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NETWORK TRAFFIC ANOMALY DETECTION ALGORITHMS ON DISTRIBUTED
SYSTEMS USING COGNITIVE INTELLIGENCE

NING PAN∗

Abstract. Network traffic monitoring is one of the important roles to maintain the security and confidentiality between
distributed systems particularly in detecting early cyber threats. Distributed system is a large network interconnected device,
which are connected with one another. So, detecting anomalies is a major challenge in these systems. Traditional systems fail to
detect anomalies in early stages, because threats are too advanced which are not handled by the traditional capacities. To address
this issue the present study proposed and improved version network traffic monitoring system called (Net-IV). This approach
combines the advantages of 1D-CNN, Long Term-Short Term Memory (LSTM) and GRU (Gated Recurrent Units). Accoridng to
this, 1D-CNN which is well known for its feature extraction ability, whereas LSTM helps to analyse the temporal dependencies,
finally GRU refine the overall performance and helps to detect anomalies with greater precision. The model was evaluated using
CIC-1DS-2017 dataset, a complete benchmark dataset for intrusion detection system. Through the simulation, we observed that
the suggested Net-IV achieves a remarkable accuracy rate of 99.78% and F1-Score of 99.56% which is 0.05% higher than the existing
DCGCANet model. Thus, the results suggested that the proposed Net-IV system could be effectively installed in real-time, to
protect the distributed system confidentialities from various forms of cyber-attacks.
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1. Background.
1.1. Distributed Systems Advantages and the Impacts of Cyber Threat. Distributed system is

one of the advanced technologies which interconnected with multiple systems to achieve a specific goal. This
involves the advantages of resource sharing, fault tolerance, scalability and parallel processing which is very
helpful for large scale applications like cloud computing, data processing, and network services [13, 1]. One
of the main advantages of the distributed system is their ability to operate efficiently and continuously, even
in the situations of individual system failure. But however, the decentralized nature of distributed systems
also introduces risks in the form of cyber-attacks, which targets any node or system can disturb the entire
process and the confidentiality of the privacy data. Distributed Deniel of Service (DDoS) attacks, man in
the middle attacks, and malware propagation are some of the common risks which impacts the data privacy
availability and confidentiality [12, 4]. Since distributed systems depends on network communication for, by
using this advantage these attacks are spread quickly and leads to the sever impacts like network corruptions,
data breaches, leakages in privacy data. So, there is an increasing demand of advanced anomaly detection
algorithms, cognitive intelligence solutions to continuously monitor the network traffic, detecting anomalies
in real-time and prevent possible security risks [9]. This helps to anomaly free transformations between the
systems and helps to improve the security of distributed systems also to guarantees the safety of confidential
data.

1.2. Previous Techniques and its Drawbacks. Most effective techniques are proposed in the existing
articles to address the anomaly detection issues, but however these techniques also face some common limitations
which is discussed below.

This study [3] used the benefit of unstructured log analysis technique with Finite State Automaton (FSA)
for anomaly detection. Thos approach mainly depends on log keys; these keys are not able to capture all the
system behaviors effectively. This paper [16] identifies the anomalies by using the triangular approach, this
model also fails in accurately identifies the anomalies due to the limitations of big dimensionality. VeLog a VAE
variational autoencoder method is used to detect anomalies in distributed systems is the main of this study [14],
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but however we find the difficulties regarding fine tuning the models in real-time large-scale environments. In
this study [8] Fuzzy base clustering approach is used to handle the network anomalies, but there is an increase
in clustering it leads to computational overload and make the possibility in network complexities. This study
[5] used a deep learning based BiLSTMtransformer-based model for anomaly detection. This approach also
highlights the drawback regarding extensive computational resource.

1.3. Suggested Net-IV and its advantages. By thoroughly analysing the existing studies advantages
and disadvantages, the present study focuses to present the hybrid model called Net-IV, which combines the
benefits of powerful deep learning techniques: 1D-CNN, LSTM, and GRU, which are combined to create the
effective structure to address the risk of threats, also detects the anomalies early to avoid the severe impacts.

The main aim of the study is to construct a new network traffic anomaly detection system called Net-IV and
examine its ability to learn and operate on distributed cognitive intelligence systems. we seek to improve the
performance and speed of anomaly detection by integrating 1D-CNN for feature embedding, LSTM to capture
temporal dependencies, and GRU for performance tuning and precision improvement. The study focuses on
offering a comprehensive method to secure distributed systems in real time as an alternative to existing solutions
that are incapable of addressing the problem of recognizing low and high level cyber attacks including advanced
persistent threats.

