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AFM AUTOINT INTELLIGENT RECOMMENDATION SYSTEM BASED ON ATTENTION
MECHANISM AND AUTOMATIC INTERACTION MODELING

QIANG HAN ∗AND LIANG DONG †

Abstract. With the rapid growth of Internet data, intelligent recommendation systems are crucial for enhancing user experi-
ence and platform efficiency. Traditional algorithms struggle with high-dimensional sparse data and complex feature interactions.
To address this, we propose the AFM-AutoInt model, integrating deep learning, attention mechanisms, and automatic feature
interaction modeling. It utilizes embedding layers for dimensionality reduction, attention mechanisms for adaptive learning, and
multi-layer self-attention for capturing high-order interactions. Experimental results show that AFM-AutoInt outperforms tradi-
tional methods in accuracy and robustness, making it a promising solution for next-generation recommendation systems.
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1. Introduction. In recent years, the rapid development of the Internet and the surge in user behavior data
have made intelligent recommendation systems a crucial technology for online platforms [1, 2]. These systems
not only enable users to quickly discover relevant content but also enhance user satisfaction and platform
revenue [3, 4]. However, as data volume grows and user preferences diversify, traditional recommendation
algorithms face increasing difficulties in processing complex data structures and capturing high-order feature
interactions. To overcome challenges such as data sparsity, high-dimensional feature interactions, and adaptive
learning of feature weights, researchers have been actively exploring more efficient recommendation algorithms.

The existing recommendation algorithms can be mainly divided into three categories: content-based rec-
ommendation, collaborative filtering, and hybrid recommendation [5, 6]. Content based recommendation algo-
rithms focus on analyzing the characteristics of items or users, while collaborative filtering methods rely on the
similarity of user behavior [7, 8]. However, these two methods often struggle to achieve ideal results when faced
with data sparsity and feature interaction complexity. Especially when dealing with high-dimensional sparse
data, the interaction between features cannot be fully captured, resulting in poor recommendation performance.

With the rapid advancement of deep learning technology, new possibilities have emerged for enhancing
recommendation systems. Deep learning models can effectively extract complex feature interaction patterns
from vast amounts of data, thereby improving recommendation accuracy [9, 10]. However, these models also
face challenges such as overfitting, limited interpretability, and prolonged training times. In particular, when
handling high-dimensional sparse data, designing models that can effectively capture and leverage feature
interactions has become a critical research focus in both academia and industry. To address these challenges,
this paper proposes an intelligent recommendation system that integrates deep learning, attention networks,
and clustering injection algorithms. The primary contribution lies in the fusion of attention mechanisms with
automatic interaction modeling. The suggested method successfully gets over the drawbacks of conventional
recommendation systems in learning high-order feature interactions by implementing an adaptive learning
mechanism. The two main components of the AFM AutoInt model are AutoInt (Automatic Feature Interaction)
and AFM (Attention Factorization Machine). By using an attention mechanism to provide weights to second-
order feature interactions, the AFM module improves recommendation accuracy by allowing the model to
automatically learn the importance of various feature combinations. Meanwhile, the AutoInt module further
refines high-order feature interactions through a multi-layer self-attention mechanism, significantly improving
the model’s representation capability and overall performance [11].
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Fig. 2.1: AFM AutoInt model structure diagram.

Compared to existing recommendation algorithms, the AFM AutoInt model has significant advantages in
handling data sparsity, high-dimensional feature interaction, and feature weight adaptive learning [12]. Firstly,
the model proposed in this article reduces data dimensionality and improves the convergence speed and predic-
tion accuracy of the model by embedding sparse data.Secondly, the AFM module utilizes attention mechanism
to weight the second-order feature interactions, enabling the model to effectively distinguish the importance
of different feature combinations for recommendation results and reduce the noise caused by invalid feature
interactions [13]. Finally, the AutoInt module enhances the predictive ability of the model by introducing a
multi-layer self attention mechanism to further capture high-order feature interaction information.

