and liquid chromatography techniques were mainly used
for the analysis of soybean fatty acids, which not only consumed a lot of manpower and material resources,
but also caused time waste and reduced breeding efficiency. It can be seen that how to quickly and accurately
determine the fatty acid composition in soybean seeds to accelerate soybean quality breeding is an urgent
problem to be solved [3].

Near infrared spectroscopy analysis technology is an emerging qualitative and quantitative analysis tech-
nique that uses sample spectral data. The rapid and non-destructive measurement method has made this
technology increasingly widely used in the determination of physicochemical properties and state monitoring
of soybean fatty acids. Near infrared spectroscopy mainly refers to the harmonic and combined frequency
absorption generated by the vibration of hydrogen containing groups in molecules. Due to the complex com-
position of lubricating oil, the spectral bands formed in the near-infrared spectral wavelength range overlap
severely, contain a large amount of non target information, and are subject to external signal interference such
as background and instrument noise. As a result, spectral preprocessing and calibration techniques greatly
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influence the model’s predictive performance. Commonly used wavelength selection methods include the corre-
lation coefficient method, interval partial least squares (iPLS), the successive projections algorithm (SPA), and
genetic algorithm (GA). The genetic algorithm, a global optimization-based wavelength selection method, is
particularly effective for selecting wavelengths in multi-component systems and can be integrated with various
calibration methods to enhance and optimize the model’s predictive performance [4,5,6].

2. Literature Review. Near-infrared spectroscopy (NIRS) is an innovative technique that leverages the
vibrational absorption characteristics of organic substances in the near-infrared spectrum to quickly measure the
content of various chemical components in samples. At present, there have been some research reports abroad
on using NIRS technology to determine fatty acid composition in different crops. Deng, Z. et al. investigated the
use of fatty acid composition and near-infrared spectroscopy for tracing the geographical origin of camellia oil in
Hainan. They measured the relative content of 16 fatty acids in camellia oil samples using gas chromatography
and gathered spectral data through near-infrared spectroscopy. The study demonstrated that both fatty acid
composition and near-infrared spectroscopy are effective tools for accurately determining the geographical origin
of camellia oil [7]. Zhe, L. I. et al. devised a method using near-infrared reflectance spectroscopy (NIRS) to
rapidly and approximately assess the nutritional composition of Pacific oysters (Crassostrea gigas) [8]. Tonolini,
M. et al. explored the application of near-infrared (NIR) spectroscopy combined with chemometrics to monitor
the degumming process by measuring diglyceride levels in soybean oil in both offline and online environments.
To develop an NIR spectroscopy prediction model, they studied 15 lab-scale batches of enzyme degumming,
utilizing various water, acid, and enzyme doses from the final screening design. The findings suggest that
glycerol diester content serves as a reliable indicator of enzyme effectiveness, and that NIR spectroscopy is an
appropriate analytical technique for real-time quantification of glycerol diesters [9].

The author studied the use of genetic algorithm for wavelength screening in the determination of soybean
fatty acid content by near-infrared spectroscopy, and combined it with a highly nonlinear prediction ability
backpropagation neural network to establish an analysis and correction model, effectively improving the accu-
racy and adaptability of the model prediction.

3. Method.

3.1. Basic Framework. The author presents a convolutional neural network (CNN) learning method
enhanced by genetic algorithm optimization, as illustrated in Figure 3.1. The CNN framework includes input
layers, convolutional layers, pooling (sampling) layers, fully connected layers, and output layers. The number
of convolutional and pooling layers is not fixed, but rather adjusted based on computational tasks and available
resources [10]. A significant challenge with traditional CNNs is that their learning performance heavily depends
on the initial weight settings of the convolutional and fully connected layers. To address this issue, the author
employed a genetic algorithm to optimize the weights of each convolutional and fully connected layer during
the training process. The basic idea is to construct the chromosomes of the genetic algorithm based on these
weights, and obtain the optimal solution through selection, crossover, and mutation operations.

3.2. Configuration and Training of Convolutional Neural Networks.
(1) Configuration of Convolutional Neural Networks. Convolutional neural network classifiers typically

consist of two parts: convolutional neural networks used for feature extraction and classifiers used for feature
classification. The hierarchical framework of convolutional neural networks is shown in Figure 3.2. Assuming
that the feature dimension of each sample is d and the total number of samples in the training set is m, storing
the features of each sample in rows, where each row represents a sample, the input layer size of the convolutional
neural network is m× d [11].

