
Scalable Computing: Practice and Experience

Volume 9, Number 2, pp. 83–94. http://www.scpe.org
ISSN 1895-1767

c© 2008 SCPE

OBJECT ORIENTED CONDENSED GRAPHS∗

SUNIL JOHN AND JOHN P. MORRISON†

Abstract. Even though Object Orientation has been proven to be an effective programming paradigm for software development,
it has not been shown to be an ideal solution for the development of large scale parallel and distributed systems. There are a number
of reasons for this: the parallelism and synchronisation in these systems has to be explicitly managed by the programmer; few Object
Oriented languages have implicit support for Garbage Collection in parallel applications; and the state of a systems of concurrent
objects is difficult to determine. In contrast, the Condensed Graph model provides a way of explicitly expressing parallelism but
with implicit synchronisation; its implementation in the WebCom system provides for automatic garbage collection and the dynamic
state of the application is embodied in the topology of the Condensed Graph. These characteristics free programmers from the
difficult and error prone process of explicitly managing parallelism and thus allows them to concentrate on expressing a solution to
the problem rather than on its low level implementation. Object Oriented Condensed Graphs is a computational paradigm
which combines Condensed Graphs with object orientation and this unified model leverages the advantages of both paradigms. This
paper illustrates the basic features of Object Oriented Condensed Graphs as well as its support for large scale software development.

Key words: condensed graphs, object oriented systems, software engineering, distributed and parallel computing

1. Introduction. The support of large scale software systems has long been the focus of research in
software engineering. Object Oriented Systems have attracted wide attention due to its many desirable prop-
erties which aid software development such as enhanced maintainability and reusability. With the support of
characteristics such as inheritance, modularity, polymorphism and encapsulation, this paradigm can help the
development of complex software programs [17]. However, the development of parallel and distributed appli-
cations is not significantly simplified by Object Orientation. The onus is still on the programmer to explicitly
manage each parallel component and to ensure proper synchronisation. The interaction of parallel components
in a large system can be complex and this complexity is compounded in sophisticated environments such as
heterogeneous clusters and computational grids. Moreover, the encapsulation concept in OO is complex in
a parallel environment. OO does not impose constraints upon invocation of an object’s attributes or mem-
ber functions. This complicates the relationship among objects when there are several method invocations.
Similarly, memory management is a major concern. Most of the current Garbage Collection methodologies
work sequentially; only a few OO languages can support automatic garbage collection in a parallel system. In
addition, parallelism poses additional challenges for access control mechanisms and object state determination.

The Condensed Graph (CG) model of computing is based on Directed Acyclic Graphs (DAGs). This
model is language independent and it unifies the imperative, lazy and eager computational models [2]. Due
to its features including Implicit Synchronisation and Implicit Garbage Collection this computational model
can be effectively deployed in a parallel environment. CGs have been employed in a spectrum of application
domains, from FPGAs to the Grid [7, 4]. The most advanced reference implementation of the model is the
WebCom abstract machine [5]. WebCom is being used as the basis of Grid-Ireland’s middleware development
and deployment [3].

This paper addresses the concept of Object Oriented Condensed Graphs (OOCG) as well as its
development support in a large scale environment. Object Oriented Condensed Graphs is a unified model that
combines the Object Oriented paradigm with the Condensed Graph methodology. This unified model helps to
leverage the advantages of both paradigms. By integrating Condensed Graphs with Object Oriented principles,
negative aspects of Object Orientation, when deployed in a large scale parallel environment, can be successfully
addressed.

Some of the similar research in this area of modelling languages are Object Oriented Petri Nets (OOPN) [8]
and Object Petri Nets (OPN) [9, 10, 11] in which the Object Orientation principles has combined with that
of Petri Nets [13]. Other notable Petri Net modelling languages embodying OO concepts are CPN [12],
HOOPN [14] and CO-OPN [15, 16].

This paper is organised as follows: Section 2 provides an overview of Condensed Graphs, and Section 3
presents the basics of Object Oriented Condensed Graphs. Section 4 presents Development support, particularly
pattern based OOCG Development, as well as its performance analysis.