Although the AFM AutoInt model proposed in this article has demonstrated superior performance in
experiments, there are still some challenges. For example, the complexity of the model is high, the training
time is long, and further optimization may be required when dealing with large-scale data. In addition, the
interpretability of the model is weak, and future research can consider combining interpretability techniques to
make the recommendation results more transparent and understandable [14].

In summary, this article proposes a new recommendation algorithm by introducing deep learning and
attention mechanisms, and verifies its superiority on different datasets through experiments. This study not
only provides new ideas for solving the problems of data sparsity and feature interaction in recommendation
systems, but also lays the foundation for further improving the performance of recommendation systems. Future
research can further optimize the efficiency and interpretability of the model based on existing work, providing
more effective solutions for practical applications.

2. AFM AutoInt recommendation algorithm. The AFM AutoInt model proposed in this article is
shown in Fig.2.1. The overall structure of the AFM AutoInt model consists of AFM module and AutoInt
module, with sparse feature data input layer, embedding layer, model layer, and output layer from bottom to
top.

1. AFM (Attention-based Factorization Machine). AFM is mainly used to learn the interactions
between features, while introducing an attention mechanism to give different importance to different feature
interactions. Its core structure is as follows: Input layer: the input is a feature vector x ∈ Rd , where ddd is
the feature dimension, and each feature is mapped to a low-dimensional space through the embedding layer.
Second-order feature interaction layer: the AFM uses a factorization machine (FM) to model second-order
feature interactions, calculated as follows:

FM(x) =

d∑
i=1

d∑
j=i+1

(vi · vj)xixj (2.1)

where vi, vj are the embedding vectors of features i and j, and, xi, xj are the corresponding feature values.



AFM Autoint Intelligent Recommendation System based on Attention Mechanism and Automatic Interaction Modeling 1957

Attention mechanism: weights are assigned to different feature interactions, and weighted summation is
computed by attention weights:

h =
d∑

i=1

d∑
j=i+1

aij (vi · vj)xixj (2.2)

where the attention weights aij are computed by an MLP network and normalized by softmax.
Output Layer: outputs the final prediction after fully connected layer and sigmoid activation function.
2. AutoInt (Automatic Feature Interaction). AutoInt mainly learns higher-order feature interactions

automatically through the Self-Attention mechanism, avoiding the tedious process of manually designing feature
interactions. Its network structure is as follows:

Input layer: as in the AFM, the input is the feature embedding vector matrix X ∈ Rd×k , where d is the
number of features and k is the embedding dimension. Multi-Head Self-Attention (MHSA): the multi-head
self-attention mechanism in the Transformer structure is used to compute the importance of each feature with
respect to other features:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (2.3)

where are obtained from the input feature embedding mapping and dk is the scaling factor.
Feature Interaction Layer: multi-layer self-attention captures higher-order interaction information and

ultimately optimizes the information flow through Residual Connection and Layer Normalization.
Output layer: a fully connected layer is performed on the learned feature interaction results to compute

the final predicted values.
3. Model implementation and optimization. Loss function: Binary Cross-Entropy (BCE) is usually

used for optimization:

L = −
N∑
i=1

(yi log (ŷi) + (1− yi) log (1− ŷi)) (2.4)

Optimization algorithms: Use the Adam optimizer with a learning rate decay strategy (e.g. Warmup +
Cosine Decay) to improve convergence speed.

Regularization: Dropout and L2 regularization are used to prevent overfitting.
2.1. Sparse Feature Data Input Layer. Data sparsity is a challenge faced by recommendation systems.

In this paper, the user attribute information and movie attribute information in the dataset moveielens-1M are
merged based on user IDs and movie IDs to obtain N samples S, where S = {s1, s2, · · · si, · · · sN}, where N is
a positive integer and si represents the i-th user viewing record. In each user viewing record, there is only one
active user, for example, si is the viewing record of Dirty Dancing movie by user ID 2896. si has m features,
including both user and movie features, and one hot encoding is used to process each feature [15].

