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DATA CUBES AND CLOUD-NATIVE ENVIRONMENTS FOR EARTH OBSERVATION:
AN OVERVIEW∗

ALEXANDRU MUNTEANU†

Abstract. Reliable access to analysis-ready Earth observation data and infrastructures for processing them has been a
challenge with the increasing volumes and variety of data being generated daily through various Earth observation programmes.
Recently, concepts centered around building cloud-native infrastructures that provide access to Earth observation data in efficient
manners such as data cubes which facilitate rapid querying, filtering and retrieval have been garnering popularity. Moreover, efficient
means of processing such vast volumes of data stored in data cubes through cloud computing frameworks such as Kubernetes are
becoming more popular. This paper investigates the current state-of-the-art techniques, methods and technologies used in cloud-
native environments with a particular focus on the data cube initiative and ”bring the user to the data” paradigm, highlighting
the usefulness of such approaches and their current limitations.
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1. Introduction. With the rapid growth of Earth Observation (EO) data generated through programmes
constantly deploying satellites to monitor the Earth’s physical characteristics, efficient data management and
processing strategies are needed. Public sector initiatives such as the European Space Agency (ESA) Copernicus
programme and the National Aeronautics and Space Administration (NASA) Landsat or through private EO
companies such as Planet Labs, Capella Space and many others are contributing to an unprecedented volume,
variety and velocity of data regarding the physical characteristics of Earth daily. EO data provides valuable
information, helping to develop strategies for a multitude of areas, such as climate change, disaster management,
agricultural strategies, urban planning, and forest sustainability.

One of the principal challenges that arise when dealing with EO data comes from its complexity and
heterogeneity. EO data comes in a variety of forms depending on the instrument used in the data acquisition
phase and the processing techniques that are applied. These instruments range from optical, multi-spectral,
hyper-spectral, RADAR, LiDAR and thematic instruments designed to capture information regarding the
atmospheric composition, ocean and land colour and many others. In addition, it is worth mentioning that
each data source provides data at different spatial resolutions and is disseminated through various formats (e.g.
NetCDF [65], GeoTIFF [48], GeoParquet [67], Zarr [57] and others). Specific data processing workflows are
employed based on this information.

With the advent of large, scalable infrastructures, especially Cloud Computing, High-Performance Comput-
ing (HPC) and distributed computing architectures, efficient processing of large volumes of EO data has become
promising [83]. Frameworks for distributed computing such as Apache Spark [86] and Apache Hadoop [7] have
facilitated processing and analyzing large datasets across clusters. Hadoop enables distributed storage (through
HDFS - Hadoop Distributed File System) providing fault tolerance and high availability through data repli-
cation. By default, Hadoop uses the MapReduce paradigm, designed for batch processing the data stored in
HDFS. Additionally, tasks are replicated across the cluster ensuring fault tolerance. Unlike Hadoop, Apache
Spark uses in-memory data storage, which gives it an advantage in some use cases. In addition to batch
processing, Spark supports real-time data streaming.

Kubernetes [12] is a cloud-native orchestrator for containerized applications in cloud environments, capable
of deploying, scaling and managing containerized applications. The main advantages Kubernetes offers are

∗Funding: This work was funded by the Romanian Ministry of Research, Innovation and Digitalization under contract no.
PN-IV-P6-6.3-SOL-2024-2-0248, acronym ROCS.

†West University of Timișoara, Department of Computer Science (alexandru.munteanu@e-uvt.ro).

5745



5746 Alexandru Munteanu

on-demand automatic scaling of deployments, rescheduling faulty containers, load balancing across containers
or services, and efficient resource management.

A relatively recent initiative in managing large volumes of EO data consists of the development of Earth
observation data cubes [38]. Earth observation data cubes are based on the data cube technology [10] where
data is represented as multi-dimensional arrays that facilitate the process of querying, analysis and visualization
of spatio-temporal data. In a typical data cube, metadata of the ingested products is kept within a DBMS,
facilitating querying and filtering of the ingested products. In Earth observation data cubes, data is organised
within multiple dimensions (e.g. latitude, longitude, time, spectral band). Recently, progress in standardising
earth observation data cubes has driven current implementations to offer data that users can directly work with
as part of what is known as Analysis-Ready Data (ARD) [43]. ARD proposes several preprocessing steps to be
undertaken to ensure the quality of data delivered, thus creating data cubes that contain directly usable data.

Ongoing efforts through projects such as EOEPCA+1 aim to standardize and design scalable architectures
for supporting EO data processing. Other projects, such as Pangeo, PEPS, CODE-DE, EODC, Microsoft
Planetary Computer, and Google Earth Engine, have deployed large-scale data dissemination and processing
platforms which are hosted in scalable environments.

