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MULTI PATH GAIT CONTROL METHOD FOR BIPEDAL ROBOTS BASED ON DEEP
REINFORCEMENT LEARNING

LEHUI LIN ∗AND PINGLI LV †

Abstract. We propose a multipath gait control strategy based on deep reinforcement learning (DRL) for bipedal robot motion
planning on diverse and challenging terrains. Traditional control methods, such as PID controllers and model-based motion plan-
ning, often struggle in complex environments. These approaches typically underperform because they rely on precise mathematical
models or predefined rules, making them ill-suited for nonlinear, uncertain, and dynamic settings. Conventional techniques also
have difficulty adapting their control strategies in unpredictable and fluctuating terrains, where robots may encounter unforeseen
disturbances, leading to instability or failure.

Deep reinforcement learning is able to independently acquire optimal control methods from environmental feedback without
requiring a precise model since it combines deep learning and reinforcement learning. In this work, we leverage deep reinforcement
learning algorithms (DDPG, TRPO, PPO, A3C, SAC, etc.) based on actor-critic (AC) architectures to enable reliable gait control
of bipedal robots in a continuous motion environment. The issue that traditional approaches have in challenging to converge
complicated environments is solved by DRL, which, when compared to traditional methods, can effectively cope with the high
nonlinearity of complex terrain and adaptively alter the strategy through continuous contact with the environment.

Using goal-conditional techniques, we created a motion planning model and tested it on the actual hardware platform Cassie.
According to the experimental results, the approach successfully transfers the simulation strategy to the actual environment, and
the robot can accurately complete the goal task without global location feedback. It can also perform a variety of complex tasks,
like jumping on discontinuous and flat terrain. Furthermore, the method exhibits significant robustness and adaptability through
multithreaded asynchronous training and randomized strategy selection, which solves the shortcomings of conventional motion
planning methods in hyperparameter tuning and strategy convergence.
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1. Introduction. The potential use of bipedal robots in a variety of complicated contexts has steadily
gained significant attention as a result of the rapid advancement of robotics technology [1]. Nevertheless, bipedal
robot motion control remains extremely difficult, particularly in dynamic, uneven, or uncharted territory [2].
Robust gait control techniques are essential for bipedal robots to be able to move independently and adapt to
a variety of situations [3].

Traditional robot control approaches, such as pre-defined motion trajectories, reveal difficulties when coping
with complicated environmental changes. This is because the robot might not be able to finish the task if the
environment changes or if there are inaccuracies in the sensor data, as this approach usually depends on exact
sensor data and correct environment modeling [4]. Consequently, in an effort to attain more autonomous gait
control, an increasing number of researchers have focused on deep reinforcement learning (DRL) and other
reinforcement learning-based control techniques in recent years.

Among various DRL algorithms, the actor critic framework based algorithm has received widespread atten-
tion due to its superior performance in continuous action space. Deep Deterministic Policy Gradient (DDPG),
Trust Region Policy Optimization (TRPO), Near End Policy Optimization (PPO), Asynchronous Advanta-
geous Actor Critic (A3C), and Soft Actor Critic (SAC) are a few examples of this kind of technique [5]. These
algorithms each have their own characteristics and are suitable for different task scenarios. For example, DDPG
has been successfully applied in continuous action planning for mobile robots by using two neural networks to
estimate the policy function and value function separately [6]. However, DDPG is prone to poor convergence
in practical applications [7]. TRPO improves the convergence of the algorithm by optimizing the step size of
policy updates, but its high computational complexity limits its application scope [8]. PPO simplifies the calcu-
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lation process of TRPO, although it improves computational efficiency, there are still shortcomings in terms of
exploration [9]. A3C improves training efficiency through multi-threaded parallel training, but requires a large
amount of training data, which increases the cost in practical applications [10]. SAC improves the sensitivity of
the policy gradient algorithm to hyperparameters and enhances the robustness of the algorithm by introducing
the maximum entropy strategy [11].

While these DRL algorithms work well for controlling robot motion, there are still significant obstacles
when trying to directly apply them to controlling the gait of bipedal robots. First of all, it is challenging
to directly use known algorithms in real-world applications due to the high dimensionality and complexity
of bipedal robot motion control. Second, there is an urgent need to find a solution to the issue of how to
guarantee the algorithm’s robustness and universality while transferring between various jobs and contexts.
Furthermore, present algorithms still perform inadequately when it comes to handling the impacts of uncertainty
and randomness in the motion of bipedal robots in dynamic situations.