2.2. Embedding Layer. After one-hot encoding, each user and movie is represented as a unique high-
dimensional sparse vector. However, such representations pose challenges, including slow convergence, excessive
computational complexity, and an overwhelming number of model parameters, which makes direct input into
the model impractical. To address these issues, an embedding layer is introduced to map high-dimensional
sparse vectors into lower-dimensional dense representations [16]. This transformation not only reduces the
model’s complexity and computational burden but also preserves meaningful semantic relationships between
features, thereby enhancing the model’s learning ability and improving recommendation performance.

Before inputting the data into the model for training, these encoded features are divided into m different
feature domains (m is a positive integer), and then matrix mapping is used to transform the features into
dense and appropriately long vectors on each feature domain, thereby alleviating the problem of data sparsity.
The embedding layer, in simple terms, is an initialized matrix, and its mapping process is actually a matrix
multiplication. The output of the embedding layer of the jth feature domain is shown in Eq. 2.5:

ej = xjvj (2.5)
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Fig. 2.2: Structure of Embedded Layer.

Among them, xj is the vector in the jth feature field, and j ∈ {1, 2, · · · ,m} , vj is the embedding matrix
corresponding to feature field j. Simply put, as shown in Eq. 2.6 and Eq. 2.7, the left part of the equal sign is
the one hot encoded sparse vector multiplied by the initialized embedding layer matrix. The initialized matrix
is updated after each training, resulting in continuously updated results.

[01]×
[

3174
2843

]
= [2843] (2.6)

[0100000]×



7529
1748
3913
1576
2395
6473
8912


= [1748] (2.7)

As illustrated in Fig. 2.2, the sub-network structure from the sparse feature input layer to the embedding
layer is clearly depicted. At this stage, it can be observed that while the vector representations of different input
feature domains vary, the neurons in their respective embedding layers maintain a consistent dimensionality
of k . This consistency arises from the fact that the embedding matrix’s dimensions are determined by the
product of the feature domain’s dimensionality and the embedding size k . Notably, for the same feature
domain, a shared embedding matrix is utilized, ensuring parameter efficiency and facilitating effective learning
of feature representations. By transforming sparse high-dimensional data into dense lower-dimensional vectors,
the embedding layer not only reduces computational complexity but also preserves semantic relationships,
thereby enhancing the model’s ability to capture intricate feature interactions.

However, features may have multiple values, so they need to be calculated separately. Multiple values are
encoded separately using one hot encoding, and then input into the embedding layer. The average value of the
corresponding feature embedding vector element is taken. Taking movie viewing prediction as an example, the
type of a movie may have multiple values. The movie Titanic is of drama, romance, and adventure genre, and
three values need to be encoded separately using one hot encoding, and then embedded. The corresponding
elements of the three values are added and divided by 3, as shown in Eq. 2.8:

ei =
1

q

(
x
(1)
i vi + x

(2)
i vi + · · ·x(q)

i vi

)
(2.8)

Among them, q is the number of median values in the multi valued feature domain, q ∈ {1, 2, · · ·}.

2.3. Model Layer.

2.3.1. AFM Model. The FM model improves the performance of recommendation models by combining
individual features and introducing cross term features through pairwise combinations of features. This article
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improves its formula as shown in Eq. 2.9:

ŷFM = w0 +

m∑
i=1

wT
i ei + pT

m−1∑
i=1

m∑
j=i+1

ei ⊙ ej (2.9)

Among them, w0 is a global offset, wT
i is the weight vector of different feature domains i, m represents the

number of feature domains, ⊙ is the Hadamard product, representing the multiplication of vector corresponding
positions, p is the parameter vector, used to represent second-order combined features as a scalar.