During the training process, continuously learn convolutional masks to identify the most discriminative local
patterns in the classification process. Due to the fact that in the input layer, the features of each d-dimensional
sample are stored in rows, the convolution mask only uses linear convolution masks in the horizontal direction
[12]. To minimize the complexity of pattern recognition and enhance computational efficiency, the author
applied a convolution mask in the initial convolutional layer. In the following convolutional layers, the number
of convolution masks sequentially doubles—for instance, the second convolutional layer has 2 masks, the third
layer has 4 masks, and so forth.
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Fig. 3.1: Convolutional Neural Network Learning Framework Optimized with Genetic Algorithm

Fig. 3.2: Convolutional Neural Network Layered Framework

In addition, for ease of calculation, each convolutional mask uses the same mask size, denoted as 1 × d′.
The sampling layer contains the same number of masks as the preceding convolutional layer, with each mask
having a size of 1 ∗ 2. After passing through the first convolutional layer, the dimension of the features is

d11 = d− d′ + 1 (3.1)

The feature dimension after the first sampling layer is

d12 =
d− d′ + 1

2
(3.2)
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Similarly, the feature dimension after passing through the second convolutional layer and sampling layer is

d22 =
d12 − d′ + 1

2
=

1

4
d− 3

4
d′ +

3

4
(3.3)

If the classifier to be trained only uses two convolutional layers and two sampling layers to extract features,
then the dimension d’ of each convolutional mask satisfies the condition:

1

4
d− 3

4
d′ +

3

4
> 0 (3.4)

The final layer of the convolutional neural network classifier is the fully connected layer, which uses a
classifier to categorize the features extracted by the convolutional and sampling layers. The author uses a
commonly used logistic regression classifier [13,14].

(2) Training of Convolutional Neural Networks. The main problem with using the steepest descent method
to train convolutional neural networks is that they are prone to getting stuck in local optima. To address this
issue, the author employs a genetic algorithm, with the core concept being to determine the initial optimal
weights for the convolutional neural network classifier using the genetic algorithm. Specifically, the weights
of the convolutional and fully connected layers in the network are treated as the population for the genetic
algorithm, and the weight combinations for each group are binary encoded to form the chromosomes of the
genetic algorithm [15].

Assuming the number of convolutional layers in the convolutional neural network classifier to be trained
is k, according to the aforementioned convolutional neural network configuration, the number of convolutional
masks in the i-th convolutional layer is 2i−1, the total number of convolutional masks in the convolutional
neural network is

∑k
i=1 2

i−1, the total number of weights in the convolutional layers is d′ ×
∑k

i=1 2
i−1, and the

weight of a fully connected layer is added. Therefore, the number of bits of the genetic algorithm chromosome
generated by binary encoding is

B = d′ ×
k∑

i=1

2i−1 + 1 (3.5)

In this way, the first B-1 bit of the chromosome is used to encode the convolutional mask, and the last bit
is used to initialize the fully connected layer [16]. Conventional convolutional neural networks typically employ
the steepest descent algorithm for training, and their learning performance is significantly influenced by the
choice of initial weights in the network. The author uses genetic algorithms to generate different initial weights,
so that the optimal weight obtained through selection, crossover, and mutation operations is significantly better
than the initial weight obtained through random selection.

3.3. Genetic algorithm solution for initial weights. Genetic algorithm is an adaptive heuristic search
method, which originates from the natural law of biological evolution, namely survival of the fittest. In this
method, each chromosome in the population undergoes a series of selection, crossover, and mutation changes to
obtain a new chromosome with stronger adaptability. The implementation process of this algorithm is shown
in Figure 3.3.

The author treats the weights of both the convolutional and fully connected layers in the neural network
as the genetic algorithm’s population. Initially, several sets of weights are chosen, and each set is encoded
into chromosomes [17]. By performing selection, crossover, and mutation operations on these chromosomes,
various weight combinations are produced. Then, the fitness value of chromosomes is calculated, which is the
classification accuracy of the convolutional neural network under various weight combination methods.

Based on this, the final population, that is, the optimal weight combination, is selected.
The solving process of genetic algorithm is shown in Figure 3.3, and the specific steps will not be repeated by

the author. The author focuses on introducing the fusion method of genetic algorithm and convolutional neural
network. Correspondingly, the core of the above algorithm is the encoding of chromosomes and the solution of
chromosome fitness values. The encoding method of chromosomes has been explained in the previous section.
Here, we will specifically introduce the steps used by the author to solve the chromosome fitness values, which
are as follows:
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Fig. 3.3: Process of Genetic Algorithm

Step 1: Decode the encoded weight set to retrieve the initial weights;
Step 2: Apply these initial weights to the corresponding convolutional and fully connected layers of the neural

network;
Step 3: Train the convolutional neural network classifier using the PL steepest descent algorithm;
Step 4: Assess the classification accuracy of the trained network and use this accuracy as the fitness score for

the corresponding chromosome.
Among them, the parameter pl involved in step 3 refers to the number of iterations for training the

convolutional neural network. In order to avoid overfitting of the data, the number of iterations should not be
set too large [18].