∗The support of Science Foundation Ireland is gratefully acknowledged.
†Centre for Unified Computing, Dept. of Computer Science, National University of Ireland, University College Cork, Cork,

Ireland (s.john,j.morrison@cs.ucc.ie). http://www.cuc.ucc.ie

83

84 Sunil John and John P. Morrison

2. Condensed Graphs. Like classical dataflow, the CG model is graph-based and uses the flow of entities
on arcs to trigger execution. In contrast, CGs are directed acyclic graphs in which every node contains not only
operand ports, but also an operator and a destination port. Arcs incident on these respective ports carry other
CGs representing operands, operators and destinations. Condensed Graphs are so called because their nodes
may be condensations, or abstractions, of other CGs. (Condensation is a concept used by graph theoreticians
for exposing meta-level information from a graph by partitioning its vertex set, defining each subset of the
partition to be a node in the condensation, and by connecting those nodes according to a well-defined rule.)
Condensed Graphs can thus be represented by a single node (called a condensed node) in a graph at a higher
level of abstraction. The number of possible abstraction levels derivable from a specific graph depends on the
number of nodes in that graph and the partitions chosen for each condensation. Each graph in this sequence of
condensations represents the same information but in a different level of abstraction. It is possible to navigate
between these abstraction levels, moving from the specific to the abstract through condensation, and from the
abstract to the specific through a complementary process called evaporation.

5

f

g

f

5

g

Fig. 2.1. CGs congregating at a node to form an instruction.

The basis of the CG firing rule is the presence of a CG in every port of a node. That is, a CG representing
an operand is associated with every operand port, an operator CG with the operator port and a destination
CG with the destination port. This way, the three essential ingredients of an instruction are brought together
(these ingredients are also present in the dataflow model; only there, the operator and destination are statically
part of the graph).

Any CG may represent an operator. It may be a condensed node, a node whose operator port is associated
with a machine primitive (or a sequence of machine primitives) or it may be a multi-node CG.

The present representation of a destination in the CG model is as a node whose own destination port is
associated with one or more port identifications. Figure 2.1 illustrates the congregation of instruction elements
at a node and the resultant rewriting that takes place.

Strict operands are consumed in an instruction execution but non-strict operands may be either consumed
or propagated. The CG operators can be divided into two categories: those that are value-transforming and
those that only move CGs from one node to another in a well-defined manner. Value-transforming operators
are intimately connected with the underlying machine and can range from simple arithmetic operations to
the invocation of software functions or components that form part of an application. In contrast, CG moving
instructions are few in number and are architecture independent.

By statically constructing a CG to contain operators and destinations, the flow of operand CGs sequences
the computation in a dataflow manner. Similarly, constructing a CG to statically contain operands and opera-
tors, the flow of destination CGs will drive the computation in a demand-driven manner. Finally, by constructing
CGs to statically contain operands and destinations, the flow of operators will result in a control-driven evalu-
ation. This latter evaluation order, in conjunction with side-effects, is used to implement imperative semantics.
The power of the CG model results from being able to exploit all of these evaluation strategies in the same
computation, and dynamically move between them using a single, uniform, formalism.

3. Object Oriented Condensed Graphs. The Object Oriented Condensed Graphs paradigm, OOCG,
has been developed to address the limitations of Object Oriented Systems mentioned in Section 1. As a unified
model, Object Oriented Condensed Graphs preserves all the current functionalities of Condensed Graphs while
featuring many major Object Oriented Concepts. The core features and functionalities are given below [1]:

3.1. Object Annotations. The definition of a Condensed Graph may be viewed as a class from which
instances can be created. Such instances are analogous to objects. A class can contain nested graphs representing
individual methods and attributes.

Object Oriented Condensed Graphs 85

method A

method m

.

.

.

Class X

XE

Fig. 3.1. A Node to represent Class X. The member functions form child nodes within that node.

o2

o3

o1

 X

Y

Fig. 3.2. Invoking Object X with Operands. Sending the result to Y.

In the CG model, Graph instance creation can occur implicitly when an appropriate CG node is invoked.
Alternatively, explicit instance creation will give rise, not only to an appropriate graph instance but also, to a
CG node which can be used to represent that instance. In effect, these nodes are coherent names of dynamically
created objects.