The left part of Figure 2.1 is the AFM model, which is an improvement based on Eq. 2.9. Compared to
other methods, FM can more effectively capture second-order feature interactions on sparse datasets. However,
when the FM model outputs, the weights of second-order combined features are all 1, making it difficult to
adaptively learn weights. Some second-order combined features are meaningless, which can bring unnecessary
noise to the model and affect user behavior judgment.For example, girls prefer to watch romantic movies, while
boys prefer sports movies. Therefore, combination features such as ”girls” and ”romance”, ”boys” and ”sports”
have a positive impact on movie recommendation, while combination features such as ”girls” and ”sports”,
”boys” and ”romance” do not have a significant positive impact on movie recommendation and may also bring
noise to the data. Therefore, this article introduces an attention mechanism at the output of FM second-order
combination features to form a new model AFM, which enables the model to adaptively learn weights and
improve its performance.

The attention mechanism model has two inputs, one is the target movie vector, and the other is the
second-order combination feature output by the FM model. The purpose of using attention mechanism here
is to discover which of all second-order combination features is more helpful for predicting the target movie
rating.This article uses a scaled inner product attention mechanism model to solve the problem. Firstly, the
correlation between the two is calculated through inner product operation. To prevent excessively long input
vectors from causing the inner product to be too large, it is scaled and then normalized to obtain the weight of
the second-order combined feature, which is aij in Eq. 2.10.

aij = softmax

(
ei ⊙ ej · eM√

dk

)
(2.10)

By using a soft attention mechanism to calculate the weighted distribution of second-order combined
features, where each second-order combined feature is weighted according to its own weight,Cij is obtained as
shown in Eq. 2.11.

Cij = aij · ei ⊙ ej (2.11)

The AFM model is shown in Eq. 2.12:

ŷAFM = w0 +

m∑
i=1

wT
i ei + pT

m−1∑
i=1

m∑
j=i+1

Cij (2.12)

2.4. Output Layer. The **AFM-AutoInt** model builds upon enhancements to both the **traditional
AFM** and **AutoInt** models, making it highly adaptable for prediction tasks across diverse application sce-
narios. In this study, we evaluate its performance using the **Movielens-1M** and **Douban movie** datasets,
focusing on predicting **users’ movie ratings**, a classic **regression task** in recommendation systems. To
ensure accurate predictions of continuous rating values, we employ a **linear activation function** in the out-
put layer. The model’s effectiveness is assessed through a **comparative analysis** against benchmark models,
measuring key performance metrics such as **Root Mean Square Error (RMSE)** and **Mean Absolute Error
(MAE)**. Additionally, we explore the impact of different hyperparameter settings, training strategies, and
feature interaction mechanisms to **optimize predictive accuracy and model robustness**. Future work will
extend the model’s applicability to **multi-modal data** (e.g., incorporating text and image features), explore
**real-time recommendation scenarios**, and enhance model interpretability for better user trust and system
transparency.
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Table 3.1: Experimental Data Field Information.

Field Name Field information
User ID User ID, numerical code 1-6060
Gender Gender, M/F (M is male, F is female)
Age User age, 7 stages (1, 18, 25, 35, 45, 50, 55)
Occupation 20 professions, numbered 0-20
Movie ID Movie ID, numerical code 0-201-3590
Genres Movie genres, 18 types (Action, Adventure,...)
Rating User ratings for movies, ranging from 1-5

The output of the AFM AutoInt model is shown in Eq. 2.13.

ŷ = µ1ŷAFM + µ2ŷAutoInt (2.13)

Among them, µ1 and µ2 are the weight coefficients of AFM and AutoInt, respectively. The values of µ1+µ2 = 1
and µ2 can be used to determine the importance of low order combined features and high-order combined
features.

3. Experimental results.
3.1. Experimental data. The datasets used in this experiment are Movielens-1M dataset and Douban

movie dataset. The Movielens-1M dataset not only contains user attribute information and movie data informa-
tion, but also over one million rating information from 6060 users for 3888 movies. The Douban movie dataset
contains 29030 valid movie data, including movie data information and rating information.

