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SERVICE-ORIENTED SYMBOLIC COMPUTING WITH SYMGRID
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Abstract. Recent software engineering concepts, like software as a service, allow the extension of the legacy code lifetime
and the reduction of software maintenance costs. In particular, exposing computer algebra systems as services allows not only the
integration in complex service-oriented architectures but also their further development. While existing standards may be used
for service deployment, discovery and interaction, the particularities of services to be built require specialized solutions. A recent
technical approach aimed at integrating legacy computer algebra systems into modern service-oriented architectures is presented
and discussed in detail in this paper. A special emphasis is put on the ability to compose symbolic services in complex computing
scenarios. A short description of how such systems were extended to allow the access of external services is provided as well.
The proposed approach was implemented into a specific framework, namely, SymGrid-Services. Simple examples are provided to
demonstrate usefulness of the framework.
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1. Introduction. Symbolic computation is one of the most high demanding fields in terms of computer
power as well as memory requirements. The current tools for symbolic computations are the Computer Algebra
Systems (CAS). Standard CASs are designed to be used in the isolated context of the local machine on which
they are installed. Their ability to interact with the external world is mostly restricted to a command line
user interface, to the file I/O based operations and only occasionally the ability to interact using the TCP/IP
sockets. The issues related to the data exchange between CASs were partially solved in the last decade by
the introduction of OpenMath [24] and MathML [36] standards (XML-based data description format, designed
specifically to represent computational mathematical objects). However, even in this case the inter-operability
between the CASs is still an open problem.

Recent solutions to the CAS inter-operability problem through service-oriented approaches where proposed
by an on-going international collaborative project, SCIEnce. This paper presents an overview of the achieve-
ments of the SCIEnce project relative to a particular middleware component that was developed in the last one
and a half year, the SymGrid-Services. While this paper is an extended version of the [5] and focuses mostly
on the wrapper services for CASs, it includes also a short descriptions of the other components that allow the
composition of the wrapper services, as well as the seamless access of services within CASs, (these components
are detailed in [3, 4, 6, 18]).

Overall, the paper is organized as follows. Section 2 discusses shortly the related work. Section 3 presents
the SymGrid and its main components. Section 4 points to the solution proposed for service access from inside
a CAS. Section 5 goes deep inside the solution adopted to present CASs as services. Section 6 gives some hints
about the solution adopted for service compositions. Finally, Section 7 draws the conclusions and highlights
the future steps.

2. Related work on mathematical Web and Grid services. The problem of integrating legacy
software into modern distributed systems has two obvious solutions: reengineering of the legacy software (an
invasive procedure) and creation of wrapper components (an non-invasive procedure).

Due to the complexity of the computer algebra systems, a non-invasive procedure is more appropriate, as
stated in [8, 34]. Several efforts have revealed the paths to be followed in wrapping CAS. We present in what
follows the most relevant ones. A more detailed overview of the bellow described initiatives can be found in [26].

2.1. General wrapping solutions. Exposing functionality of legacy components can be done using
general wrapper tools. In this category we can include Soaplab [30] and JACAW [13].

More specifically geared toward mathematical problems is JavaMath [33], a Java API for connecting to
mathematical software systems (a request is made to a broker for a particular software system and the broker
establishes a session to such system). OpenMath encoding of objects can be used. An specific abstract interface
for service access is given, but there is little abstraction from service implementation.
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111
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2.2. Web services. Result of an academic activity, the MathWeb-SB [41] is a software bus that allows
to combine mathematical services like computer algebra systems: a broker provides access object for service by
name, ensuring the abstraction from service locations and from object encodings, but there is no way to interact
with unknown services.

Internet-Accessible Mathematical Computation (IAMC) site [14] maintains a list of projects and systems
related to mathematics that are accessible on the Internet; in the frame of the IAMC project a HTTP-like
protocol was developed for server-client communication—a non-standard informal description of service and an
abstract protocol for service access (machine-readable) were provided, but it requires insight to be used (not
machine-understandable).

A general framework for the description and provision of Web-based mathematical services was designed
within the MONET [22], aiming at demonstrating the applicability of the semantic Web to the world of math-
ematical software. It allows dynamic discovery of services based on published descriptions which express both
their mathematical and non-mathematical attributes. A symbolic solver wrapper was designed to provide an
environment that encapsulates CASs and exposes their functionalities through symbolic services. Maple was
chosen as computational engine in the initial implementation and it is loaded from the XML configuration
file [31]. Simple examples of mathematical Web services were provided: integration and differentiation services,
limits and series services, root-finding and solving systems of polynomials. Axiom was used to demonstrate the
ability to incorporate different computational engines without changes.