This research suggests a deep reinforcement learning-based multi-path gait control technique for bipedal
robots as a solution to these problems. This method aims to enhance the adaptability and stability of bipedal
robots in different environments by introducing a strategy that combines multi-path planning and DRL. The
main contributions of this article include the following aspects:

The multi-path gait control method proposed in this article not only considers the stability of the robot
on a single path, but also enhances the adaptability of the robot in complex environments through multi-path
planning. Multi path planning allows robots to quickly select the optimal path when facing environmental
changes, thereby improving the robustness of their motion.

By combining DRL and multi-path planning, this paper constructs an adaptive control framework that
enables robots to flexibly switch between different tasks and environments. This framework not only considers
various possible environmental changes during the training process, but also has good generalization ability in
practical applications.

This research carried out numerous experiments on both real hardware platforms and simulated environ-
ments to confirm the efficacy of the suggested approach. The experimental findings demonstrate that the
suggested multi-path gait control approach outperforms existing DRL algorithms and conventional techniques
in complicated situations. Simultaneously, the approach showed its promise in real-world applications by per-
forming better in various tasks and situations.

2. Actor critic-based DRL motion planning. In the task of robot motion planning in continuous
action space, the output of the robot is no longer a finite set of discrete actions, but the execution probability
of each action in the continuous action domain [12]. The speed and acceleration changes of wheeled robots
acting on the active wheels, and the output of force and torque of legged robots acting on each joint. For this
type of task, the actor critic based DRL motion planning method has stronger applicability, and commonly
used algorithms include DDPG, TRPO, PPO, A3C, SAC, etc., which will be introduced one by one below.

In practice, multipath control methods have shown significant advantages in several areas, especially in robot
motion control in complex environments. The following are some typical application cases to demonstrate how
the method can solve real-world motion control problems and its potential application areas:
Rescue robots: After natural disasters or accidents, rescue robots are often required to perform tasks in com-

plex terrains, such as rubble piles, mountain slopes, or forest environments. Traditional motion control
methods often perform poorly in such uncertain and changing environments. In contrast, deep re-
inforcement learning-based multipath control methods are able to adapt to various complex terrains
through continuous learning and adjustment. Through training and strategy optimization in different
terrains, the rescue robot can achieve more stable and flexible motion control, easily cross obstacles,
quickly reach the disaster site, and improve rescue efficiency.

Industrial robots: In modern production lines, industrial robots often need to perform high-precision motion
planning in limited space, such as handling heavy objects and assembling parts. Multipath control
methods in such scenarios allow for more flexible and efficient operations based on real-time changes
in the environment, such as avoiding obstacles or quickly adjusting paths. In addition, when the robot
is performing multiple tasks, the algorithm is able to effectively respond to the switching of complex
tasks through multipath planning, ensuring the efficiency and continuity of industrial production.
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Fig. 2.1: Motion Planning Method Based on DDPG Algorithm.

Medical robots: During surgery, medical robots require extreme precision and flexibility, especially when oper-
ating complex surgeries. Motion planning methods based on multipath control can simulate and learn
from the anatomical structures and surgical requirements of different patients to provide optimal opera-
tion paths for surgical robots while avoiding errors. The application of this technology can significantly
improve the success rate of surgery and reduce the operation time.

Driverless vehicles: Driverless technology also faces the challenge of complex environments, especially path
planning in dynamic traffic scenarios. Multipath control methods can help driverless vehicles adaptively
adjust driving paths in complex urban roads, safely avoid pedestrians and obstacles, and optimize
driving routes through learning to improve driving efficiency and safety. These typical application
cases show that the multipath control method has obvious practicality and advantages in solving robot
motion control problems in complex environments, and its potential application areas cover many key
fields such as rescue, industry, medical care, and autonomous driving.

2.1. DDPG. A model free deep deterministic policy gradient algorithm (DDPG) based on the actor
critic (AC) algorithm framework is proposed for motion planning of mobile robots in continuous action spaces,
which has the ability of continuous action planning for mobile robots [13].The DDPG algorithm constructs four
neural networks for mobile robots, while estimating the policy function and value function, including the target
network of actor and critic and the current network, respectively. The actor’s current network is responsible for
iteratively updating the robot strategy network parameter θ, and the parameter θ′ in the actor’s target network
is copied from the current network based on a fixed step size; The current network of critic is responsible for
iteratively updating the value network parameter w and calculating the current Q value. The target network
parameter w′ of critic is periodically copied from w. The motion planning method for mobile robots is shown
in Fig.2.1.