The main contributions of the paper as follows
1. In Net-IV, ID-CNN is responsible for extracting the essential features from raw network traffic data by

identifying abnormal patterns and provide the strong foundation for further analysis.
2. LSTM and GRU are used to capture temporal dependencies in the data and allows the system to

understand the sequence and flow of traffic over time.
3. Finally, Net-IV model is simulated using CIC-IDS-2017 network traffic dataset

1.4. Literature Discussions. According to the proof of 2016 Mirai-injected IP camera attack, risk will
take place due to the, unsecured cheap devices, some of the attacks happening is denial-of-service (DDoS) attacks
in IoT environments. By analyzingthis, the study [6], suggested D-PACK mechanismwhich combines a CNN
with an unsupervised autoencoderdetects traffic anomalies with near-perfect accuracy and a low false-positive
rate. Existing machine learning based anomaly detection facility commonly struggles due to the adaptability
and handling the multiple data. To address this, the study [17] proposed LSTM based approach to classify
the abnormal traffic data with high precision. Article [15] also suggests the LSTM based period wise detection
approach to achieve the better performance in real time anomaly detection. Study [11] investigates the anomaly
detection by using the proposed model as conditional variational autoencoder (CVAE) and random forest (RF)
classifier to effectively improve the detection ability of anomalies. Traditional deep learning drawbacks in
anomaly detection and how it is addressed using the advanced deep learning solution was discussed in the
study [10]. This study achieves encouraging scores demonstrating how deep learning can improve anomaly
detection by processing raw network traffic data without requiring domain expertise for feature selection.

The task of identifying anomalies in distributed systems is an overwhelming task that comes with many
complications due to the size, complexity, and changing nature of these ever expanding networks. Distributed
systems often consist of various interconnected devices that produce large amounts of diverse data making it
hard to detect thinly layered or hidden anomalies related to cyber threats. Conventional means of detecting
anomalies, such as static rules or baselines, are ill-equipped to respond to changing attack patterns by unforeseen
or sophisticated threats. For example, stealthy types of Advanced Persistent Threats (APTs) target other forces
over a long period to penetrate the systems and remain undetected by conventional methods. To addition, zero
day attacks focus on unknown vulnerabilities making them able to bypass signature based detection systems.
Distributed Denial of Service (DDoS) attacks propagate vast amounts of legitimate traffic never been witnessed
before making conventional systems unable to determine whether an attack is in progress or whether there is
a peaceful activity. Encrypted traffic and polymorphic malware that constantly mutates even more contribute
to the problems of detection. Traditional approaches fail in both handling that amount of data in a reasonable
time frame or analyzing the current scene of traffic therefore making comprehensive distrust of such distributed
systems possible. These challenges underline the need for advanced anomaly detection techniques, cognitive
intelligence models for instance, which are fitted for the needs of such complicated environments.

The traditional anomaly detection approaches are limited in many ways to effectively identify early-stage
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and more complex threats. Even though these systems can detect anomalies, advanced cognitive and predic-
tive threat analytics would assess predefined signatures, static threshold limits, or statistical baselines. More
advanced threats, such as Advanced Persistent Threats (APTs) and zero-day exploits, have been purposely
developed to defeat these types of detection mechanisms–they target becoming undetectable or take advan-
tage of never before seen attack vectors. For instance, polymorphic malware makes frequent alterations to its
code structure hence bypassing signature-based systems. Encrypted traffic, on the other hand, harbors vicious
activity as traditional approaches cannot analyze encrypted patterns.

Similarly, they cannot process real-time large volumes of high-dimensional data streams produced by dis-
tributed environments. This leads to slow times in detection and response times, especially in the presence
of compounds in the traffic patterns. The temporal dependencies of sequential data are also not confined by
traditional approaches; for example, an attack could be started by minor changes in user behaviors or the flow
of a network before it becomes fully aggressive. This absence of context compounds the issues of very high
false positive rates and undermines the confidence in these systems.