OOCG specifies two kinds of visibility for its member functions and attributes. As is typical in an Object
Oriented language, private members belonging to an Object can be accessed only within that Object. In
contrast, a public member has a broad visibility. It can be accessed from inside as well as from outside of that
Object. In other words, it has a Global Scope. Some of these scenarios are shown in Figs. 3.1, 3.2 and 3.3.

3.2. Inheritance in Condensed Graphs. Object Oriented Condensed Graphs incorporate single inher-

itance. A Class can inherit from other classes. In this way, a sub class can inherit the properties of its super

class. The sub class can introduce new properties or can override the inherited properties of its super class. As
shown in Figs. 3.4 and 3.5, subclass Class B extends superclass Class A. By default, public members of A are
available in Class B and these can be used for operations within B.

The class definitions can be instantiated as Objects. The characteristics of Polymorphism also can be
observed in the class instances. By overriding the parent class operation in the child class, the behaviour can
be changed in the sub class. In the above example, we can redefine the member function func1 in the sub class
so that the whole operation behaviour can be redefined. This also gives rises dynamic binding. During compile
time the contexts between the operations can be switched.

3.3. Concurrency and Synchronisation. OOCG adheres to the standard OO principle of Encapsula-
tion. The public methods and attributes are visible and accessible from outside the Object. A method within
an object can be subject to several invocations. These invocations can be intra Object or can be inter Object.

Condensed Graphs are inherently parallel by design. The definition of the graph dictates the parallel
execution. The node dependencies within the graph explicitly specifies the order of execution. Cross Cutting

Condensed Graphs [6] is a methodology to cater for inter graph synchronisation for concurrently executing
graphs. This methodology helps to overcome the model’s basic criteria that values exit a graph only through
its X Node. In the cross-cutting version, values may exit via a special construct thus helping to coordinate
independent graphs.

86 Sunil John and John P. Morrison

X.A

o1

o2

o3

Y

Fig. 3.3. Invoking Method A of Object X with Operands. Sending the result to Y.

func1

func2

op2

op1

op4

op3

addOp X

A

func1

func2

.

addOp

Fig. 3.4. The parent super class A.

A new graph model to support access to shared resources is proposed in Figure 3.6. Many operands may
converge to the E node of this graph. A priority based queuing mechanism is employed in the E node to handle
these accesses and a local semaphore is used to enforce sequential access to the underlying graph. Typically it
sets a flag when it allows the invocation of the graph. When the X node of the graph fires this flag reverts back
to its previous value.

3.4. Explicit Naming Scheme. OOCG Node names adapt from the code semantics. A Class Node bear
the name of the Class in the program. A Class method name is normally preceded by a colon. As an example,
the Nodes C and C:getDetails illustrate Class C and the method getDetails within class C respectively.
Inheritance and the nested class scenarios also can be incorporated. The Node annotation A.B.C:getDetails

illustrates the member function getDetails of the class C which is derived from base classes B and A. Some
research regarding the naming scheme using the Condensed Graph model is addressed in [5].

3.5. Object Creation and Automatic Garbage Collection. Condensed Graphs support Object Cre-
ation and Implicit Object Destruction or Automatic Garbage Collection [1]. Object Creation can be performed
by invoking the Create instruction. This instruction takes the Class Definition as an input Operand and creates
an Object as output. Figs. 3.7 and 3.8 illustrates some scenarios of the Object creation. Typically when an
Object’s X Node fires the Object is collected automatically.

4. OOCG Development Support. OOCG development framework has been developed for the creation
of OOCG applications for concurrent and distributed environments. OOCGLib is a programming package
consisting of a set of Java classes and libraries to address integrated development. OOCGLib is integrated
with WebCom-GIDE [3] which allows developers to develop OOCG applications in an interactive, distributed
environment (Figure 4.1). This development environment is implemented as an application layer on top of the
WebCom [5] middleware. As an integrated framework, it benefits from the features of WebCom such as load
balancing, fault tolerance and security policies.

4.1. Multiphase Patterns. In modelling a system, patterns often used to efficiently express solution in
a standard manner. Patterns are template solutions that have been developed to address common recurring
problems in particular application domains.