Copernicus Data Space Ecosystem (CDSE) is the most recent answer towards data cube approaches from
the ESA. Data previously disseminated with the help of the now defunct Data Hub Software (DHuS) through
ESA’s ground segment and national replicas (also known as Collaborative Ground Segments - CollGS) are
provided through CDSE. CDSE currently offers catalogue-based Application Programming Interfaces (API)
such as STAC, OpenSearch, and OData, as well as non-catalogue APIs like OpenEO and OGC-compliant APIs.
Data processing through On-Demand Processing (ODP) is also offered as part of CDSE through serverless
functions.

Multi-mission algorithm and analysis platforms (MAAP) [6] is a joint ESA-NASA initiative designed to
facilitate the analysis and processing of EO and in-situ data [5]. MAAP’s implementation leverages open-source
technologies and frameworks for developing a cloud-native approach to processing large-scale EO data. The
principal reasoning behind MAAP is to ”bring the user to the data” to reduce the significative overheads
associated with data retrieval. Biomass harmonization and SAR data analysis are discussed by [29].

Integrating EO data cubes with scalable computing infrastructures, such as cloud platforms and HPC
systems, has enhanced the ability to process and analyze large EO datasets. Architectures such as EOEPCA+
and cloud platforms such as the aforementioned Pangeo, CODE-DE, EODC, and CDSE all commonly offer
user workspaces in cloud-based environments that are closer to the data to facilitate the scalable processing of
data stored in their datacubes. Development Seed and Element84 employ cloud platforms like Amazon Web
Services (AWS) to store and process large quantities of EO data.

In this article, we provide an overview of the state-of-the-art concerning the utilization of scalable infrastruc-
tures, architectures, technologies and practices for processing vast volumes of EO data, with a particular focus
on approaches centred around using client-side Earth observation data cubes. We offer some insights regarding
cloud-optimized data formats and the benefits of using them in cloud-native environments. We provide details
about 8 different platforms that can be used for exploiting the potential offered through EO data cubes and
information regarding the software environment or architectures those platforms use.

The paper is further organized in the following manner: Section 2 describes the current state-of-the-art in
processing large volumes of Earth observation data, discussing modern HPC and cloud computing technologies
employed by EO platforms. Platform architectures and undergoing standardization efforts are also taken into
account. Furthermore, the various EO data cube developments are addressed in this section. Section 3 discusses
the data cubes, platform standards and their current limitations. Finally, in Section 4, we draw our conclusions
from this overview on the state-of-the-art of cloud-native environments for processing large volumes of EO data.

2. State of the Art. In a more generic term, the scientific community has discussed the use of scalable
computing platforms for processing large volumes of data, particularly processing EO data stored in repositories
following data cube approaches. In [9], the authors describe the use of current standards such as Spatio-
Temporal Asset Catalog [71] and Open Data Cube (ODC) [38], as well as the use of distributed processing

1eoepca.org
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methods such as Dask [15], Hadoop [7] or Apache Spark [86] for processing the large volumes of existing EO
data. Highlighted by [9], the use of distributed computing can solve the scalability limitations of ODC raised
by [82, 26]. Cloud-native data repositories for storing scientific data is a topic discussed by [3], highlighting
the benefits of data-proximate computing and the use of cloud-native approaches to efficiently process large
volumes of EO data.

The use of cloud-native approaches for analysing large volumes of Earth observation data, particularly with
the data cube paradigm, has been a relatively recent development which has garnered popularity within the
community, forming a solid ecosystem of standards, frameworks, platforms and software libraries [76].

A cloud-native approach towards defining processing pipelines for EO data cubes is described by [80] using
the MapReduce [31] paradigm for processing Sentinel-2, 10m resolution products. Experimental results provided
in [80] for performing land cover mapping at a continental scale using machine learning approaches based on
Support Vector Machines (SVM) [32] and the U-Net [66] topology while using ESA WorldCover as the ground
truth masks. The experiments were carried out within three different environments which facilitate both access
to EO data cubes and computing infrastructures, namely Google Earth Engine (GEE) [28], Microsoft Planetary
Computer [55] and the Science Earth Platform [81].

Two main limitations of the approach described by [80] are presented, namely that the implementation is
highly complex, and users are required to manually define the dependencies on which the data cubes are built.
Secondly, the range of algorithms that can be applied to the generated data cube is limited due to how the data
cube is partitioned. Algorithms such as Principal Component Analysis (PCA) cannot be easily implemented
using this approach [80].

2.1. Earth Observation Data Cubes. Various methods for creating data cubes with EO data have
been broadly discussed in the literature [24, 25, 40, 74]. In [40], the authors discuss ”achieving the full vision
of Earth observation data cubes”, where the prerequisites and methodology for building EO data cubes are
outlined, most notably the data preprocessing steps for building ARD [43] according to the Committee on
Earth Observation Satellites (CEOS)2 CARD4L guidelines [1].

