
SCALABLE COMPUTING: PRACTICE AND EXPERIENCE

Volume 9, Number 1, pp. 51–59. http://www.scpe.org

ISSN 1895-1767
c© 2008 SCPE

KNOWLEDGE PROCESSING FORWEB SEARCH—AN INTEGRATED MODEL AND EXPERIMENTS

P. GURSKÝ∗ AND T. HORVÁTH∗, J. JIRÁSEK∗, R. NOVOTNÝ∗, J. PRIBOLOVÁ∗, V. VANEKOVÁ∗ AND P. VOJTÁŠ†

Abstract. We propose a model of a middleware system enabling personalized web search for users with different preferences. We integrate both
inductive and deductive tasks to find user preferences and consequently best objects. The model is based on modeling preferences by fuzzy sets and

fuzzy logic. We present the model-theoretic semantics for fuzzy description logic f-EL which is the motivation of creating a model for fuzzy RDF. Our

model was experimentally implemented and the integration was tested.

Key words. middleware, fuzzy DL, fuzzy RDF, relevant objects, user preferences

1. Introduction and Motivation. One of the main goals of semantic web is to enable easy and automatic access

to web resources and services by middleware engines or agents. Our research leads to the model of a middleware sys-

tem which will help users in searching for objects from heterogenous sources but a single domain. In this paper we

present different approaches to the most important aspect of such system—retrieving the best objects according to user’s

preferences.

Let us consider the following example: imagine a user looking for a hotel which has good price, good distance from

an airport and has good equipment in rooms.

Each user (or group of users) has his own sense of quality (i. e. the preference). For the price of hotels, one user

could prefer cheap hotels (student), second prefers expensive hotels (manager) and the other one prefers middle price

(professor). The underlying meaning of this ordering is that the user determines the relations “better” or “worse” between

two values of a given property. For each such property, user has a notion about the ordering of objects based on real value

of property from an attribute domain. We call these orderings of particular attribute domains the user local preferences.

Nevertheless, these local preferences usually lead to incomparable objects, e. g. one hotel that is cheaper than another

(which means that the latter is better for a student), but has inferior room equipment. The combination of local preferences

gives global preference and will be modeled by fuzzy aggregation operators.

The main contributions of this paper are integration of several methods for local and global preferences into one

framework, and practical introductory experiment with our system.

The paper is organized as follows: section 2 introduces methods for detecting user preferences and searching for

relevant objects and it provides a theoretical model of these preferences based on description logic. Section 3 describes

the system and experiments. Finally, section 4 concludes and provides some plans for future research.

2. Models and Methods. In this chapter we describe models and methods we use for a solution of the problem of

web search. Later these methods are implemented and tested.

2.1. Detecting Local Preferences. To learn local preferences, we have several possibilities. First is, we present to

user a representative sample of hotels (see Table 2.1) with several attributes, e. g. distance from the airport, price of the

accommodation and equipment of rooms. The user classifies hotels into categories poor, good and excellent according to

the relevance of the hotel to him. In practice we have chosen the seven classes of Likert scale.

We distinguish four basic types of local preferences, according to user’s most preferable attribute values. We call

these basic types higher-best, lower-best, middle-best and marginal-best.

The local preferences can be detected by statistical methods, e. g. regression or QUIN [4]. Using the linear regression

we can detect just two basic types (higher-best and lower-best). In contrast to QUIN, the regression is resistant against

statistically irrelevant values. Thus for the purposes of detecting the aforementioned four basic types, the polynomial

regression is the most appropriate approach. In case of the Table 2.1, we checked that the higher distance (higher-best

type of ordering) and the lower price (lower-best type of ordering) are appropriate for the user. Albeit this method is not

yet used in the experimental implementation, it is useful for the motivation purposes.

The second possibility is to learn local preferences explicitly from the user. The user has possibility to specify his

preferences by explicit choice of fuzzy functions. We have used this method in our experiments (see Section 3).

2.2. Learning Global Preferences. We learn user’s global preferences by the method of ordinal classification with

monotonicity constraints [9] based on Inductive Logic Programming (ILP) system ALEPH [15].

∗Institute of Computer Science, Šafárik University, Košice, Slovakia, ({name.surname}@upjs.sk).
†Department of Software Engineering, Charles University, Prague, Czech Republic, (Peter.Vojtas@mff.cuni.cz).