Gamma et al. [18] suggested recurring solutions to common problems in design. They presented their
ideas in the context of Object Oriented design. Le Guennec et al. [21] has incorporated some of this work on
design patterns in UML using their customised tool UMLAUT. W.M.P. van der Aalst et al. suggested Workflow

Patterns [22] as Requirements for workflow languages. Later research in this area has also addressed control
flow patterns [23] and provided a formal description of each of them in the form of a Coloured Petri-Net (CPN)
model.

Patterns currently available in software engineering only apply to particular engineering phases and do
not extent into the multiple phases. A pattern paradigm which addresses problems in all phases of a software

Object Oriented Condensed Graphs 87

op5

X

func1

func3

 B

A

func1

func2

.

func3

func4

.

Fig. 3.5. The child sub class B. The child class inherited the public contents of class A.

CG1

CG2

CG3

o1

o2

o3

CG1

Resource

Create

o2

o3

o1

E

Resource Graph

Condensed Node Refering to the Resource Graph

X

X1 X2 X3

Fig. 3.6. The Condensed Nodes refer to the Resource Graph. The E node of the Resource Graph contains a local semaphore
which restricts the access to resource one at a time.

lifecycle, from high level modelling to design, implementation and testing is currently missing from the software
engineering landscape. The concept of a Multiphase pattern is presented here to address solutions to all
phases of the software engineering lifecycle ranging from modelling, design to implementation.

Two Multiphase patterns, as part of the OOCG model, are presented in this paper to address common
scenarios. These are design patterns which are being adapted and extended to cover multiple phases in the
engineering lifecycle. Similar to the strategy adopted by Gamma et.al. [18], the OOCG Multiphase Patterns
also name, motivate, and explain solutions for generic problems.

4.1.1. Predecessor-Successor Pattern. This pattern addresses the sequential execution of dependant
tasks.

Name of the Pattern. Predecessor-Successor.

Related Patterns. Sequential Routing, Serial Routing [19]. In this Petri net based workflow pattern,
a process wait for the other process for serial execution.

Motivation. In a concurrent system of dependent tasks, the order of execution of tasks is a matter of
interest. As an example, if there are two dependent tasks and if any of the tasks requires a value that needs to
be transferred from the other task, it is important to know their order of execution.

Description of the Problem. Consider two tasks G1 and G2. G2 expects a value X1 that needs to be
transferred from task G1. In this case, task G1 has to be executed first to produce the value X1.

Solution of the Problem. Induce the notion of Sequencing in the task modelling. If a task needs a value
from another task, execute the first task prior to the second task. The value produced as a result of the execution
of the first task is transferred to the second task.

Implementation. Arrange the order of execution of the tasks. The task which executes first will be
denoted as Predecessor and the task which waits for the value from the Predecessor task will be termed as
Successor. Once the value has been produced by the Predecessor task, the value will be consumed by the
Successor. The value transfer will be based on the assumption that the Successor task waits for the value
(Figure 4.2).

88 Sunil John and John P. Morrison

Create
B B*

B*

func1

a
b

c

X

Fig. 3.7. In this Condensed Graph realisation, object B* has been created and is used to invoke the function func1 with
operands a,b and c.

func1

a

b

c

B*

E

a

b

c

B*.func1 .

. X
E

Efunc1

B*

X

Fig. 3.8. Different CG scenarios for the Object creation.

Fig. 4.1. Sample Screen shot of WebCom-GIDE, showing the Graphs used to generate a Fibonacci sequence.

E X

X1
E X

Graph G1 Graph G2

Fig. 4.2. Predecessor-Successor pattern. Graph G2 needs to wait for graph G1 hence the graph G2 is Successor.

Object Oriented Condensed Graphs 89

E

PH_b.wait PH_b.takeforks PH_b.eat

X

Eat

X

PH_a.requestforksPH_a.Think

E

Think

Fig. 4.3. Graph Eat needs to wait for graph Think.