2. Methodology.

2.1. Net-IV Structure Outline. The proposed methodology consists of 3 layers: Initial layer involves,
1D-CNN based feature extraction, LSTM for further analysing the extracted patterns and finally GRU helps
to detect anomalies, LSTM and GRU are the two main Recurrent Neural Network layers helps to thoroughly
analysing the traffic patterns and detect the anomalies with high precision. Here, ID-CNN processes raw network
traffic data to extract meaningful spatial features. This componenthelps to identify the relevant patterns by
reducing the dimensionality and fed into the layer of LSTM and GRU for further analysis. Together with these
layers (LSTM and GRU), the model thoroughly analyze the normal behavior of traffic sequence and identifying
abnormalities with high accuracy. The final component of the architecture is fully connected layer that combines
the outputs of both LSTM and GRU followed by the softmax layer for classification. This allows the model to
identify the final predictions about the network traffic is normal or abnormal. The whole framework is designed
to handle the large-scale network traffic data in real-time. Finally, the model is assessed using the real-world
comprehensive dataset and highlight the effective output, and acts as an efficient contribution for monitoring
traffic in distributed systems. Figure 2.1 presents the visual illustration of proposed architecture.

The Net-IV model brings together three cutting-edge branches of neural networks; namely, 1D-CNN, LSTM,
and GRU into the network traffic anomaly detection process to enhance accuracy and precision. The 1D-CNN
(One-Dimensional Convolutional Neural Network) deals with feature extraction, allowing for the identification
of important spatial features in the traffic flow data including packet sizes and flow attributes. Its convolutional
layers go through the raw inputs of the data and capture high-order features about the most relevant attributes
for anomaly detection while noise and redundancy are minimized.

2.2. 1D-CNN based Feature Extraction. The initial layer of 1D-CNN performs the initial feature
extraction in the suggested Net-IV architecturewhich helps to handling the unprocessed network traffic data.
The input layer, convolutional layer, pooling layer, fully connected layer, and output layer are the main layers
of conventional 1D-CNN architecture. The input layer receives the time-series, raw network traffic data and
prepares it for convolutional processes, which will further convert it. Applying convolutional kernels to the
input data is the main job of the next convolutional layer in Net-IV. This allows for the extraction of important
spatial information from the network traffic data, about anomaly patterns.

The convolutional kernel in a 1D-CNN refers one-dimensional array. The convolution procedure signifi-
cantly reduces the number of parameters in a 1D-CNN by sharing weights among neurons. Then output of
convolutional layer’s expressed as

axj
n = g

[∑
i∈N

(
axi

n−1kl
ij
n

)
+ bijn

]
(2.1)

Here, axj
n denotes the output of the j− th neuron in the n− th layer, axi

n−1 is the previous layer input and
klijn denotes the kernel connecting the i − th neuron pf the previous layer to the j − th neuron in the current
layer, bijn is the bias terms and g is the activation function. After convolution the pooling operation is applied



Network Traffic Anomaly Detection Algorithms on Distributed Systems Using Cognitive Intelligence 2289

Fig. 2.1: Suggested Framework

downsample the data and reduce the complexity. Pooling can perform using either max pooling or average
pooling. Max pooling selects the maximum value within the specific window and average pooling calculates
the average value in the same window. These can be defined as

pzin = maxpool(axi
n−1, s1, s2) (2.2)

pzin = avepool(axi
n−1, s1, s2) (2.3)

Here, pzin denotes the output of the pooling operation in the i-th neuron in the n-th layer and s1, s2 is the
pooling scale and step size respectively. This pooling helps to reduce the size of feature map and safeguard the
most important data when the process of eliminating redundant data takes place.

2.3. Integration of LSTM-GRU layers. The integration of GRU and LSTM networks in the Net-IV
architecture provideseffective way for managing the temporal dependencies present in network traffic data. The
sequential data processing abilities of LSTM and GRU helps to perfectly identifying abnormalities in real-time
network traffic data.

Using its cell state, input gate, forget gate, and output gate processes, LSTM is used in Net-IV to main-
tain long-term dependencies in the network data. The LSTM network changes its hidden state for a given
input sequence {ax}Nt=1?, where axthighlights a sequence of input vectors and N denotes the total number of
occurrences. This can be expressed as

pzit = σ(w axi
t + u pzit−1) (2.4)
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where w and u are the weight matrices and σ is the activation function. The hidden state pzit at each time step
is used to capture long term dependencies in the input data. The LSTM output is then, processed through the
fully connected layer (FCN) and the softmax function for classification, this process is expressed as

p (y − i | ax) = softmax (wax+ bi) =
ewiax+bii∑
j e

wjax+bij
(2.5)