3.2. Data Preprocessing. This article takes the Movielens-1M dataset as an example, merges the user
attribute information and movie attribute information of the Movielens-1M dataset based on user ID and item
ID. The merged data fields are shown in Table 3.1. Then, using the five fold cross validation method, the
dataset is randomly divided into two categories: training set and testing set. The training set selects 80% of
the data, and the testing set selects the remaining 20% of the data. Then, the features of the training set and
the testing set are encoded one hot separately.

3.3. Evaluation indicators. The experiment in this article selects four evaluation indicators, namely
mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), and R2 (R-Square)
coefficient of determination, to evaluate the effectiveness of predictive scoring. MSE is used to measure the
degree of dispersion of a set of data itself, while RMSE is the arithmetic square root of MSE. Compared with
MSE, RMSE is more sensitive to dimensionality. MAE is used to measure the degree of deviation between
predicted scores and actual scores. The smaller the values of MSE, RMSE, and MAE, the smaller the model
prediction error and the better the prediction result. The larger the R2 (R-Square) coefficient of determination,
the better the model prediction result.

3.4. Experimental Comparison Method. In order to demonstrate the value of this study and make the
experimental results more informative and persuasive, the following five comparative algorithms were adopted
in the experiment:
(1) NFM: Adding a deep neural network to the second-order feature interaction layer and introducing a feature

cross pooling layer to ”add up” the embedding vectors of different feature domains. High order feature
interactions can be captured through the nonlinearity of the neural network, combining the modeling
ability of FM for low-level feature interactions with the learning ability of DNN for high-order feature
interactions.

(2) AFM: An extension of FM that uses attention mechanism to assign different weight indices to each inter-
action feature vector to distinguish the different importance of second-order combined features.

(3) DeepFM: combines traditional second-order factorization machines with feedforward neural networks, shar-
ing the same sparse data input and embedding layers to extract low - and high-order features.
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Table 3.2: Results of MSE and MAE under Different λ Values.

λ MSE MAE
0.00001 0.8020 0.7290
0.0001 0.7706 0.6966
0.001 0.7661 0.6880
0.01 0.7660 0.6863
0.1 0.7711 0.6931

Table 3.3: Comparison of evaluation indicators for each model on the test set.

Model MSE RMSE MAE R2

NFM 0.7920 0.8902 0.7007 0.3677
AFM 0.8168 0.9035 0.7138 0.3482
Deep FM 0.7655 0.8746 0.6911 0.3888
xDeep FM 0.7672 0.8757 0.6838 0.3878
Auto Int 0.7811 0.8838 0.6977 0.3760
AFM-AutoInt 0.7603 0.8719 0.6746 0.3933

(4) xDeepFM: A new method for explicitly crossing high-order features based on vector wise pattern is proposed,
which can construct finite order crossing features.

(5) AutoInt: Maps the original sparse high-dimensional feature vectors to a low dimensional space while mod-
eling high-order feature interactions.

3.5. Results. In order to verify the effectiveness of the algorithm proposed in this article, several main
parameters in the algorithm model, including regularization parameter λ, embedding layer dimension k, weight
coefficientsµ1 and µ2of AFM and AutoInt, were carefully analyzed. Multiple comparative experiments were
conducted to comprehensively analyze and compare the performance of each algorithm based on four evaluation
indicators: MSE, RMSE, MAE, and R2 (R-Square) determination coefficient.

3.5.1. Regularization parameter λ. Different regularization parameters λ can also have a certain im-
pact on the overall performance of our model. Table 3.2 lists the MSE and MAE results obtained by the AFM
AutoInt model at different λ values, with an embedding layer dimension of 4.

From Table 3.2, it can be seen that as the value of λ continues to increase, the results of MSE and MAE
show a continuous downward trend between λ 0.00001-0.01. At λ=0.1, the results of MSE and MAE increase
again, and both MSE and MAE reach their lowest values at λ=0.01. Therefore, the model performs best when
λ=0.01 is chosen.