51

52 Gurský P., Horváth T., Vojtáš P. et al.

TABLE 2.1

Representative sample of hotels evaluated by the user

Hotel Distance Price Equipment Evaluation

Apple 100m $ 99 nothing poor

Danube 1300m $ 120 TV good

Cherry 500m $ 99 internet good

Iris 1100m $ 35 internet, TV excellent

Lemon 500m $ 149 nothing poor

Linden 1200m $ 60 internet, TV excellent

Oak 500m $149 internet, TV good

Pear 500m $ 99 TV good

Poplar 100m $ 99 internet, TV good

Rhine 500m $ 99 nothing poor

Rose 500m $ 99 internet, TV excellent

Spruce 300m $ 40 Internet good

Themse 100m $ 149 internet, TV poor

Tulip 800m $ 45 internet, TV excellent

The user’s global preferences are computed by using his local preferences which can be well represented in ILP. For

illustration, consider that we have discretized values of distance to three classes: near, middle and far. The different

orderings of these classes for different users can be:

near ≤ middle ≤ far

near ≤ far ≤ middle

far ≤ middle ≤ near

far ≤ near ≤ middle

middle ≤ near ≤ far

middle ≤ far ≤ near

An usual aggregation function can be easily simulated by monotone classification rules in the sense of many valued

logic (on Figure 2.1 the computed user’s global preferences from our illustrative data are presented):

evaluation = excellent IF distance ≥ 500 AND price ≤ 99

AND services = {TV, internet}
evaluation = good IF (distance ≥ 500 AND services = {TV})

OR (price ≤ 99 AND services = {internet})

FIG. 2.1. The results of our approach in the case of our illustrative example

We can see that the ordered meaning of the classification is preserved in our results (this is proved in [10] as the igap-

consistency of our approach): hotels classified in the grade “excellent” by the user also fulfills requirements for “good”

Knowledge Processing For Web Search 53

and “poor” hotels, and “good” hotels fulfills requirements for “poor” ones (e. g. the hotel with 800m distance from airport

and $45 price equipped with internet and TV is “at least as appropriate as” the hotel 300m far from the airport and $40

price equipped just with internet) according to the local preferences (more far and more cheap is the better).

From our results we can obtain also additional information about crisp attributes (e. g. equipment). The meaning of

any classification rule is as follows: If the attributes of object x fulfill expressions on the right side of the rule (body) then

the overall value of x is at least the same as on the left side of the rule (head). We can, of course, assign the explicit values

to vague concepts like excellent or good. During the simulation of computation of aggregation function we can simply

test the validity of requirements of the rules from the strongest rule to weaker ones. When we find the rule that holds, we

can say that the overall value of the object is the value on the left side of the rule. Since we test the sorted rules, we always

rank the object with the highest possible value.

2.3. Fuzzy RDF Based on Fuzzy Description Logic. In this section we analyze the model of fuzzy RDF/OWL

based on a model of fuzzy description logic. The terms like “cheap”, “expensive” or “near” represent fuzzy sets. Our

model of fuzzy RDF includes such fuzzy sets stored as RDF triples.

One important feature of our model is that we can prepare fuzzy RDF independently from user global preference.

This is because we can adapt to user by adjusting his aggregation function @. This makes the processing of data more

effective, because we do not need to order data for every user query. We already have the data ordered and we just combine

the relevancies from fuzzy RDF into one result.

We introduce the model of building fuzzy RDF based on fuzzy description logic f-EL proposed in [17]. This logic

removes some features of both classical and fuzzy description logic (like negation, universal restriction and fuzzy roles).

On the other hand it adds an aggregation operator @. It should be also noted, that we lose the ability to describe fuzziness

in roles. However, our data from the domain ontology are crisp (we do not consider uncertainty in values). User pref-

erences are represented as fuzzy concepts and they are the source of fuzziness in results. Thus, we gain combination of

particular user preferences to a global score by his @ function. An advantage of this description logic is lower complex-

ity of querying. Expressivity is lower than that of full fuzzy description logics (DL) but still sufficient for our task and

embedability into web languages and tools (see [16]).