According to the CEOS CARD4L guidelines [1], a series of processing steps need to be performed on the
data before dissemination. Namely, radiometric and geometric preprocessing, tiling, compression, choosing a
well-suited data format, generation of multiple overview layers, and optimizing the data for temporal access [40].

Optimizing data storage using compression and choosing data formats and structures that optimize access
to the data are also discussed by [40]. The addition of processing workflows, user workspaces and the ability
to disseminate the data and value-added products is also highlighted by [40]. The benefits of Combining
analytic interfaces with EO data cubes for facilitating the execution of processing workflows are discussed
by [49] covering three use cases: analyzing the statistics of biosphere-atmosphere interactions, the dynamics of
intrinsic dimensions of ecosystems and model parameter estimation.

The benefits of local or national level EO data cubes are highlighted by [75]. Thematic data cubes such as
CBERS [64] designed for mapping biomes in Brazil or mapping agriculture [13] require smaller infrastructures
to manage, reducing the load of more general purpose EO data cubes at the cost of not having all the data
conveniently in the same platform, difference in technologies and choice of standards. This spans the need for
federating access to various data cubes or platforms, fitting into the vision of the EOEPCA+ architecture.

Earth observation data cubes have been employed for solving various tasks such as mapping surface water
over a temporal span of 25 years [59] using the AGDC, developing machine learning based time series analysis
packages for the R language [70], rapid high-resolution detection of environmental changes at continental
levels [44]. These use cases highlight the relevancy and importance of further developing such standardized,
cloud-native approaches for processing large-scale EO data.

2.1.1. Cloud-Native Geospatial Data Formats. One of the central points of building cloud-native EO
data cubes is the conversion of data from their various initial formats to cloud-friendly formats that facilitate
random access and partial file reads over various protocols such as the HyperText Transfer Protocol (HTTP).

Particularly, the development of the Cloud Optimized GeoTIFF (COG)3 format for raster data which

2https://ceos.org
3https://cogeo.org
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Table 2.1: Cloud-native formats for storing vector data.

Format Base format Structure and optimization
COPKG GeoPackage SQLite, HTTP range requests
GeoParquet Parquet Columnar data layout, spatial indexing
FlatGeoBuf Flatbuffers Packed Hilbert R-tree [37], HTTP range requests
Geojson-T GeoJSON Tiled GeoJSON, partial retrieval

organises pixels into tiles which are indexed (using an offset table) for rapid access, with multiple generated
pyramids acting as overview layers. Each tile within a COG file can be individually compressed, with popular
choices being LZW, Deflate or JPEG compression algorithms. Performing partial file reads is possible for
COG files via HTTP GET range requests4 that correlate with the random access indexed tiles provide. Cloud-
Optimized GeoTIFF files can be conveniently created with the help of Rasterio [23], a Python library that
handles raster geospatial data. More precisely, with the use of the rio-cogeo5 plugin.

A similar format for storing 3D point cloud data is the Cloud Optimized Point Cloud (COPC) format6

which is based on the LIDAR Aerial Survey (LAZ) format. COPC files share a similar partial file, random access
vision as COG which is implemented using an Octree [68] data structure. Similar to COG, COPC files also have
overview layers computed also known as Levels of Detail (LOD). In terms of compression, LZW is typically used
with COPC data. HTTP range requests can be used to access nodes from the Octree representation, allowing
for partial reads.

In terms of cloud-native formats for storing vector geospatial data, due to the availability of multiple formats
in existence (Apache Parquet7, FlatGeoBuf, GeoJSON, ESRI Shapefile, Apache Arrow) paired with a lack of
consensus in the community have led to the development of multiple suitable formats. Most notably, formats
such as Cloud Optimized GeoPackage (COPKG), GeoParquet, Geojson-T (Tiled GeoJSON) and Mapbox Vector
Tiles (MVT). Through PMTiles8, support for HTTP range requests and generation of COG-like pyramids is
aimed to be brought to vector data formats as well [78]. An approach for cloud-optimized tile archive formats
deployed in the cloud is presented in [78]. Similar efforts towards raster encodings for web-native for time
series data designed for large environmental EO data in use for streaming in web platforms are discussed
by [34]. Table 2.1 contains popular cloud-native vector formats, the format they are based on, and their
indexing method.

Among the formats shown in Table 2.1, GeoParquet has advantages over the others in terms of compression,
querying speed and throughput [67, 53, 79] and is used in platforms such as Microsoft Planetary Computer [55].