Mathematical Services Description Language (MSDL [2]) was introduced to describe mathematical Web
services so that these services can be discovered by clients. It implements a service description model that
uses a decomposition of descriptors into multiple inter-linked entities: problem, algorithm, implementation, and
realization. More recently, a MathBroker [28] implementation was based on a Web registry to publish and
discover mathematical Web services. A usage example of the MathBroker was provided in [2].

MapleNET and WebMathematica are commercial counterparts to these initiatives. In the MapleNET [20] a
server manages concurrent Maple instances launched to serve client requests for mathematical computations and
display services, and facilitates additional services such as user authentication, logging information, and database
access. Similarly, WebMathematica [38] offers access to Mathematica applications through a web browser.

2.3. Grid services. GridSolve [42], a component of one of the earliest Grid systems developed, the Net-
Solve, is a middleware between desktop systems equipped with simple APIs and the existing services supported
by the Grid architecture—this API is available for the Mathematica.

The GENSS project [10] followed the ideas formulated in the MONET project. Its aim was to combine
Grid computing and mathematical Web services using a common open agent-based framework. The research
was focused on matchmaking techniques for advertisement and discovery of mathematical services, and design
and implementation of an ontology for symbolic problems.

Another academic initiative, MathGridLink [35] proposed both the development and deployment of Math-
ematica computational services on the Grid and the usage of existing Grid services from within Mathematica;
this initiative is continued by the SCORUM project [23].

Separately, Maple2g (Maple-to-Grid) described in [25] allows the connection between Maple and compu-
tational Grids based on the Globus Toolkit. The prototype consists of two parts: a Maple-dependent one, a
library of new functions allowing to interact with the Grid, and a Globus-dependent part, a package of Java
CoG classes. Maple2g allows the access to Grid services, the exposure of Maple facilities as Grid services, and
the cooperation between Maple kernels over the Grid. SymGrid-Services generalizes the Maple2g development
experiences to the level of CAS.

GridMathematica [37] was constructed as a commercial solution for dedicated clusters facilitating parallel
computing within Mathematica. Another example of exposing CAS to the Grid is HPC-Grid for Maple [12].
It is a distributed computing package using Maple that allows users to distribute computations across the
nodes of a network of workstations; it offers a message passing API as well as a set of high-level parallelization
commands. Based on MapleNet and HPC-Grid, the recent Grid Computing Toolbox for Maple [21] allows to
distribute computations across nodes of a network of workstations, a supercomputer or across the CPUs of
a multiprocessor machine (in the same administrative domain), and offers an MPI-like message passing API as
well as a set of high-level parallelization commands.

The recent GEMLCA [7] is a solution to deploy a legacy code application (including a computer algebra
system) as a Grid service without modifying the code. The front-end, described in the WSDL, offers Grid
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services to deploy, query, submit, check the status of, and get the results back from computational jobs. In
order to access a legacy code program, the user executes the Grid service client that creates a code instance
with the help of a code factory, and the system submits the job.

2.4. Overview. Overall, it can be observed that using the above mentioned technical solutions, several
CASs can be remotely accessible, but, almost all do not use a standard data model for interactions with CASs.
Moreover, none of the above shortly described systems conforms to all three of the following basic requirements
(as the SymGrid-services does):

(a) deploy symbolic services;
(b) access available services from within the symbolic computing system;
(c) couple different symbolic services into a coherent whole.

Furthermore, the pre-WRSF versions of Web and Grid middleware were used in the previous described projects,
making the service discovery a difficult task.

3. SymGrid. The aim of the SCIEnce project (Symbolic Computation Infrastructure for Europe,
http://www.symbolic-computation.org), funded in the frame of the European Commission Programme FP6,
is to improve integration between CAS developers and application experts. The project includes developers from
four major CASs: GAP [9], Maple [19], MuPAD [29] and KANT [15]. Its main objectives are to:

– develop versions of the CASs that can inter-communicate via a common standard service interface, based
on domain-specific results produced by the OpenMath [24] and the MONET [22] projects as well as
generic standards for Web and Grid services, such as the WSRF;

– develop common standards and middleware to allow production of Web or Grid-enabled symbolic computation
systems;

– promote and ensure uptake of recent developments in programming languages, including automatic memory
management, into a symbolic computation systems.