The LSTM process helps to learn the temporal dependencies over long sequence, but it highlights the
limitations of computationally expensive performance. To reduce the complexity in managing the performance
Net-IV involves GRU layer on the other side of LSTM. GRU are simply faster using few parameter functions.
It involves the update and reset gate to process the flow of information. These are expressed as the following

rtt = sig(wrt · [ht−1, axt]) (2.6)

pzt = sig(wpz · [ht−1, axt]) (2.7)

h̃t = tanh(wh · [rtt × ht−1, axt]) (2.8)

ht = (1− pzt) · ht−1 + pzt · h̃t (2.9)

Here rtt controls the reset gate, pzt is the update gate and ht is the hidden state at time step t. When compares
to LSTM GRU simplify the process of the model and effectively capturing the dependencies.

The Net-IV architecture makes use of both the efficiency of GRU and LSTM by combining the outputs of
the two. With the least amount of training time and computational resources, our hybrid technique guarantees
that the model can accurately identify complex anomalies in network data. To train both models, the back-
propagation algorithm is used, this helps to minimizes the cost function CL, which is expressed as

CL =

|D|∑
i=0

log(p (ay) = (ayi | axi, w, bi)) (2.10)

This is the final optimization which ensures the model identifies the best parameters for detecting anomalies
in large-scale real time network environments.

3. Results and Experiments.
3.1. Dataset Description. Developed in 2017, the CIC IDS 2017 dataset was created by the Faculty of

Computer Science from the University of New Brunswick, aiming to improve the ISCX 2012 dataset. Advancing
the earlier work, this dataset defines a realistic depiction of network usage and is intended to remedy the
drawbacks present in prior intrusion detection system (IDS) datasets. The researchers claim that the CIC
IDS 2017 dataset complies with 11 requirements regarding the design of IDS datasets, such as full network
configuration, labeled set, different types of attacks, and extensive meta-data. These criteria allow us to say
that the dataset is representative and of adequate size to assess the effectiveness of the IDS.

The dataset encompasses daily traffic and attack data for five days, yielding more than 225,745 network
packets, which may have up to 80 different features. It incorporates not only normal network activity but also
a range of intrusion activities, collected within a week. The simulated attacks in this dataset are divided into
7 types, which are Brute Force Attack, Heartbleed attacks, Botnet, DoS attacks, DDoS attacks, Web Attacks,
and Infiltration Attacks.

The present research takes into consideration the DDoS (Distributed Denial of Service) attacks where a
target system or network is assaulted with a flood of traffic mostly from a botnet to bring the system down.
Please note some of the key traits associated with DDoS attacks are: inter-arrival times (IAT) of flows (minimum,
mean, maximum), flow bandwidth measures, and flow duration. The higher these attributes’ values are, the
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Table 3.1: Dataset Features

Category Details
Dataset CIC-IDS-2017
Training Data Period July 3-July 7, 2017
Types of Traffic Normal (BENIGN) + 9 Attack Types
Training and Testing Ratio 7:3
Attacks Considered (DDoS, Brute Force, Infiltration, etc.) - 9
Framework TensorFlow
Operating System Windows 11 64-bit
CPU Intel i7-12700H
GPU NVIDIA GeForce RTX 3070 Ti
Programming Language Python 3.6
IDE PyCharm 2020.1

greater the likelihood that DDoS has been employed. In the case of abuse network behavior, the attributes
such as B. Len Min sub server byte length, the number of subflows, total packet size and mean packet size are
of more relevance.

The proposed study evaluated using the CIC-IDS-2017 dataset inspired from[2], according to the details we
extract the necessary features to evaluate the proposed Net-IV. Table 3.1 provides the clear illustration about
the dataset.

3.2. Pre-processing CIC-IDS-2017 Dataset. Two important processes are involved in preprocessing
the CIC-IDS-2017 dataset: Feature normalization and one-hot encoding. Non-numeric features, like category
attributes, are converted into binary vectors using one-hot encoding. Then it is used as input in the deep
learning model. The model was able to process features such as ’protocol_type’ efficiently because they were
converted into binary representations. Features were also normalized to address the significant differences in
feature scales. The performance of the model is affectedby some features, such as ”Flow IAT Max” and ”Total
Length of Fwd Packets”. To address this, all features were scaled to a range of [0, 1] using mean-variance
normalization.

According to parameter setting, inspired from the study[7], according to the procedures we perform the
evaluation of proposed framework.