DDPG uses memory replay units for random selection, breaking the correlation of data and improving
algorithm efficiency. It adopts a deterministic strategy to directly output the action corresponding to the max-
imum value function of the mobile robot, and defines the optimization objective function of DDPG algorithm
as:

J(θµ) = Eθµ

[

r1 + γr2 + γ2r3 + · · ·
]

(2.1)

where µ is the parameter of the strategy network that generates deterministic actions.
With the use of a dual network structure and priority experience replay mechanism, DDPG has successfully
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Fig. 2.2: Motion Planning Method Based on TRPO Algorithm.

tackled the problems of actor critic convergence and continuous control of mobile robots [14].
2.2. TRPO. In the optimization process of DDPG strategy gradient, the update step size will directly

determine whether the mobile robot can quickly and accurately reach the target point [15]. Some researchers
have suggested a reinforcement learning algorithm (TRPO) based on trust domain strategy optimization to
determine the proper step size [16]. TRPO is based on calculating the KL dispersion range between the new
strategy and the old strategy, with the goal of maximizing the difference between the action value function
and the state value function, that is, taking the advantage function as the objective. The objective function is
defined as:

J
θ′

TRPO(θ) = Eπθ

[

πθ/πθ′Aθ′

(st, at)
]

(2.2)

Among them, θ and θ′ are the network parameters of the new and old strategies, respectively.
A motion planning technique for a mobile robot based on the TRPO algorithm is shown in Fig.2.2. TRPO

outputs an action probability distribution, and the mobile robot can optimize its motion parameters based on
this probability distribution.

TRPO (Trust Region Policy Optimization) addresses the challenge of determining the appropriate update
step size in policy gradient methods. It does so by using a trust region to ensure stable updates, which prevents
large, destabilizing changes to the policy. However, in practice, the implementation of TRPO involves certain
approximations that can complicate the process. These approximations often lead to labor-intensive calculations
and, in some cases, substantial inaccuracies, particularly when the trust region is not well-calibrated. Despite
its theoretical advantages, the computational complexity and potential for approximation errors make TRPO
challenging to apply in real-time systems or environments with high-dimensional state spaces. These limitations
highlight the need for further optimization of the algorithm to improve both accuracy and computational
efficiency.

2.3. PPO. In response to the problem of excessive complexity in the calculation process of TRPO algo-
rithm, which leads to deviation between the motion planning path and the optimal path of mobile robots, some
scholars have proposed a reinforcement learning algorithm (PPO) for proximal strategy optimization, which
enables mobile robots to have better exploratory ability in action selection [17]. The PPO algorithm directly
uses the KL(θ, θ′) divergence of the old and new strategies as the penalty term, and its objective function is
updated to:

J
θ

PPO(θ) = Eπj

[

πθ

πθ

Aθ(st, at)

]

− βKL(θ, θ′) (2.3)

where β is the parameter for updating dispersion. Compared with the TRPO reinforcement learning algorithm,
the PPO algorithm significantly simplifies the calculation steps of TRPO while retaining the exploration method
of random strategies. In the case where the sampled samples satisfy the maximum likelihood probability, the
robot’s motion planning method will have better exploration and robustness [18].
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Fig. 2.3: SAC Algorithm-Based Robot Motion Planning Principle.

2.4. SAC. SAC is an ofÒine learning reinforcement learning method based on maximum entropy, and
mobile robots also use random strategies to select actions, which can learn from past experiences as well as
other task experiences. As shown in Fig.2.3, the reinforcement learning motion planning method based on SAC
maximizes the objective function through the maximum entropy method, where the objective function based
on maximum entropy is:

J(θ) = Eπ

[

∑

Q(st, at)− α̂logπ(at|st)
]

(2.4)

Among them, α̂ are entropy regularization coefficients, which contain dynamic parameters from the real robot
system.

The SAC motion planning algorithm uses a strong learning framework to reduce the need for hyperparame-
ter change under the entropy constraint. In order to maximize expected return on the mobile robot’s objective
function, it updates the action selection strategy network of the robots using regularization coefficients rather
than hyperparameters. This increases the policy gradient method’s sensitivity and weak convergence to hy-
perparameters, improving the stability and applicability of the SAC motion planning algorithm in real-world
settings. For legged and other mobile robots, it can quickly learn and plan walking skills.

3. Experiments. We have successfully deployed simulated target condition strategies and flat ground
strategies for different target tasks on Cassie hardware, covering tasks such as jumping to different positions
and turning directions, as well as discrete terrain strategies for variable positions and heights.

This section aims to verify two hypotheses: 1) whether the simulated training strategy can perform the
same tasks in the real world; 2) Can the target condition strategy stably utilize the learned tasks to control the
robot after being transferred to reality. The robot did not receive global position feedback in any of the studies,
so once it moves, it will not be able to determine how far it is from the target landing location or the earth.