G1 G2

G1

G2

(a) (b)

Fig. 4.4. (a) Connected dataflow graphs and (b) Non-connected Lazy graphs. In scenario (a), G2 needs to wait for G1. This
scenario is applicable if the Operand port in G2 is strict. In scenario (b), G2 can start before G1 executes. The Operand port in
G2 is non-strict in this scenario. In the first case, G1 is the Predecessor graph and G2 is the Successor graph. In the second case
(b), G1 becomes Successor and G2 becomes Predecessor.

Example. Consider the classical dining philosophers problem [20]. In this example, a group of philosophers
sit around a table sharing one fork between each pair of philosophers. In this problem the forks are a shared
resource and in order to eat a philosopher must have the two forks on either side of him/her. In Figure 4.3,
graph Eat has to wait for the value fork from the graph Think. As is evident from this scenario, Think acts as
an Predecessor graph while Eat as the Successor graph.

Predecessor-Successor in OOCG. The sequencing of the execution of nodes in an OOCG may be lazy

or eager. The actual order of evaluation is determined by the strictness of Node Operand Ports and the form
of the Operand, i. e., whether the Operand is a normal order form or is in need of further reduction. An
Eager evaluation sequence results when the operand ports of a node are non-strict regardless of the form of the
operands. When the operand ports are strict, eager evaluation will result when the Operands is in normal order
form and lazy Evaluation will be triggered when they are not in normal order form.

Figure 4.4 illustrates these two scenarios with tasks G1 and G2. Figure 4.4 (a) depicts a strict scenario in
which the output of task G1 is required for input of task G2. Task G2 will not execute without this input. This
is eager mode of graph sequencing. In the non-strict sense, illustrated in Figure 4.4 (b), task G1 represents the
operand of task G2. G2 can be Predecessor in this lazy scenario. In certain cases, G1 need not be evaluated at all.

In Figure 4.5, Multi-relationship between the graphs are depicted. In this case as well, strictness of the
port determines Predecessor-Successor relationship.

In the Lazy way of graph sequencing in OOCG, Predecessor becomes Successor as the Successor becomes
lazy. Thus, in lazy evaluation, Predecessor and Successor change their roles. The existence of Predecessor is
used as the mechanism to drive the execution of Successor.

Transferring of data between the tasks is often performed using data pipelining in this pattern. Apart
from pipelining of value, OOCG can also support data streaming between the tasks in which the values will be
transferred in bulk as streams. In streaming, when the first value arrives as an operand to a task node, the task
fires. In order to stop the task from executing twice, the Operand will be deconstructed. As soon as the first
execution is finished, it paves way for the second set of value in the stream. The task fires again and makes way
for the next stream of values.

90 Sunil John and John P. Morrison

G1 G2

G3

Fig. 4.5. G1 is Predecessor to G3. If the port in G2 is strict, G3 and G1 are Predecessors to G2. Strictness of the port
determines Predecessor-Successor relationship.

E X

o1

o2 o3

E

X

E

X

o1

o2 o3

o2 o3

o1

E

X

Subject

Graph G1

Graph G3 Graph G4Graph G2

Observer Observer Observer

Fig. 4.6. Observer pattern. Subject Graph G1 notifies Observer Graphs G2, G3 and G4.

4.1.2. Multiphase Observer Pattern. This pattern is based on the Observer pattern [18] introduced
by Gamma et al. Multiphase Observer Pattern is an extended version of Observer pattern with Multiphase
concepts. This is categorised as a Behavioural Pattern.

Name of the Patter. Multiphase Observer
Also Known As. Publish-Subscribe
Motivation. If there are multiple dependent tasks and if a task’s state change affects the state of other

tasks it is important that there should be notification mechanism between the tasks so as to ensure a proper
synchronisation.

Description of the Problem. Figure 4.6 illustrates the problem addressed by this pattern. Task G1 is
dependent on tasks G2, G3 and G4. The execution of task G1 affects the decision making within the tasks G2,
G3 and G4. A synchronisation mechanism is needed in this state change event.

Solution of the Problem. The task upon which other tasks are dependent is known as the Subject

and the dependent tasks which observes the state change event from the Subject are known as Observers.
A Subject can have any number of Observers. Whenever a Subject’s state changes, it notifies its Observers. In
response, each Observer synchronise its state with the Subject’s state.