3.3. Evaluation Criteria. The proposed model is evaluated using the common performance metrics of
accuracy, recall, precision and F1-Score. The process of evaluation is conducted according to the attack types.
Figure 3.1 highlights the model’s efficacy in different attack types. According the epoch of 10 the accuracy of
the proposed model reached up to 99.78%. Overall, the Bot and Portscan highlights the slight decrease. But
when compared with the accuracy, the proposed obtains an effective score in all the attack types.

Figure 3.2 presents the efficacy of models in terms of accuracy, precision, recall and F1-score, according to
this the proposed Net-IV model is compared with the existing KNN, ID3, MLP, RF, CNN, AFM-1CNN-1D,
CNN-GRU, DCGCANeT. From the figure we observed that the proposed model significantly out performs all
the models with its remarkable accuracy. Also, it shows that the proposed Net-IV achieves the accuracy about
99.78%, 99.82% and 99.72% of precision and recall respectively. And finally, the F1-score is about 99.58%,
when compared with the existing DCGCANet the proposed model significantly outperforms the DCGCANet
model due to its additional involvement of GRU

Similarly Figure 3.3 presents the efficacy of models in terms of computation time. The computation time
of the suggested model 250.12 seconds, when compared with the tradition individual techniques of KNN, RF,
CNN, ID3 the fusion model utilizes the additional timing to process the data effectively, as a results, it slightly
higher than the traditional individual models. When compared with the existing fusion methods the proposed
model really beats the other models with its less inference time.

Figure 3.4 presents the results of generalization ability of the models. According to this we involve 4 subsets
called SP1, SP2, SP3 and SP4 to test the entire CIC-IDS-2017 dataset was inspired from[7]. In this section
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Fig. 3.1: Performance Evaluation under CIC-IDS-2017 Based Attack Types

Fig. 3.2: Overall Performance Comparison of Models

the proposed Net-IV model is compared with the existing effective DCGCANet model. This model is a fine
competitor of proposed Net-IV model. But the result highlights the proposed Net-IV model outperforms the
DCGCANet with its effective outcomes.

The use of 1D-CNN, LSTM, and GRU for network related activity monitoring thesis can be explained
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Fig. 3.3: Comparison of Computational Time

Fig. 3.4: Subset Based Efficiency Analysis

by the fact that these networks show a combination of complementing strengths in capturing sequential and
high dimensional data respectively. The one dimensional convolution network (1D-CNN) was picked mainly
because it is more efficient at extracting particular traffic data spatial features such as packet size and flow
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patterns at less computational cost than 2-D CNN. The convolutional layers within it capture local patterns
quite effectively which are very useful in detecting any abnormalities within network traffic. However, a Long
Short-term Memory (LSTM) LSTM was added to solve the requirement of the network traffic’s time related
features in sequential data analysis. Long short term memory (LSTM) networks are very good at remembering
information for long periods, using its memory cells to assist in detecting time dependent, minute anomalies
quite easily, such as advanced persistent threats (APTs) and traffic variability over time.

LSTMs and GRUs (Gated Recurrent Units) governance or structures are thought to be integrated due to
their hierarchical efficient structure and their potential to cause problems often referred to as the vanishing
gradient in recurrent neural networks (RNNs). Because GRUs have fewer parameters than LSTMs, GRUs are
quicker to train and validate while maintaining precision. The model’s overall effect is improved since maximum
memory and processing efficiency are used.

4. Conclusion. The present study introduced the effective Net-IV model to analyse and identify the net-
work traffic anomalies. The proposed model effectively combines the advantages of ID-CNN, LSTM and GRU
to finely detect the abnormalities in network raw data. The suggested model is evaluated with CIC-IDS-2017
dataset, a comprehensive benchmark dataset used to evaluate in the intrusion detection scenarios. By compare
the results of our proposed model with the existing models particularly, with the existing DCGCANet model,
Net-IV proves it efficacy with the accuracy score of 99.78% and 99.56% of F1-score which is 0.05 % improve-
ment when compared with the existing DCGCANet model. The future search is needed to effectively reduce
the computational complexities was raised due to the fusion of the models. The future search is needed to
effectively reduce the computational complexities was raised due to the fusion of the models. When incorpo-
rating continuous learning frameworks, the model will be able to smoothly transition towards new or newer
threat behaviours without the need for total retraining, and therefore maintain their reliability and relevance
over time.
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