Concepts and roles are the basic building blocks of every description logic. Here, roles express properties of resources,

in our case hotels. Although the basic model of expressing RDF triples 〈subject, predicate, object〉 corresponds to oriented
graphs, we use here the language of logic: predicate(subject, object).

The alphabet consists of sets NC of concepts names, NR role names and NI instance names. The roles in f-EL are

crisp and the concepts are fuzzy. Our language of description logic further contains a constructor ∃ and a finite set of

aggregation functions symbols @U for each user and/or for each group of users. Concept descriptions in f-EL are formed

according to the following syntax rules

C → ⊤ | A | @(C1, . . . Cn) | ∃r.C

In order to give this syntax a meaning, we have to define interpretations of our language. In f-EL we have inter-

pretations parameterized by a (possibly partially, usually linearly) ordered set of truth values with aggregations. For a

preference structure (a set of truth values P = [0, 1]), a P -interpretation is a pair I = 〈∆I , •I〉 with nonempty domain

∆I and fuzzy interpretation of language elements:

• AI : ∆I → P , for A ∈ NC

• rI ⊆ ∆I × ∆I , for r ∈ NR

• (∃r.C)I = sup{CI(y) : (x, y) ∈ rI}
• (@(C1, . . . , Cn))I(x) = @•(CI

1 (x), . . . , CI
n (x))

Suppose that we have NR = {price, distanceFromAirport} where both elements of this set represent the RDF

predicates from the domain ontology.

NC = {cheapU , closeU}where cheapU and closeU are fuzzy functions explicitly figured by user preference ontology.

NI = {Apple,Danube, 99, 120, . . .}.

In Herbrand-like interpretationH we have:

AppleH = Apple,DanubeH = Danube, 99H = 99, 120H = 120

cheapHU (99) = 0.53, cheapHU (120) = 0.42

priceH = {(Apple, 99), (Danube, 120)}

54 Gurský P., Horváth T., Vojtáš P. et al.

For the sake of simplicity we overload our concept cheapU also for hotels (usually we must create new concepts in this

case e. g. cheapHotelU):

cheapHU (x) = (∃price.cheap)H(x)

then

cheapHU (Apple) = sup{cheapHU (y) : (Apple, y) ∈ priceH} = 0.53

cheapHU (Danube) = sup{cheapHU (y) : (Danube, y) ∈ priceH} = 0.42

The supremum affects the case when we have more different prices for one hotel. Then we take the highest result.

(@(cheapU , closeU))H(Apple) = @•(cheapHU (Apple), closeHU (Apple))

=
(3 × closeHU (Apple) + 2 × cheapHU (Apple))

5

Fuzzy description logic f-EL is the motivation for creating a model for fuzzy RDF. For example, a fuzzy instance

cheapHU (Apple) = 0.53 can be modelled by the RDF triple: 〈Apple, cheapHU , 0.53〉.
This is an embedding of a fuzzy logic construct into classical RDF, which needs to translate also constructions of

DL, namely ∃price.cheap in fuzzy DL turns to composition of roles, where ∃price.(∃cheap. ⊤) needs an aggregate max

(or top-k) extending DL with a concrete domain (see [1]). It is out of the scope of this paper to describe such DL with a

concrete domain and embedding of our fuzzy DL in more detail. What we claim here is an experimental implementation

of both our fuzzy DL, special crisp DL with a concrete domain and a related model of RDF with extended syntax and

semantics of owl:someValuesFrom).

Now, in our model, we can specify user profiles and represent these profiles in Fuzzy RDF triples based on data from

domain ontology. Our next task is to find relevant objects for individual users.

Consider the type of user preferring cheap hotels. There can be many users that prefer cheap hotels. We want to share

the same instance of the class cheap for them. However, their notion of “cheapness” can be different. For example one user

can say that cheap hotels have price lower than $30, while for some other user cheap hotel ends at $50. Fortunately we can

easily change the overall evaluation of objects to reflect these individual requirements. In the following theorem f1, . . . , fn

are functions that represent local preferences expressed in user preference ontology. Function values f1(x1), . . . , fn(xn)
are literals from fuzzy RDF expressing the relevance of respective values of an object. We show that we can use the same

functions for different users with the same preference ordering and adjust the aggregation function only.