Implementation. Establish a hash table to maintain Subject-to-Observer task mapping. For each change
the Subject notifies the Observer tasks. This notification mechanism can be modelled as push or pull [18]. In
the push model, the subject sends detailed information to the Observers about the state change, whether they
require it or not. In the pull model, however, the Subject sends minimal notification and Observers enquire
explicitly thereafter.

Object Oriented Condensed Graphs 91

S1

Obs1

Obs2

Obs3

S1

S2

S3

R (Registry) R (Registry)

Fig. 4.7. OOCG implementation of Observer pattern. The node in the registry are created by the Subject to reflect the state
elements. Observers register as destination nodes of the Subject. By registering, they become part of the destination of the state
node.

E

1
S

V
1

X

Fig. 4.8. Subject graph. Value V1 is being sent to the State Node S1. V1 is deconstructed after State Node S1 is fired.

Examples. In the dining philosophers problem mentioned before, the task which holds the fork acts as the
Subject and the tasks which request forks act as Observers. When the Subject releases the fork, it notifies the
Observers.

Observer Pattern in OOCG. In the OOCG adaptation of Observer pattern, the Subject-Observer
relationship is maintained by means of registry mappings. The registry entry is created by the Subject. The
nodes in the registry are created by the Subject to reflect the state elements.

Observers register destination nodes with the registry to be advised of change in state elements. By
registering they become part of the destination of the appropriate State Node (Figure 4.7). In the Figure 4.7,
Operand value V1 must be passed onto the Observers. As Operator, Subject generates this value and Observer,
as destination, consumes this value. The Operator copies the Operand value to the destination.

In the Subject graph, there is a link from the state element to the Registry (Figure 4.8). The notification
operands are deconstructed when the state node is fired. When the E node of the Observer graph fires, it
registers destination nodes with Registry. Similarly, when its X node fires, it removes the destination link from
the Registry.

The Subject-Observer state changes can be by means of push or pull model. In the push model, Operand
value converge to the Subject and passes to the Observer destination. In the pull model, Operator pulls the
value from registry and send to the destination. After sending the value, the destination will be deconstructed.
When a new Observer creates, it pulls the value from the registry. In this Polling mechanism, new State value
arrives and overrides the old value.

4.1.3. Performance Analysis. A sample application based on OOCG is presented here to analyse the
performances of the above mentioned patterns. This is an image processing application which applies com-
pression algorithms on a series of images. The execution platform used for this experiment is WebCom [4]
middleware. The main OOCG program consists of three sub-programs (services). When the main program is
executed on the Client, the services are invoked on the hosts with service components interact each other. The
initial graphs modelled from the system requirements are shown in Figure 4.9. It should be noted that these
OOCG models are depicted as Eager graphs since the Lazy version is not suitable for this application context.

The Services A, B, and C are situated in different hosts. The Predecessor Successor pattern is applied
between the Service CGs in order for proper execution of Service Components. Similarly, Observer pattern
is implemented for interaction between the Client and the Service Hosts. In this implementation, the Ob-

92 Sunil John and John P. Morrison

E

Analyse
Results

X

Results X
E

E

X

E
DCT Results

X

E

X

XE
Calculate

DCT
Analyse
Results

Calculate
DCT

Analyse
Results

Calculate
DCT

Analyse
Results

Calculate Analyse

IDCT
Calculate

Calculate
IDCT

Analyse

Service A

Service B

Service C

(i)
(ii)

Fig. 4.9. Initial OOCG models. (i) Lazy version, and (ii) Eager version. Since the tasks are dependent with each other, Lazy
scenario is not applicable here.

Service B

Service CService B

Service A

Service A Service C

(i)

(ii)

A

B

C

Client

(iii)

(a) (b)

Service Hosts

Fig. 4.10. Some patterns implemented within the OOCG application. (a) Predecessor-Successor: (i) A-before-B, (ii) B-
before-C, and (iii) A-before-C. (b) Observer Pattern. Client waits for the results from the Service Hosts.

server (Client) waits for results from the Subject (Service Hosts). These pattern implementations are shown in
Figure 4.10.