2.1.2. Current Operational EO Data Cubes. With the development of the Australian Geosciences
Data Cube (AGDC) in 2017 [45], the Open Data Cube (ODC) initiative was spanned [38]. An overview
of the deployed ODC instances9 in 2018 [38] discusses that at the time, four national instances were already
operational: Switzerland [24], Columbia [8], Taiwan [14] and Australia [45] with 11 others being in development.
Later developed instances such as the Austrian Semantic Data Cube [75], the CBERS data cube for mapping
biomes in Brazil [64], the Romanian Data Cube [62] rely on the use of the Spatio-Temporal Asset Catalog
specification10 and cloud-optimized data storage formats which forms the new direction dissemination of Earth
observation data is heading towards. Recent versions of ODC have also adopted the STAC specification11 and
provide access to data through compliant API’s. Table 2.2 shows some of the currently deployed data cubes,
their spatial coverage and URL’s where further details and access methods can be consulted.

4https://tools.ietf.org/html/rfc7233
5https://cogeotiff.github.io/rio-cogeo/
6https://copc.io
7https://parquet.apache.org
8https://cloudnativegeo.org/blog/2023/10/where-is-cog-for-vector/
9https://opendatacube.readthedocs.io/

10https://stacindex.org/catalogs
11https://www.opendatacube.org/copy-of-get-started
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Table 2.2: Current deployments of Earth Observation data cubes.

Name Coverage URL
MPC Global https://planetarycomputer.microsoft.com/
GEE Global https://earthengine.google.com
GEO Global https://www.earthobservations.org
AGDC Australia https://www.ga.gov.au/dea
SDC Switzerland https://www.swissdatacube.org/
ACUBE Austria https://acube.eodc.eu
eocube.ro Romania https://eocube.ro/
CBERS Brazil https://brazil-data-cube.github.io
TASA Taiwan https://www.tasa.org.tw
Digital Earth Africa Africa https://www.digitalearthafrica.org/
Digital Earth Pacific Pacific Islands https://www.digitalearthpacific.org/
INEGI Mexico http://en.www.inegi.org.mx
Armenian Armenia http://datacube.sci.am
SIBELIUs Mongolia, Kyrgyzstan https://eosphere.co.uk
SERVIR Mekong Region https://servir.adpc.net

2.2. HPC for Processing Large Volumes of EO Data. The adoption of High-Performance Computing
(HPC) has been discussed largely by [46] where authors discuss traditional general-purpose HPC frameworks
such as Apache Spark [85], Hadoop [7], OpenMPI [21] and HTCondor [77] and their respective use in conjunction
with Earth observation data. Particularly, the use of HPC and cloud computing resources for processing EO data
organized in data cubes is addressed by [9] through the use of Dask [15] clusters orchestrated by Kubernetes [12].
The authors of [9] present an architecture leveraging those technologies to exploit EO data cubes that utilise
the Spatio-Temporal Asset Catalog (STAC) [71] specification.

A software solution tailored especially for processing large quantities of geospatial data based on Spark is
Apache Sedona (formerly known as GeoSpark) [85]. Sedona stores classical georeferenced vector data types such
as points, lines, linestrings and polygons in custom Spatial Resilient Distributed Datasets (SRDD). Furthermore,
Sedona utilises spatial indexing data structures such as R-trees and Quad-trees, enabling efficient queries.
Queries based on relationships and geospatial functions are also implemented in Apache Sedona. Sedona is
fully integrated with the Apache Spark ecosystem, allowing the use of Spark SQL, Spark Core and Spark
DataFrames.

GeoTrellis12 is a geospatial processing engine designed for execution in HPC environments. Developed
on top of Apache Spark, GeoTrellis can be deployed in cluster and grid environments, allowing it to scale to
fit various processing requirements. GeoTrellis supports processing both vector and raster data, it provides
raster operations (map algebra), spatial operations and utilities that facilitate the creation of web services for
disseminating the processed products [42]. Some limitations of GeoTrellis include two resampling techniques
(Nearest Neighbor and Bilinear sampling) that affect the runtime of the overall process, as well as having no
control over processing steps and job scheduling, therefore relying only on Spark’s scheduling [42]. Raster
processing using GeoTrellis is discussed in [41], where a cloud architecture is proposed, leveraging the use of
Docker [52] to distribute the workload in a cluster.

Google BigQuery [11] is a serverless, scalable data warehouse product from the Google Cloud. With on-
demand scaling, and serverless architecture there is no need of infrastructure management. BigQuery utilises
a columnar format for data storage that is separate from the compute capabilities, data retrieval is done
through an SQL-like language. In the context of a comprehensive comparative study for large geospatial data
storage methods [16], both the benefits and disadvantages of BigQuery we’re detailed. Integration with other
Google services, reliability and serverless architecture, ease of use and standard SQL querying capabilities are
mentioned as the strong points of BigQuery [16]. The financial model of pay-as-you-go requires cost monitoring
by the users, varying ingestion rates and highly complex geospatial data might not benefit from the NoSQL

12https://geotrellis.io
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architecture BigQuery employs constitutes the drawbacks [16].
Dask [15] is an open-source library for parallel computing that facilitates scaling Python applications for

various tasks such as data processing, machine learning, and distributed computing. It is optimised to work
well on large datasets and is a scalable technology, with the possibility of deploying Dask as a cluster. Dask
can perform distributed computations with nd-arrays, which perfectly aligns with processing EO data. Dask-
GeoPandas13 adds support for partitioning geospatial data into spatially distributed chunks and facilitates the
parallelization of spatial operations. Dask utilises a dynamic task scheduler to execute computations, making
it well-suited for complex workflows efficiently. A Dask cluster is part of the Pangeo [2] project being available
interactively within the user workspaces via Jupyter Notebooks [39].