DEFINITION 2.1. Let D be a subinterval of real line and f be a bijective (either strictly increasing or strictly

decreasing) fuzzy function f = ax + b, a 6= 0, f : D → [0, 1] and g : D → [0, 1]. We say, that g preserves the ordering

of f over D, if for all x, y ∈ D f(x) < f(y) implies g(x) ≤ g(y).
THEOREM 2.2. Let f1, . . . , fn be bijective fuzzy functions such that for each i : fi = aix + bi, ai 6= 0, fi : Di →

[0, 1]. Let g1, . . . , gn be partially linear functions such that they preserve the ordering of f1, . . . , fn over D. Let @ be an

n-ary aggregation function. Then there exists n-ary aggregation function @′ such that

(∀x1, . . . , xn)@(g1(x1), . . . , gn(xn)) = @′(f1(x1), . . . fn(xn)).

Proof. The theorem above says about existence of an aggregation function@′. We will show how to find this function.

We can assume that fi and gi are defined on the same unit interval D = [0, 1]. Function gi is linear over certain

subintervals of [0, 1]. We take one such subinterval and name it Kj . The following holds for fi and gi over Kj :

(∀xi ∈ Kj)fi(xi) = ai(xi) + bi and gi(xi) = c
j
i (xi) + d

j
i

Now we define new function hi for each i ∈ [1, n] as:

(∀i, j)hi(y) = c
j
i

(y − bi)

ai

+ d
j
i .

The aggregation function @′ is @′(y1, . . . , yn) = @(h1(y1), . . . , hn(yn)). If we substitute fi(x) for every yi:

@′(f1(x), . . . , fn(x)) = @(h1(f1(x)), . . . , hn(fn(xn)))

Knowledge Processing For Web Search 55

FIG. 2.2. Number of accesses needed to retrieval of top-k objects

For arbitrary subinterval Kj ⊆ [0, 1] where every gi is linear we get

hi(fi(xi)) = c
j
i

fi(xi) − bi

ai

+ d
j
i = c

j
i

aixi + bi − bi

ai

+ d
j
i = c

j
ixi + d

j
i = gi(xi)

Therefore it holds

@′(f1(x1), . . . , fn(xn)) = @(h1(f1(x1)), . . . , hn(fn(xn)))

= @(g1(x1), . . . , gn(xn))

This theorem allows users to specify their own meaning of “cheapness” exactly by fuzzy function and similarly for

other attributes.

2.4. Relevant Object Search. Now we have orderings of properties from learning of local preferences, rules from

learning of global preferences and prepared ordered data stored in fuzzy RDF. Our last task is to find top k objects which

are suitable for particular user. We use the extension of middleware search of Ronald Fagin [6]. The main idea is to

browse only necessary data until the system is sure that it has top-k objects already. Thus we do not need to calculate

with whole data from domain ontology. Limiting the retrieval to the k best objects is often sufficient for the user and it

saves time. The time efficiency grows with the number of objects stored in domain ontology and also with the number of

properties we consider.

The model in [6] works with data stored in possibly distributed lists that are ordered from the best to the worst in

particular property. Fagin considered two kinds of accesses to lists: sorted and random access. The sorted access gets the

next best object from the list after each access, so we can retrieve data ordered from the best to the worst. The random

access asks for the value of a particular property it includes for a particular object. We want to minimize the number of

accesses to lists and of course the time of searching. The random access has one a large drawback. Each random access

requires searching of the value of specific object. In the case of sorted access the results are prepared immediately (values

can be preordered according to various criteria). Moreover, data can be sent in blocks. These important differences are

the reason that we prefer the sorted access algorithms to the random access in our implementation.

In our applicationwe use 3P-NRA (3 Phased No RandomAccess) algorithm [8], which is an improvement of NRA [7]

algorithm.

As we found in our experiments (see Figure 2.2), using the techniques of top-k search can significantly reduce the

number of accesses and correspondingly decreases the search time, especially in the case of large set of objects.

In the experiments, the data were generated with various distributions of values. We have used 2 exponential and 2

logarithmic distributions of properties with 10000 objects and 6 types of aggregation functions. For all experiments we

have considered 3 properties. Various combinations of properties and aggregation functions were used for composition of

25 inputs for algorithms. The final results show the averages of particular results.