The use of genetic algorithms can label many local valleys, which facilitates the steepest descent algorithm
to quickly find local optimal values from these valleys. For a given population size n, after executing multiple
rounds of genetic algorithm, the final population can be obtained, which contains n sets of initial weights. These
n initial weights can be used to train n convolutional neural network classifiers. Below is an introduction on
how to combine these n convolutional neural network classifiers for feature classification.

3.4. Joint classifier. Assuming the output value of a classifier is o1, o2, · · · , oc, where c is the total number
of categories. Generally, the output value is binary, which means that for i = 1, 2, · · · , c, there are

oi =

{
1,The sample belongs to category i
0,The sample does not belong to category i

(3.6)

Moreover, assuming that each input sample belongs to only one of the c categories, that is
c∑

i=1

oi = 1 (3.7)

For any test sample, the output category after classification by the classifier is

p = arg max
1⩽i⩽s

oi (3.8)

For the n classifiers generated earlier, the author used the maximum value criterion to fuse the classifi-
cation results of multiple classifiers and searched for the binary decoding output in the joint classifier model.
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Specifically, assuming that the output value of the i-th classifier in the joint classifier model is o1i, o2i, · · · , od,
the jth output value of the joint classifier model can be represented as

fj = max
1⩽i⩽n

oj (3.9)

For any test sample x, if its set of output values in the joint classifier model is denoted as {fj |j = 1, 2, · · · , c},
then the category of the test sample should be

p = arg max
1⩽j⩽i

fj (3.10)

In this way, a joint classifier composed of multiple classifiers can achieve higher classification accuracy [19].

3.5. Experimental verification.

3.5.1. Instrument device. The soybean fatty acid content detection device used in the experiment is
the Perten8620 near-infrared spectrometer produced by the Swedish company Borton. This instrument has 20
filters corresponding to 20 wavelengths, and is equipped with NIR software program. The instrument used for
chemical determination of soybean fatty acid content is the GC9A gas chromatograph produced by Shimadzu,
Japan.

3.5.2. Near infrared spectroscopy acquisition. The near-infrared spectroscopy of the sample is col-
lected after the instrument is preheated for 1 hour and the working state is stable. The instrument sample
cell is a 5mm quartz flow colorimetric dish. Before spectral collection, it should be cleaned with n-hexane at
least three times and air dried. Using air as a reference, perform sample spectral scanning in the 1000-1800nm
wavelength range, scan 10 times, and take the average spectrum for modeling.

3.5.3. Spectral preprocessing and calibration methods. A total of 50 samples were taken, and 40
samples were selected as the calibration set and 10 samples as the validation set using the Kemand Stone
classification method. In order to reduce random noise and background interference in the original spectrum,
mean centering and Savitzky Golay smoothing differentiation method were used for spectral preprocessing. To
identify spectral bands with significant informational content for modeling, the spectrum is divided into several
subintervals for band selection, and a genetic algorithm is employed to refine the choice of wavelength points.
Within the chosen wavelength range, a backpropagation neural network (BP-ANN) is then utilized to develop a
calibration model, optimizing parameters such as the number of hidden layer nodes, learning rate, momentum
factor, and the number of training iterations. The constructed model is evaluated and optimized through
calibration set correlation coefficient (Rc), validation set correlation coefficient (Rp), cross validation root mean
square error (SEC), and prediction root mean square error (SEP). Spectral analysis modeling is implemented
using Unscrambler 10.4 and Matlab 7.0 software [20].

4. Results and Discussion. The mean centrality method was used to reduce background interference in
the near-infrared spectra of the collected soybean fatty acid samples in use, reflecting the information of spectral
differences. The author uses the S-G smooth derivative method to filter out spectral noise and eliminate the
influence of baseline drift. The window width for smooth differentiation is optimized between 13 and 21 points,
with an interval of 2. The modeling results SEC and SEP are used for evaluation, as shown in Figure 4.1. The
smooth window width is set to 17 points, and the modeling effect is ideal when taking the first-order derivative
of the spectrum.

The genetic algorithm, which selects wavelengths based on optimizing the objective function, offers superior
global optimization capabilities compared to the correlation coefficient method. In addition, the determination
of the threshold in the correlation coefficient method generally relies on experience and is highly subjective.
Using genetic algorithm to screen wavelengths is beneficial for improving the prediction accuracy and stability
of the model. Select wavelengths within the measurement range of 1000-1800nm for soybean fatty acid near-
infrared spectroscopy. First, divide the entire spectrum into multiple sub intervals to investigate the effectiveness
of different interval combinations in modeling, and screen for band combinations that are sensitive to predicting
kinematic viscosity. Then, genetic algorithm is used to further optimize the selected bands and enhance the