The performance of this setup has been observed by measuring the request-response interaction between
Services. Performance is thus quantified as the average Request-Response time.

The experimental system is composed of three services and within each service, request to access other
services are implemented as request threads. Similarly, responses also are implemented as response threads
which will respond to the requests. The system can be fine-tuned by adjusting the number of concurrent
requests. It can be observed from the experiments that the performance decreases with the increasing number
of concurrent requests. Figure 4.11 illustrates this experimental results.

It has been observed from the initial experiments that a performance bottleneck occurs when the number
of concurrent requests is high. The reason behind this performance bottleneck is due to the deadlock between
the concurrent requests when their number is very large. The experiments have been re-run with a change of
design; in which the Predecessor-Successor pattern connecting the Services is replaced by an Observer pattern.
In this new design, a Consumer Service requests for data from the Provider and the Provider Service provides
the data as soon as it is available. If the data is not readily available, the Consumer Service waits till that
is available. With this enhanced design of the notification mechanisms, the deadlock between the Services is
avoided. The updated result is shown in Figure 4.12.

Object Oriented Condensed Graphs 93

 0
 0 5 10 15 20 25 30

A
v

er
ag

e
R

eq
u

es
t−

R
es

p
o

n
se

 T
im

e

No. of Requests

Request−Response

 50

 100

 150

 200

 250

 300

 350

 400

 450

Fig. 4.11. Average Request-Response time with respect to the concurrent Requests.

 0
 0 20 40 60 80 100

A
v

er
ag

e
R

eq
u

es
t−

R
es

p
o

n
se

 T
im

e

No. of Requests

Request−Response

 2500

 5000

 7500

 10000

 12500

 15000

Fig. 4.12. Average Request-Response time by removing performance bottleneck.

5. Conclusions and Future Work. The contributions of this paper are the introduction of enhanced
version of Condensed Graphs, Object Oriented Condensed Graphs, and its development support in a large
scale environment. OOCG is a unified model that combines the Condensed Graphs methodology with object
orientation and this leverages the advantages of both paradigms. This unified computational model is beneficial
for the development of Large Scale Parallel Systems since the CG aspects allows the developer to think about
parallelism and the Object Oriented aspects allow the developer to address the large scale concepts. OOCG
provide implicit support of Synchronisation and Garbage Collection capabilities, which help the development
of concurrent software. The Object concept and features such as Encapsulation and Inheritance enhance the
Reusability and Maintainability of OOCG.

The existing implementation of Condensed Graphs has been extended to implement the OOCG features.
Engineering practises have been proposed and implemented for its development in a large scale environment.
OOCG model has been integrated into the Condensed Graph Integrated Development Environment, WebCom-
GIDE [3] which is a development tool that enables visual application development and optimisation. Using
the Integrated Development Environment, OOCG applications are created and deployed for concurrent and
distributed environments.

Eventhough Object Oriented Condensed graphs have the potential for large scale software development,
some limitations in the current model need to be taken into account. These limitations include the model’s
inability to create reusable datastructures, deficiency to interoperate with other paradigms and the lack of data
management capabilities. These limitations would be addressed as future enhancements of the model.

94 Sunil John and John P. Morrison

REFERENCES

[1] Sunil John and John P. Morrison: Garbage Collection in Object Oriented Condensed Graphs, Springer-Verlag LNCS, 3rd
Workshop on Large Scale Computation on Grids, LaSCoG 2007, held jointly with the 7th International Conference on
Parallel Processing and Applied Mathematics, Gdańsk, Poland, September 9–12, 2007.

[2] John P. Morrison, Condensed Graphs: Unifying Availability-Driven, Coercion-Driven and Control-Driven Computing,
PhD Thesis, Eindhoven: 1996.

[3] John P. Morrison, Sunil John, David A. Power, Neil Cafferkey and Adarsh Patil: A Grid Application Development
Platform for WebCom-G, IEEE Proceedings of the International Symposium of the Cluster and Grid Computing, CCGrid
2005, Cardiff, United Kingdom.