3. Web Search and Experiments. Our models and methods were implemented, integrated and experimentally

tested in the project NAZOU, atop the application domain of job offers.

56 Gurský P., Horváth T., Vojtáš P. et al.

To identify suitable objects for user we need to obtain his local and global preferences. The complete user dependent

searching process is illustrated on Figure 3.1.

Explicit user
local preferences

and weights

User ratings
of objects

Learning global
preferences

Relevant
object search

1

2

3

4

User
profile

ontology

Domain
ontology

R0

R , R1 2

U , U0 1

FIG. 3.1. Flow diagram of user profile dependent part

In our system and experiments, different users can explicitly specify local preferences. We consider job offer at-

tributes like required education and experience level of the applicant, offered salary, manager position and the amount

of traveling involved in the job (EducationLevel, ExperienceLevel, MinSalary, ManagementLevel, TravelingInvolved).

The testing implementation first asks the user to specify his explicit preferences to these attributes. The user can choose

if he prefers higher, lower, middle or marginal values of these attributes and he can even define how much he prefers

every value (see Figure 3.2 and compare to Figure 2.1). Thus we can recognize higher-best, lower-best, middle-best and

marginal-best preference types. Additionally a weight assigned to each attribute can be specified. This is used for combi-

nation function being weighted average. These parameters are used to retrieve (arrow 1) top-k objects to user. We denote

this list of results as R0.

User preferences can be changed or stated more precisely during several search cycles. We follow the idea that

everybody can easily say, for a concrete object, how suitable it is. Thus we will require from user to evaluate the objects

in scale from the worst to the best.

User evaluation uses 5 possible values (“worst”, “bad”, “neutral”, “good”, “best”). The k-tuple of initially retrieved

objects R0 is transformed to new set U0 (a fuzzy set with different order induced by user ratings). This is sent (arrow 2)

to our ILP tool learning global preferences. These are used (sent via arrow 3) to relevant object search to retrieve top-k

objects from the whole set of objects, let us denote this by R1. After new objects are given to user, he can evaluate them

(creatingU1) and start the whole process again. We created a database log for user preferences, result sets and user ratings.

The testing involved 82 users who performed 333 cycles and rated 3547 results altogether. However, only 62 users

passed at least one complete cycle successfully. The remaining users were “just browsing” or testing the system availabil-

ity. In the following analysis we will consider only those users who performed at least one complete cycle, i. e. those who

viewed and rated first 10 results and more precise global preferences were (possibly) found from their ratings.

Therefore we consider 62 users with 158 cycles. We find that global preferences were found from user ratings in

112 cycles, which is 71%. Successive cycles usually improve global preferences even further; the number of rules was

higher or equal in 75% of successive cycles. Sometimes the number of rules oscillates from one cycle to another. This

happens for 30% of users. We suppose that these users do not know exactly what they are looking for or their preferences

do not remain the same throughout the testing. Although user’s ratings are used for finding global preferences, they also

provide us an important feedback. They define some ordering of results. If this ordering is similar to the ordering returned

by top-k searching algorithm, it indicates that our preference model resembles real preferences well. We compare two

orderings (the ordering Ri given by top-k algorithm and the ordering Ui given by user ratings) with Kendall tau rank

correlation coefficient [11]. This coefficient determines a degree of correspondence between two orderings of the same

objects.

Knowledge Processing For Web Search 57

FIG. 3.2. Graphical user interface for explicit preference specification

Kendall tau coefficient is defined as τ = 2P
1

2
·n·(n−1)

− 1 where P is the number of concordant pairs in both ratings.

If two orderings are the same, they have tau coefficient 1. If one ordering is the reverse of the other, they have tau

coefficient−1.
R0 and U0 have average tau coefficient 0.44 representing a strong correlation. If we analyze second cycles (R1

and U1), we have an average tau coefficient 0.6; third cycles (R2 and U2) have 0.58. Note that some users stopped after

first or second cycle, so the number of results is smaller for the third cycle. The correlation coefficients show that the

inductive methods really improve global preferences. The decrease of tau coefficient in the third cycle is very small; it

can be due to inconsistent user behavior.

We present a complete record of one typical user. Table 3.1 shows that this user rated the first 10 results and this

ordering by ratings was different from the ordering given by top-k algorithm (tau correlation of R0 and U0 is only 0.1556).