2042 Li Min, Qi Xiaocui, Li Rongyao, Wang Rufeng, Yu Dandan

Fig. 4.1: Optimization of Smooth Derivative Points

Table 4.1: Modeling wavelength optimization for multi interval combinations

Sub-region Main Selected
Number Factor Regions SEC SEP

21 5 [1 4 5 17] 0.02756 0.02645
23 7 [1 6 16 18] 0.02347 0.02424
25 6 [1 5 8 18] 0.02157 0.02201
27 7 [1 4 6 20] 0.02341 0.02406
29 7 [1 7 15 21] 0.02545 0.02447

Table 4.2: Modeling effect of wavelength selection using genetic algorithm and correlation coefficient method

Wavelength Wavelength
Selection Method Points Rc Rp SEC SEP
Genetic Algorithm 87 0.96114 0.97368 0.01712 0.01508
Correlation Coefficient 267 0.93871 0.92617 0.01981 0.0206

predictive ability of the model. The full spectrum is divided into 21-29 sub intervals, with band combinations
of 3 and 4. SEC and SEP are used as evaluation criteria to preliminarily optimize the modeled wavelengths.
The results are shown in Table 4.1.

According to Table 4.1, when the spectrum is divided into 25 sub intervals, the selected spectral bands
are 1000-1031nm, 1128-1159nm, 1224-1255nm, and 1544-1575nm, respectively, resulting in the best modeling
effect. Adopting R The improved genetic algorithm proposed by Leardi screens 128 wavelength points in the
combined spectral regions of the four bands mentioned above, removing wavelength points that are insensitive
to viscosity prediction and further optimizing the modeling wavelength. The genetic algorithm’s objective
function is defined as the root mean square error from cross-validation, with the algorithm configured to an
initial population size of 32, a crossover rate of 0.05, a mutation rate of 0.01, and a maximum of 100 evolutionary
generations. Table 4.2 displays the selected wavelength points and model evaluation metrics for wavelength
modeling using both the genetic algorithm and the correlation coefficient method.

The author developed a 3-layer neural network model using a combination of principal component analysis
(PCA) and backpropagation (BP). They first applied principal component decomposition to the preprocessed
spectrum, then selected the principal components that accounted for 99% of the cumulative contribution. The
resulting principal component scores were used as input for the BP network modeling. The GA algorithm selects
88 input elements for spectral data, which are reduced to 10 after principal component analysis, reducing the
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Fig. 4.2: The influence of the number of hidden layer nodes on modeling performance

Table 4.3: Evaluation of Correction Method Analysis Results

Correction Algorithm Rc Rp SEC SEP
PLS 0.94701 0.91212 0.01701 0.01625
BP-ANN 0.96014 0.97268 0.01612 0.01408

complexity of the training process. The number of hidden layer nodes is optimized based on the root mean
square error of the modeling results, ranging from 1 to 13 points, as shown in Figure 4.2.

As observed in the figure above, the SEC and SEP values stabilize at lower levels when the number of
hidden layer nodes reaches 9. Consequently, the optimal number of hidden layer nodes is determined to be 9.
Additionally, the model uses the tansig function as the transfer function for the hidden layer and the purelin
function for the output layer. When the number of training iterations reached 33, the training errors of the
modeling set and prediction set reached the lowest value, and the predictive ability of the model tended to
stabilize, establishing the optimal prediction model. The comparison between the constructed model and the
results of linear partial least squares (PLS) modeling is shown in Table 4.3.

Table 4.3 reveals that the correlation coefficients for both the calibration and validation sets of the BP-ANN
model are high and show minimal variation. This indicates that the model has strong prediction accuracy and
stability. Compared with PLS method, the BP-ANN method effectively integrates the nonlinear information
present in the spectrum, improving the predictive performance of the model. The calibration relative analysis
error RPD of the model based on genetic algorithm combined with neural network is 5.01>3, indicating that
the model has good prediction accuracy and stability. In order to further verify the reliability of the model
in practical applications, within the prediction range of the model, the correlation coefficient R between the
predicted value and the standard value is 0.986, indicating a good linear relationship between the two. The
relative deviation Sd of each value is less than 2%, and the standard deviation of the difference is 0.0091. Paired
t-test tsolid=1.2706 was performed on both methods, which is less than t0.05,7=2.354. This indicates that there
is no significant difference between the analysis results of this method and the standard method, verifying the
strong predictive ability of the model in practical applications.

5. Conclusion. The author introduces a method for detecting soybean fatty acid content using near-
infrared spectroscopy, enhanced by a neural network and genetic algorithm. This approach employs a genetic
algorithm-based wavelength selection technique to identify optimal wavelengths for modeling, thereby maximiz-
ing the use of spectral information while reducing the number of variables in the model. By integrating the
BP neural network, the method effectively addresses the nonlinear relationship between spectral data and fatty
acid content, significantly boosting the accuracy and reliability of predictions. The analysis of actual samples
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using optimization models yielded ideal prediction results, further verifying the reliability of the method in
practical applications.
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