1. Validation of Hypothesis 1: Whether a simulation-trained strategy can perform the same task in reality.
Experimental Goal: To verify whether the strategies trained in the simulation environment can be directly

applied to real robot systems to ensure that the robots perform well when performing the same tasks
in the real environment.

Experimental Design:
Experimental conditions: In the simulated environment, the robot will be trained on multiple tasks,

including operations such as walking, jumping and steering on different terrains. After the training
is completed, the same tasks will be executed directly on the real hardware platform using the
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same strategy, and the simulated training environment matches the dynamic characteristics of the
real hardware environment.

Experimental Tasks:
Task 1: Jumping to a fixed target point. The robot needs to jump from its starting position to a

fixed target point 1 meter away, the goal of the task is to test its accuracy in completing the
task in both simulated and real environments.

Task 2: Backward jump. The robot needs to jump backward 0.3 meters from the starting position
and accurately land on the ground marking point to verify whether the strategy can be stably
executed in different directions of motion.

Task 3: In-situ steering and jumping. The robot first turns -60 degrees in place and then jumps
back to the starting position to test its adaptability in complex motions.

Experimental Steps:
Simulation training phase: complete training of the robot on all tasks in a simulated environment,

using deep reinforcement learning strategies for optimization until the robot demonstrates efficient
action planning and execution in the simulated environment.

Realistic task execution phase: the trained strategies are applied to the real robot platform, and the
above three tasks are repeated under the same physical conditions (same start position and goal
position). Record the robot’s movement trajectory, jumping distance and landing point, and com-
pare the accuracy, time and stability of task completion in the simulated and real environments.

Validation metrics:
Task success rate: whether the robot successfully completed the tasks in the real environment.
Jumping accuracy: measure the deviation of the robot from the target point in the real environment.
Motion Stability: Observe whether the robot is unstable or deviates from the original strategy during

the actual task execution.

2. Validate Hypothesis 2: Whether the goal-conditional strategy can control the robot stably after transferring
to reality.
Experimental Goal: To verify whether the robot trained by the goal-conditional strategy can stably execute

the learned task in the real environment, especially when facing complex terrain.
Experimental Design:

Experimental conditions: The goal-conditioned strategy will be trained on a variety of complex tasks
in a simulated environment that contains irregular terrain and different task requirements, such
as jumping to target points at different heights or crossing obstacles at different heights.

Experimental Tasks:
Task 1: Jumping to a 1-meter distant target point. The robot is required to jump 1 meter from

the starting point to a target point on flat ground to verify its stability under target conditions.
Task 2: Jump to 1.4 meter away target point. Increase the jumping distance to verify whether

the target condition strategy can maintain accuracy and stability under increasing distance.
Task 3: Jump to target points at different heights. The robot needs to jump to a 0.44-meter-high

platform to test its adaptability under different height conditions.
Experiment Steps:

Training in the simulated environment: the robot is trained using goal-conditional strategies to ensure
that the robot learns the corresponding strategies under different tasks and executes them accu-
rately at different target locations and heights.

Realistic task execution phase: transfer the strategies in the simulated environment to the actual hard-
ware platform, repeat the same jumping task, record the robot’s trajectory and completion, and
test its stability and accuracy in different tasks.

Validation metrics:
Task completion rate: whether the robot can complete the task in the real environment.
Target accuracy: measure the accuracy of the robot in different jumping distance and height tasks.
Stability and Adaptability: assess the robot’s ability to adapt in the real world by observing its perfor-

mance in different complex environments.
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Analysis of experimental results : By comparing the results of the robot’s task execution in the simulated and
real-world environments, the following points can be verified: Whether the simulation training strategy
is able to achieve seamless transfer in reality and the stability of task execution.
Whether the target conditioning strategy is able to maintain high accuracy and stability under complex
terrain conditions, especially when the jumping distance and height change. These experiments are
designed to verify the performance and stability of the simulated strategies in real-world environments,
thus better explaining the two hypotheses in the article.

3.1. Execution of Realistic Tasks. Initially, we conducted three challenges to evaluate the robot’s flat
ground strategy: Jumping forward to a target point one meter ahead, jumping 0.3 meters backward, and
jumping in place after turning negative sixty degrees.

These tests highlight two major benefits of the suggested approach: Initially, it can adapt to different
system dynamics and transition from simulation to real environments; Secondly, it can flexibly deviate from
the reference motion trajectory and complete predetermined tasks through multiple touchpoints.