However, two rules were found from user’s ratings and the global preferences were refined. The second result set R1 has

tau correlation 0.5111 compared to U1. In the third cycle, the number of rules increased to 3 and tau correlation increased

to 0.9111. The user was content with his results and he stopped searching.

We can also analyze the local preference types and find which type is the most common for every attribute (see

Table 3.2). It is easy to see that higher-best is generally the most common type and marginal-best is the least common.

Lower-best type is the secondmost frequent forManagementLevel and TravelingInvolved,while middle-best is the second

most frequent for EducationLevel, MinSalary and ExperienceLevel. These results reflect some intuitive ideas, e.g. that

most people are not satisfied with low salary, seek a job for some specific required level of education or experience and

that many of them are not willing to travel.

4. Conclusions. In this paper we have described a model of system enabling users to search objects from the same

domain and heterogeneous sources. Data are collected from various sources are processed to vector index and to a

domain ontology. The system implements both user independent search and personalized search for users with different

preferences. Our theoretical model integrates all parts of the system from collected data in classical RDF form to user

query answering. We do not have a model for web resource downloading and ontology annotation part.

The model of user dependent search is based on modeling preferences by fuzzy sets and fuzzy logic. We present the

semantics of fuzzy description logic f-EL. User dependent search integrates both inductive and deductive approach. By

induction we can learn local and global preferences (although currently we have implemented only global preferences).

Results of induction as well as hand-filled orderings can be easily modeled in user ontology and fuzzy RDF. Deductive

part of the system uses the preferences to find suitable objects for user, who can express his preferences precisely by fuzzy

functions and aggregation function. The easiest way is to evaluate several objects in a scale and let the system to learn

preferences. Repeating this process (evaluating a set of objects and finding new objects) leads to refining the user profile.

User, who is satisfied with his profile and with the presented search results, does not have to evaluate objects again. When

the domain ontology is actualized, user can just get the best objects according to his profile. Effective identification of

suitable user type for a new user is the aim of our future research. It can be done by collecting more data from real

users. We want to collect some personal information like age, gender, job position, etc. and the explicit specification of

preferences from each user and then analyze the data in search for dependency.

Presented model was experimentally implemented and integration was tested using Cocoon and Spring Framework

[14] and Corporate Memory of [5]. Both searching methods (user dependent and user independent search) are compound

of tools which can be further improved separately. After the phase of gathering data about users, it will be possible to

compare the efficiency, speed and complexity of these methods and decide about their practical usage. In future we plan

to experiment with infrastructure of [18] and [3], which could possibly replace [14].

Our approach is used also in the Slovak project NAZOU—Tools for acquisition, organization and maintenance of

knowledge in an environment of heterogeneous information resources [13] to find relevant job offers for the user according

to his preferences.

58 Gurský P., Horváth T., Vojtáš P. et al.

TABLE 3.1

Testing Records for One User and Three Cycles

Offer ID R0 U0 R1 U1 R2 U2 R3

01096 2,837 1

0f1b9 2,802 1

01004 2,757 4

01082 2,729 5

01059 2,723 2

01011 2,681 4

9fe41 2,588 5 4 3

8bc3a 2,588 4 4 4

01090 2,54 5

01095 2,54 2 3 2

e4464 4 5 5 5 5

4c537 4 5 5 5 4

1d41d 4 1

c56aa 4 5 5 4 4

01007 4 5 5 4 3

8f22d 4 5 5 3 3

01063 4 4 4 2 2

ef534 4 1 2

01069 3 2

01068 3 1

01100 3 1

31a44 2

a8bbc 2

01036 2

τ 0,1556 0,5111 0,9111

Rules 2 3 4

TABLE 3.2

A Summary of Local Preference Types

Attribute Higher Lower Middle Marginal

EducationLevel 41 12 23 4

MinSalary 67 1 10 2

ExperienceLevel 50 10 15 5

ManagementLevel 43 24 8 5

TravelingInvolved 42 25 12 1

Similar strategy of communication with users (evaluation of sample objects) was used in [12], where the learning

part of the system was covered by a neural network. This approach does not permit to model user preferences. We did not

found any other similar approach to the whole process.

Acknowledgements. Partially supported by Czech projects 1ET100300419 and Slovak projects VEGA 1/3129/06

and NAZOU.