[4] John P. Morrison, Brian Clayton, David A. Power and Adarsh Patil: WebCom-G: Grid Enabled Metacomputing, The
Journal of Neural, Parallel and Scientific Computation. Special issue on Grid Computing. Vol 2004(12), pp 419–438.
Guest Editors: H. R. Arabnia, G. A. Gravvanis and M. P. Bekakos. September 2004.

[5] John P. Morrison, David A. Power and James J. Kennedy: An Evolution of the WebCom Metacomputer, The Journal of
Mathematical Modelling and Algorithms: Special issue on Computational Science and Applications, 2003(2), pp. 263–276,
Editor: G. A. Gravvanis.

[6] Barry P. Mulcahy, Simon. N. Foley and John P. Morrison: Cross Cutting Condensed Graphs, International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA), Vol. 3, pp. 965–973, Las Vegas, Nevada,
USA, June 27–30, 2005.

[7] John P. Morrison, Philip D. Healy and Padraig J. O’Dowd: Architecture and Implementation of a Distributed Recon-
figurable Metacomputer, International Symposium on Parallel and Distributed Computing, Ljubljana, Slovenia, October
13–17, 2003.

[8] J. Niu, J. Zou, and A. Ren: OOPN: Object-oriented Petri Nets and Its Integrated Development Environment, Proceedings

of the Software Engineering and Applications, SEA 2003, Marina del Rey, USA.
[9] C. A. Lakos: From Coloured Petri Nets to Object Petri Nets, Proceedings of the Application and Theory of Petri Nets,

volume 935, Springer-Verlag, Berlin, Germany, 1995.
[10] C. A. Lakos: Object Oriented Modelling with Object Petri Nets, Advances in Petri Nets, LNCS, Springer, Berlin 1997.
[11] C. D. Keen and C. A. Lakos” A Methodology for the Construction of Simulation Models Using Object Oriented Petri Nets,

Proc. of the European Simulation Multi-conference, 1993, 267–271.
[12] Sarah L Englist: Colored Petri Nets for Object Oriented Modeling, Ph. D. Dissertation of University of Brighton, June

1993.
[13] T. Murata: Petri Nets: Properties, Analysis and Applications, Proc. of the IEEE, 77(4), 1989, 541–580.
[14] J. E. Hong and D. H. Bae: HOONets: Hierarchical Object-Oriented Petri Nets for System Modeling and Analysis, KAIST

Technical Report CS/TR-98-132, November 1998.
[15] D. Buchs and N. Guelfi: CO-OPN: A Concurrent Object Oriented Petri Net approach, 12th Int. Conf. on Application and

Theory of Petri Nets, pp. 432–454, Aahrus, 1991.
[16] Gul A. Agha: Fiorella De Cindio and Grzegorz Rozenberg, Concurrent object-oriented programming and petri nets: advances

in petri nets, Springer-Verlag New York, Inc., Secaucus, NJ, 2001.
[17] Bertrand Meyer: Object-Oriented Software Construction, second edition, Prentice Hall, ISBN 0-13-629155-4, 1997.
[18] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides: Design Patterns: Elements of Reusable Object

Oriented Software, Addison-Wesley Professional Computing Series.
[19] Li Xi-Zuo, Han Gui-Ying and Kim Sun-Ho: Applying Petri-net-based reduction approach for verifying the correctness

of workflow models, Wuhan University Journal of Natural Sciences, Wuhan University Journals Press, Volume 11,
Number 1, January, 2006.

[20] Edsger Wybe Dijkstra: The Structure of the the Multiprogramming System, Communications of the ACM, 11(5): 341–346,
May 1968.

[21] Alain Le Guennec, Gerson Sunyé and Jean-Marc Jézéquel: Precise Modeling of Design Patterns, UML 2000—The Uni-
fied Modeling Language. Advancing the Standard, Third International Conference, York, UK, October 2000, Proceedings.

[22] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros: Workflow Patterns, Springer-
Verlag, Distributed and Parallel Databases, 14(3), pages 5–51, July 2003.

[23] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst and N. Mulyar: Workflow Control-Flow Patterns:
A Revised View, BPM Center Report BPM-06-22, BPMcenter.org, 2006.

Edited by: Dana Petcu, Marcin Paprzycki
Received: April 30, 2008
Accepted: May 18, 2008