Next, we validated the performance of the discrete terrain strategy in three tasks: jumping 1 meter forward,
jumping 1.4 meters forward, and jumping to a target 0.88 meters ahead with a height of 0.44 meters. This tactic
illustrates the capacity to accurately manipulate the robot to land on a specific target,. The robot took off and
landed later during the 1.4-meter jump compared to the 1-meter jump, suggesting that the robot needs longer
flight phases and higher takeoff speeds to land at further places.Furthermore, to ensure accuracy in height, the
robot made a more vertical jump and raised its leg position when jumping to a platform 0.44 meters high .
This method can still stabilize the robot’s performance at various landing places even with an early landing
time.

These experimental results indicate that the proposed strategy can flexibly adapt to the dynamic charac-
teristics of robot hardware and achieve precise target landing by adjusting takeoff attitude and acceleration.
This ability is particularly critical when dealing with ballistic movements during flight, as small errors during
takeoff can lead to significant deviations in landing position.

3.2. Semi sealed gap. To further reveal the difficulty of the successful jumping experiment of the robot
in Fig. 3.1, we conducted a thorough analysis of the gap between simulation and the real world. Fig.3.1 shows
the joint position changes when the robot performs a turning task . Comparing the recorded data, it was found
that there is a significant deviation between the joint positions of the robot in the simulated environment (blue
curve) and the actual positions in the real world (red curve).

For example, the maximum deviation of the tarsal joint connection position q6 exceeds 0.35 radians. Con-
sidering that this joint is not driven by a leaf spring with a nominal stiffness of 1250 Nm/rad, this deviation has
a significant impact on the dynamic performance of the robot. Similar deviations also occur in other key joints,
such as the rotation joint q2, thigh joint q3, and knee joint q4, which play crucial roles in jumping and turning
processes. In addition, similar differences were observed in other experiments using discrete terrain strategies.
These differences emphasize the huge gap between simulation and the real world, but also demonstrate that
despite such significant differences.

As shown in Fig.3.1, when the robot executes the command to jump and rotate -60 °, its joint positions
show significant differences between simulated and real environments. For example, the tarsal joint driven by
passive leaf springs exhibits significant deviations during the transition from simulation to actual operation. In
addition, the flight phase in the real environment is significantly delayed compared to the simulated world.

3.3. Diversified and Strong Strategies under Target Condition Policies. To further overcome the
limitations of the proposed control strategy, we conducted more complex dynamic jump experiments, as shown
in Fig. 3.3. In these multi axis jumps, robots exhibit more complex motion behaviors. For example, in Fig.
3.3, the robot tilts laterally while jumping forward, and rotates -45 ° after landing, accurately landing at the
target position 0.5 meters in front of the starting point and 0.2 meters to the left. In some challenging tasks, as
shown in Fig. 3.3, the robot adjusts its body posture through small jumps after unstable landing to maintain
balance.

In addition, to verify the robustness of the strategy, we applied a backward perturbation force at the
pelvic vertex of the robot and tested its performance in dynamic environments, as shown in Fig.3.3. After
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Fig. 3.1: Simulation differences in robot jumping and rotation -60 °.

Fig. 3.2: Different jumps using flat ground strategy.

being disturbed, the robot tilted backwards during descent and caused its toes to tilt upwards during landing,
resulting in insufficient driving force at the contact point. However, robots quickly adjust themselves by jumping
backwards, a response learned in multi-objective training. During this jumping process, the robot is able to
readjust its posture during the flight phase, achieving stability upon landing. The original goal of this test was
to jump in place, but interestingly, the robot deviated from its initial task to avoid falling.

4. Conclusion. In this study, we propose a deep reinforcement learning (DRL) based multipath gait
control technique for bipedal robots to overcome the difficulties of motion planning over complex terrain. The
irregularity and variety of the terrain present a challenge to established control approaches, and the methods’
limitations in terms of resilience and adaptation in continuous action space are just two of the many challenges
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Fig. 3.3: Different jumps using discrete terrain strategy.

that come with motion planning in complex terrain. These factors hinder the robot’s ability to walk steadily and
accurately. We achieve accurate gait control of robots in continuous motion space by methodically examining
various deep reinforcement learning algorithms based on actor-critic structure (e.g., DDPG, TRPO, PPO, A3C,
SAC, etc.). The method’s superior adaptability and robustness in a variety of complex tasks and environments,
along with its ability to migrate strategies trained in a simulated environment to the real hardware platform
Cassie, are demonstrated by the experimental results. This improves the performance of traditional methods
in complex terrains to a significant degree.

Data Availability. The experimental data used to support the findings of this study are available from
the corresponding author upon request.
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