Simple Linux Utility for Resource Management (SLURM) [84] is a workload manager and job scheduling
system that efficiently manages resource allocation within clusters. SLURM allows for job scheduling using fair
scheduling algorithms. SLURM includes job a dependency system, enabling for scheduling complex workflows.
Task scheduling for three separate use cases for processing large volumes of EO data on the EODC platform was
performed through SLURM [17]. The Pangeo project can also be configured to use the SLURM scheduler [2].

2.3. EO Data Exploitation Platforms. In the context of providing both EO data and access to nearby
computing resources for processing data, several projects have been recently developed [76], most notably
EOEPCA+, Pangeo [2], CODE-DE [72], PEPS [22], EODC14, CDSE [56], Microsoft Planetary Computer [55],
Google Earth Engine [28], and Amazon Web Services15. All these projects leverage the use of cloud computing
and, in some cases, HPC for processing large-scale Earth observation data, which is organized within a data
cube approach. This section briefly details the platform’s methodologies, architectures, standards and software
frameworks.

The goal of the Earth Observation Exploitation Platform Common Architecture (EOEPCA+)16 project is
to bring standardisation and federation by designing a cloud-native architecture in line with best practices in
software engineering, aiming to facilitate the way EO data is processed. EOEPCA+ is currently developing an
open-source implementation of the architecture’s components. This architecture is divided into three layers, as
shown in Figure 2.1.

The platform layer is comprised of microservices designed for data discovery and ingestion, running
various processing workflows to generate added-value products. Within this layer, workspaces for users are also
running, offering persistance, access to EO data cubes, visualization capabilities and code execution for users
to process the available data further. This layer contains processing engines, which facilitate the execution of
various user-defined workflows such as openEO Process Graphs17 and OGC Application Packages18.

The goal of the federation layer is coordinating access towards multiple platforms. A federated orches-
trator can direct processing workflows to the appropriate platform (i.e., one that meets the workflow requests,
is currently available in terms of resources, etc.). Resource discovery integrates cross-platform data catalogues,
facilitating data querying capabilities amongst the platforms. Identity and access management is also coor-
dinated at this layer, redirecting users towards their use spaces The Storage Controller at this layer, besides
managing the platform’s storage, allows for external storage services to be integrated into the user workspace,
achieving data federation.

Lastly, the application layer contains interactive web-based tools for users to publish web dashboards and
applications to disseminate the results of processing the data provided through the platform. The application
layer facilitates the definition of processing workflows, executed within testing environments on the platform.

Projects such as Pangeo [2] have employed Kubernetes and have designed cloud-native approaches for pro-
cessing large volumes of EO data using Dask [15] and Xarray [33]. The use of Zarr and Xarray instead of
traditional NetCDF/HDF for storing Earth Observation data for facilitating it’s use in cloud-native environ-
ments is discussed by [3] and [4]. Pangeo can be deployed in traditional HPC infrastructures [63] such as NASA

13https://dask-geopandas.readthedocs.io
14https://eodc.eu
15https://aws.amazon.com
16https://eoepca.org
17https://api.openeo.org/#section/Processes/Process-Graphs
18https://docs.ogc.org/bp/20-089r1.html
19https://eoepca.readthedocs.io/
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Fig. 2.1: EOEPCA+ High-level architecture19.

Pleiades20, Cheyenne from NCAR21, Google Cloud Platform or Amazon Web Services. Within the Pangeo
project, educational interactive resources can be accessed through provided workspaces running in Jupyter
notebook environments. Use of the Pangeo project at the Centre National d’études Spatiales (CNES)22 is
described by [18], showcasing its usefulness and ease of use for processing data using HPC resources with Dask.
One of the use cases CNES employs Pangeo for, namely numeric computations for analysing surface ocean
currents on a large scale. Unfortunately performance assesments of Pangeo for this task are not provided
by [18].

Figure 2.2 illustrates the Pangeo architecture. As aforementioned, the use of cloud object storage for serving
chunked data with the Zarr format, coupled with querying capabilities provided through Xarray. This data is
accessed through microservices running in a compute cluster orchestrated by Kubernetes, providing users with
interactive notebooks and access to a Dask cluster that facilitates parallel processing.