REFERENCES

[1] F. BAADER, R. KUESTERS, F. WOLTER, Extensions to Description Logics, in Description Logic Handbook, Cambridge University Press, 2003,

pp. 219–261.

[2] P. BARTALOS, M. BARLA, G. FRIVOLT, M. TVAROŽEK, A. ANDREJKO, M. BIELIKOVÁ, P. NÁVRAT, Building an Ontological Base for

Experimental Evaluation of Semantic Web Applications, in Proc. of SOFSEM 2007, Lecture Notes in Computer Science, Vol. 4362, Springer-

Verlag, 2007, ISSN 0302-9743, pp. 682–692.

Knowledge Processing For Web Search 59

[3] D. BEDNÁREK, D. OBDRŽÁLEK, J. YAGHOB, F. ZAVORAL, Data Integration Using DataPile Structure, in Advances in Databases and Infor-
mation Systems, Springer-Verlag, 2005, ISBN 3-540-42555-1, pp. 178–188.

[4] I. BRATKO, D. ŠUC, Learning qualitative models, AI Magazine 24 (2003), pp. 107-119.

[5] M. CIGLAN, M. BABIK, M. LACLAVÍK, I. BUDINSKÁ, L. HLUCHÝ, Corporate memory: A framework for supporting tools for acquisition,

organization and maintenance of information and knowledge, in ISIM’06, Czech Republic, 2006, pp. 185–192.

[6] R. FAGIN, Combining fuzzy information from multiple systems, in J. Comput. System Sci., 58 (1999), pp. 83–99.

[7] R. FAGIN, A. LOTEM, M. NAOR, Optimal Aggregation Algorithms for Middleware, inProc. 20th ACM Symposium on Principles of Database

Systems, 2001, pp. 102–113.

[8] P. GURSKÝ, Towards better semantics in the multifeature querying, in Proceedings of Dateso 2006, ISBN 80-248-1025-5, 2006, pp. 63–73.
[9] P. GURSKÝ, T. HORVÁTH, R. NOVOTNÝ, V. VANEKOVÁ, P. VOJTÁŠ,UPRE: User preference based search system, in Proceedings of the 2006

IEEE/WIC/ACM International Conference on Web Intelligence (WI ’06), Hong Kong, 2006, ISBN 0-7695-2747-7, pp. 841–844.

[10] T. HORVÁTH, P. VOJTÁŠ, Induction of Fuzzy and Annotated Logic Programs, in ILP 2006, LNAI 4455, Springer-Verlag, 2007, pp. 260–274.

[11] M. G. KENDALL, Rank Correlation Methods, Hafner Publishing Co., New York, 1955.

[12] E. NAITO, J. OZAWA, I. HAYASHI, N. WAKAMI, A proposal of a fuzzy connective with learning function and query networks for fuzzy retrieval

systems, in Fuzziness in database management systems, P. Bosc and J. Kacprzyk, eds., Physica Verlag, 1995, pp. 345–364.

[13] NAZOU. Tools for acquisition, organization and maintenance of knowledge in an environment of heterogeneous information resources, [online,

cited 11 November 2007], available from http://nazou.fiit.stuba.sk

[14] Spring Framework. System for assembling components via configuration files, [online, cited 11 November 2007], available from

http://www.springframework.org

[15] A. SRINAVASAN, The Aleph Manual, Technical Report, Comp. Lab., Oxford University.

[16] P. VOJTÁŠ, Fuzzy logic aggregation for Semantic Web search for the best (top-k) answers, in Fuzzy logic and the semantic web, E. Sanchez, ed.,

Elsevier, 2006, pp. 341–360.

[17] P. VOJTÁŠ, A fuzzy EL description logic with crisp roles and fuzzy aggregation for web consulting, in Proc. IPMU’2006, B. Bouchon-Meunier

et al., eds., EDK 2006, pp. 1834–1841.
[18] J. YAGHOB, F. ZAVORAL, Semantic Web Infrastructure using DataPile, in WI-IATW ’06, Los Alamitos, California, ISBN 0-7695-2749-3, 2006,

pp. 630–633.

Edited by: Maria Ganzha, Marcin Paprzycki

Received: Feb 4, 2008

Accepted: Feb 9, 2008