If the regularization parameter λ value is too small, it will cause overfitting during the training process of
the model. When the λ value gradually increases beyond a threshold, underfitting will occur, resulting in the
loss of too many features. Therefore, when λ=0.01, it can prevent overfitting and make the model more robust
during training.

3.5.2. Iteration times. After selecting the regularization parameter λ and embedding layer dimension,
Fig.3.1 shows the changes in MSE and MAE of the algorithm test set with increasing iteration times.

From Fig.3.1, it can be seen that the MSE and MAE of the algorithm converge to their minimum values
after 15 iterations. At this point, the model predicts that the user’s rating error for the movie is minimized.

3.5.3. Comparative experimental results. Table 3.3 shows the comparative results of various algo-
rithms.

According to Table 3.3, the AFM-AutoInt model outperforms both the AFM and AutoInt models individ-
ually, reducing prediction errors by 5.65% and 2.12%, respectively. This demonstrates that a hybrid approach
combining both low- and high-order feature interactions is more effective than models that rely solely on either.
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Fig. 3.1: Changes in MSE and MAE with increasing iteration times.

Table 3.4: Comparison of evaluation indicators of various models on the Douban movie dataset test set.

Model MSE RMSE MAE R2

NFM 0.7947 0.8918 0.6945 0.3656
AFM 0.8323 0.9120 0.7086 0.3353
Deep FM 0.7908 0.8890 0.6967 0.3689
xDeep FM 0.8647 0.9300 0.7241 0.3096
Auto Int 0.7867 0.8873 0.6877 0.3715
AFM-AutoInt 0.7832 0.8847 0.6875 0.3746

However, AFM-AutoInt requires a longer training time due to its comprehensive consideration of both feature
types. Extensive parameter tuning plays a crucial role in minimizing loss, which is a key factor in the model’s
superior performance. Additionally, AFM-AutoInt surpasses the DeepFM model by 0.52%, benefiting from the
integration of attention mechanisms that refine the weighting of second-order feature combinations. Experimen-
tal results confirm that the proposed model effectively captures movie data characteristics and enhances the
accuracy of user rating predictions.To fully verify the advantages of the proposed model in various evaluation
indicators, this paper processed and trained the Douban movie dataset, and finally obtained a comparison of
the evaluation indicators of each model on the Douban movie dataset test set, as shown in Table 3.4.

According to Table 3.4, compared to other models, the AFMAutoInt model also achieved the best prediction
results on the Douban movie dataset.

4. Conclusion. This article presents a novel intelligent recommendation system model, **AFM-AutoInt**,
which integrates deep learning, attention mechanisms, and automatic feature interaction modeling to address
key challenges in recommendation systems, such as **data sparsity** and **complex feature interactions**. The
**AutoInt module** enhances the model by leveraging a multi-layer self-attention mechanism to mine **high-
order feature interactions**, significantly improving predictive accuracy. Experimental results on real-world
datasets, including **Movielens-1M** and **Douban movie**, validate the superiority of AFM-AutoInt over
traditional recommendation algorithms, demonstrating **lower prediction errors** and achieving state-of-the-
art performance across multiple evaluation metrics. This study highlights the crucial role of incorporating both
**low- and high-order feature interactions** in recommendation systems, offering a promising advancement
for personalized content recommendations. Future work can explore several directions: (1) **Optimizing
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model complexity** to improve computational efficiency without compromising accuracy, (2) **Enhancing
generalization** by adapting AFM-AutoInt to diverse datasets and real-world applications, such as e-commerce
and personalized healthcare, (3) **Integrating additional contextual information**, such as temporal dynamics
and user behavior patterns, to refine recommendations, and (4) **Developing explainable recommendation
strategies** to enhance user trust and system transparency. By addressing these areas, AFM-AutoInt can
further advance the development of next-generation intelligent recommendation systems.

Data Availability. The experimental data used to support the findings of this study are available from
the corresponding author upon request.
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