Copernicus Data and Exploitation Platform - Deutschland (CODE-DE) [72, 73] is a platform built for
disseminating EO data for the German authorities as a collaborative ground segment, developed concerning
various user requirements elaborated by the German Aerospace Center (DLR). The CODE-DE platform was
designed to suit multiple needs, such as project management, product assurance, systems engineering, data
ingestion and archiving, querying and retrieval, processing environments, storage and dissemination of value-
added products derived from raw Sentinel data [73].

The CODE-DE platform enables registered users to access various data processors and processing workflows,

20https://www.nas.nasa.gov/hecc/resources/pleiades.html
21https://www.cisl.ucar.edu/ncar-wyoming-supercomputing-center
22https://cnes.fr/en
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Fig. 2.2: The cloud-native architecture of Pangeo [3].

enabling them to independently process Earth observation data using selected methodologies and subsequently
disseminate the resulting value-added products. The processing environment available in CODE-DE supports
algorithm selection and spatial queries for specific EO datasets while also allowing users to monitor the current
status of their processing tasks. Among the available methods are tools from the Sentinel toolbox, such as
Sen2Cor [50], employed for the atmospheric correction of Sentinel-2 Level 1C products [72].

Users can interact with the platform through a web interface or via various APIs (OpenSearch or OGC-
compliant services23 like WMS, WFS, WCS). The data catalogue integrates with the various API’s and is
exposed to the user via a web application. Metadata for data collections is interactively generated using ISO
standards and is accessible via OGC-compliant Catalogue Service for the Web (CSW). For products, metadata
is automatically generated following OGC EOP24 standards. CODE-DE services are modular and adhere to the
INSPIRE conform discovery, visualization and download standards. Data processing workflows in the CODE-
DE platform are executed through Calvalus [20] or Apache Hadoop [7]. They can be described and triggered
either through a web application or through an OGC Web Processing Service (WPS) API [72]. The CODE-DE
architecture is illustrated in Figure 2.3.

Plateforme d’exploitation des produits Sentinel (PEPS) [22] is CNES’s solution towards providing access
to Sentinel data as part of the Copernicus programme, PEPS is a member of the ESA collaborative ground
segment. PEPS offers a web interface that enables users to query, filter, choose data preprocessing tasks and
retrieve raw or value-added Sentinel-1, Sentinel-2 and Sentinel-3 products. Querying and filtering products in
the PEPS platform is achieved through RESTO25 catalogues [22].

PEPS offers several online data processing tools aimed at creating value-added products reducing download
sizes (i.e. downloading results, not entire datasets) and performing preprocessing tasks, allowing users to access
ready-to-analyze data. A couple of data processing capabilities are included in PEPS, such as computing Nor-
malized Difference Vegetation Indices (NDVI), polarization extraction, atmospheric corrections for Sentinel-2
data using the MACCS-ATCOR Joint Algorithm (MAJA) [47], water masks generation, extraction of metadata
and ortho-rectification.

PEPS services are executed on an HPC infrastructure in a containerized environment facilitated through
Docker [52] containers [22]. An implementation of OGC Web Processing Service (WPS) [58] facilitates the
definition of processing workflows which are scheduled for execution using the PROACTIVE Meta Scheduler26

in conjunction with the Portable Batch System (PBS) [36]. The PEPS platform facilitates access to large-scale
Earth observation datasets, which can integrate with external platforms or processing pipelines. The PEPS

23https://www.ogc.org/standards
24https://docs.ogc.org/is/10-157r4/10-157r4.html
25https://github.com/jjrom/resto
26https://proactive.activeeon.com
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Fig. 2.3: The CODE-DE architecture [72, 73].

Fig. 2.4: The PEPS Architecture [22].

platform architecture is illustrated in Figure 2.4.
The Copernicus Data Space Ecosystem (CDSE) [56] is ESA’s principal platform for disseminating data

acquired through the Copernicus programme. Federated access, user identity, data access and visualization
are all discussed from multiple perspectives (data providers, remote sensing experts, application developers,
platform integrators and governance) by [60]. Through Jupyter Notebooks, interactive user workspaces are
available within the CDSE. The workspaces are integrated [60] with the OpenEO framework [35] which pro-
motes federation and makes use of distributed computing environments and enables the definition of processing
workflows for big EO datasets. Multiple Data and Information Access Services (DIAS) are linked with the
CDSE, allowing access to cloud resources that facilitate access to the EO data and offer VPS-based comput-
ing capabilities. Sentinel Hub, a processing service for EO data designed for on-the-fly computations, is also
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integrated with the user workspaces [60].
An overview [60] of the API’s provided for accessing CDSE. The Open Data Protocol (OData), OpenSearch

and STAC are all offered. One important feature incorporated in CDSE, especially of interest to CollGS, is the
notification API, which enables the registration of webhooks that are called when new products are added to
collections of interest.

The Earth Observation Data Centre (EODC) provides services for accessing and processing EO data while
providing compute resources based on virtualization. The use of the EODC platform for processing large
volumes of EO data in a general sense is described by [17]. EODC was also utilised for retrieving geophysical
parameters from Sentinel-1 Synthetic Aperture Radar (SAR) data by [61]. Although offering cloud computing
resources, EODC follows a Virtual Private Server (VPS) approach for renting virtualized environments without
the possibility of on-demand scaling.

Google Earth Engine (GEE) [28] is another cloud-based platform that facilitates EO data analysis, visu-
alization and processing. By leveraging the Google Cloud infrastructure, GEE enables for processing of large
datasets. The data catalogue currently contains Landsat, Sentinel, MODIS, climate data, land use and land
cover (LULC), air quality, and other georeferenced datasets. The STAC specification was also adopted for the
data catalogue. Interactive user workspaces are provided within GEE, allowing for JavaScript code execution
and visualization. Furthermore, due to Google’s rich ecosystem, interactive access through Google Colab offers
the possibility of interacting with the Earth Engine as well. Programmatic access to GEE is possible via Python
and JavaScript API’s.

Microsoft Planetary Computer (MPC) [55] offers similar capabilities as GEE with a rich data catalogue
focusing on biodiversity, environmental and ecological data. This data catalogue is also exposed using the
STAC specification, leverages the Zarr [57] format, and serves vector data under the GeoParquet [67] format.
The Planetary Computer provides users with workspaces through interactive Jupyter Notebooks. Dask is also
provided within the workspace to distribute large processing workloads. Users can leverage Microsoft Azure’s
cloud computing power for large-scale environmental analysis, which is particularly beneficial for handling large
datasets like global satellite imagery and climate models. Integration with Azure AI allows the use of pre-trained
Machine Learning models with the data found in the Planetary Computer catalogue. The Planetary Computer
is also integrated with Azure Blob Storage, allowing for the easy storage of processing results.

The Amazon Web Services (AWS) cloud infrastructure is a popular choice for private sector companies
that process EO data, such as DevelopmentSeed and Element84. Like GEE and MPC, AWS benefits from
a large ecosystem of technologies for storing and processing data in cloud environments. The use of AWS
for improving land use and land cover mapping in Brazil is addressed by [19]. By leveraging serverless (AWS
Lambda) functions, object storage (AWS Buckets), Tile Map Services and DevelopmentSeed’s implementation of
STAC catalogues27, [19] have developed a platform for forest monitoring. A serverless land evaluation platform
designed by [54] Amazon Elastic Compute Cloud (EC2) [69] was integrated with an OGC WPS compliant
implementation [87] for EO data processing. Furthermore, NASA HPC workflows have been evaluated with
EC2 [51] and compared to NASA’s Pleiades infrastructure.

Table 2.3 illustrate the various cloud-native platforms for processing EO data, utilising a data cube approach
for serving data.

3. Discussion. Current deployments of platforms that leverage the potential of cloud computing resources
for processing large volumes of Earth observation data share some common traits. Undergoing standardisation
efforts taken by initiatives such as EOEPCA+ aim to bring those platforms as interoperable and federalised as
possible while following best practices from software engineering and geospatial data perspectives.

Platforms like Pangeo [2] leverage the Kubernetes [12] orchestrator for scalable deployment, efficient re-
source management, and on-demand scaling of distributed computing environments, facilitating efficient pro-
cessing of Earth observation data. PEPS [22] employs a containerised approach using Docker [52] for managing
the platform’s components.

27https://sat-api.developmentseed.org/search/stac
30Implemented as modules in Pangeo and can be utilised depending on the available infrastructure.
30https://altair.com/pbs-professionalg
30Users can deploy their own frameworks on the VPS.
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Table 2.3: EO Platforms.

Platform Workflows Workspaces Distributed Processing
Pangeo yes JupyterHub Dask, Slurm, Spark, YARN28

CODE-DE yes JupyterHub Hadoop, Docker
PEPS yes N/A CNES HPC (PBS)29, ProActive
CDSE yes JupyterHub Through OpenEO, SentinelHub
EODC yes N/A yes30

MPC yes JupyterHub Dask
GEE yes yes GCP
AWS yes yes EC2

Support for distributed computing frameworks such as Apache Spark [86], Apache Hadoop [7], Google
BigQuery [11] or variants built for EO data such as Apache Sedona [85], GeoTrellis and more commonly seen
in the platforms mentioned in Section 2, Dask [15]. Microsoft Planetary Computer [55] employ Dask for
distributed computing workflows. CODE-DE makes use of Hadoop [7], while Pangeo’s [2] versatile modules can
integrate with Dask [15], SLURM [84] and Spark [85]. The PEPS platform utilises the ProActive scheduler to
manage jobs executed on CNES’s HPC cluster using PBS. Additionally, platforms integrated into larger cloud
ecosystems, such as Google Earth Engine [28], Microsoft Planetary Computer [55], and Amazon Web Services,
have developed in-house tools for big data processing workflows.

Workspaces in which users can explore data catalogues, define and submit processing workflows which
are executed through schedulers such as SLURM [84], or use Dask [15]’s integrated job scheduling system.
The majority of platforms described in this overview (Pangeo, CODE-DE, CDSE and Microsoft Planetary
Computer) provide interactive workspaces through JupyterHub [39], which allows to write and execute Python
code near the data. These workspaces typically include access to API’s, libraries or SDK’s for distributed or
parallel processing frameworks. The joint ESA-NASA initiative of MAAP [5] aims to bring user workspaces
close to the data by providing a cloud-based platform where users can access, analyse, and visualise big Earth
observation datasets in a collaborative environment.

The choice of a standard, cloud-friendly data format such as Cloud-Optimized GeoTIFF (COG), Cloud-
Optimized Point Cloud (COPC) and object storage makes partial file reads possible using HTTP range requests
while also reducing the amount of data that needs to be downloaded to specific areas of interest of the users.
Although multiple cloud-friendly formats for vector data have been designed, many Earth observation data
cubes use GeoParquet [67] format due to its advantages [53, 79].

The Spatio-Temporal Asset Catalog [71] specification has been adopted by the majority of the platforms
described in Section 2. Google Earth Engine [28], Microsoft Planetary Computer [55], Copernicus Data Space
Ecosystem [56], CODE-DE [73] all expose data catalogues using the STAC specification. An issue with the
STAC-compliant API offered through CDSE is incomplete product metadata. STAC extensions such as eo,
sat, sar, mgrs31 are not yet supported through this API.

The CDSE [56] implementation of federalisation for user access for data access, among other platforms like
DIAS and processing workflows, ensures the availability of data and processing capabilities at all times.

4. Conclusions. In this paper, we have presented an overview of the current state of the art in Earth
observation data cubes, focusing on cloud-native platforms designed for exploiting such resources. Several
High-Performance Computing and cloud computing frameworks, job schedulers, and orchestrators, such as
Apache Spark, Apache Hadoop, Dask, SLURM, Apache Sedona, Kubernetes and Docker, are briefly discussed,
highlighting their importance in efficient processing and management of large volumes of Earth observation
data.

Their implications in architectures for developing platforms that leverage the potential of EO data, such
as EOEPCA+, Pangeo, PEPS, CODE-DE, Copernicus Ecosystem Data Space, EODC, Microsoft Planetary
Computer, and Google Earth Engine, are paramount for facilitating the efficient processing of large volumes of

31https://stac-extensions.github.io
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data that are being generated at unprecedented volumes. Earth observation data cubes particularities, cloud-
friendly data formats, and currently deployed instances that serve collections amounting to petabytes of data
daily were briefly discussed.

This overview has shown a strong shift towards leveraging cloud-native principles such as microservices,
orchestration, containerisation, serverless computing and horizontal scaling in large Earth observation platforms.
Additionally, the use of object storage for hosting products in cloud-optimized formats which facilitate the
transfer of data and integrate well with specifications such as Spatio-Temporal Asset Catalog has become
increasingly popular, with multiple platforms disseminating Earth Observation data in this manner.

Though COG and COPC are utilised ”de facto” in EO data cubes, the lack of a consensus for vector data
formats currently requires the use of different libraries and technologies capable of ingesting and processing
multiple formats. However, GeoParquet [67] has garnered popularity among platforms such as and could
become the most adopted format for vector data due to its data representation, ability to host large amounts
of information, and ease of querying [53, 79].

This overview has shown that significant standardisation efforts, such as those undertaken through initia-
tives such as EOEPCA+, Open Data Cube, and Spatio-Temporal Asset Catalog, are essential for integrating
various platforms and data sources. Federalisation efforts are paramount within such large ecosystems to ensure
interoperability amongst platforms, seamless data dissemination, and collaboration across various institutions.

However, this overview has only paved the way for analysing these platforms’ potential for processing
large volumes of Earth observation data. Overviews on data access platforms such as [27] or data cube initia-
tives [38, 30], surveys on or individual insights regarding platforms [22, 72, 73, 2, 63] designed for processing
big Earth observation data all contribute valuable information towards shaping the current state-of-the-art and
the directions in which Earth observation platforms are headed. Inventoring software through collaborative
initiatives such as OSS4GEO32 aim to create a knowledge base for open source technologies developed for
geospatial data exploitation. Comparative studies from technological standpoints, scoping reviews, and more
in-depth studies should be considered and further developed to better understand the potential and limitations
of Earth observation platforms.
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