The research is primarily concerned with parallel, distributed, Web and Grid-based symbolic computations.
The five year workplan includes the followings stages:

1. produce a portable framework that will allow symbolic computations to access Grid services, and allow
symbolic components to be exploited as part of larger Grid service applications on a computational
Grid (finalized stage);

2. develop resource brokers that will support the irregular workload and computation structures that are
frequently found in symbolic computations (on-going stage);

3. implement a series of applications that will demonstrate the capabilities and limitations of Grid com-
puting for symbolic computations (future stage).

In what follows we describe the portable framework, namely the SymGrid. It was designed and presented
first in [11]. SymGrid allows multiple invocations of symbolic computing applications to interact via the Web
or Grid and it is designed to support the specific needs of symbolic computations.

SymGrid comprises of two components: the SymGrid-Par to support the construction of high-performance
applications on computational Grids, and the SymGrid-Services to manage Web and Grid services.

The SymGrid-Par middleware is used to orchestrate computational algebra components into a parallel
application and allows symbolic computations to be executed as high-performance parallel computations on
a computational Grid. SymGrid-Par components communicate using the Symbolic Computation Software
Composability Protocol (developed in the frame of SCIEnce project), SCSCP [17], which in turn builds on
OpenMath. SymGrid-Par provides an API for parallel heterogeneous symbolic components, which extends the
Grid-GUM [39], and comprises in two generic interfaces:

CAG interface: Computational Algebra system to Grid middleware, that links CASs to the Grid-GUM;
GCA interface: Grid middleware to Computational Algebra system, that links the Grid-GUM to these sys-

tems.

The purpose of the CAG/GCA interfaces is to enable computational algebra systems to execute on compu-
tational Grids, e.g. on a loosely-coupled collection of Grid-enabled clusters. Details about SymGrid-Par are
provided in [40]. Here, a GAP library has been build as demonstrator of usage of the SymGrid-Par.

The SymGrid-Services middleware is used to access, from computational algebra systems, Grid and Web
services, and to access and compose the CASs deployed as Grid and Web services. It is based on the WSRF
standard that ensures uniform access to Grid and Web services. A GAP library is available also for this SymGrid
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component. As in the case of the SymGrid-Par, the SymGrid-Services has two interfaces that will be detailed
in the next sections:

CAGS interface: Computational Algebra system to the Grid and Web services, links CASs to external ser-
vices;

GCAS interface: Web and Grid services for the Computational Algebra system, integrating these systems
into a service-oriented architecture and allowing service composition.

While there are several parallel computer algebra systems suitable for either shared-memory or distributed
memory parallel systems, work on Grid-based symbolic systems is still nascent. A review of current Grid-based
systems for symbolic computation can be found in [26] and, in a short version, in the next section.

The main novelty of the SymGrid-Services consists of the fact that it is the only current middleware
package that allows generic access to both Web and Grid symbolic and non-symbolic computing services, as
well as their composition. The specific mathematical Web services like the ones defined by the MONET project
[22], or standard Web services, are easily accessible, and the Grid services wrapping Kant, MuPAD, GAP
and other computational algebra systems provided by the SymGrid service container can be called from inside
a CAS.

A number of major new obstacles need to be overcome by the SymGrid in the near future. Amongst the
most important future developments are mechanisms for adapting to dynamic changes in either computations
or systems. This is especially important for symbolic computations, which may be highly irregular in terms
of data structures and general computational demands, and which therefore present an interesting challenge
to current and projected technologies for computational Grids in terms of their requirements for autonomic
control.

SymGrid intends to go beyond current systems by developing a generic framework supporting heterogeneous
Grid components derived from a critical set of complementary symbolic computing systems, by incorporating
new and vital tools such as dynamic resource brokers and schedulers that can work both at a task and system
level, and by creating a number of large new demonstrator applications.

4. CAGS interface of SymGrid-Services. CAGS allows Computer Algebra Systems to leverage the
computing capabilities offered by external Grid or Web services. Details about its implementation are provided
in [3]. In this paper we present shortly its main functionality.

4.1. Description of the interface’s implementation. A CAS user must be able to: discover services,
connect to remote services, call remote operations, run jobs, and transfer files in a seamless fashion. CAGS
provides this functionality. The SymGrid-Services’s CAGS interface consists of three Java classes (Figure 4.1):
SGServices provides three kinds of operations—retrieval of a list of services registered in a certain Web or

Grid services registry; retrieval of signatures for the exposed operations of a service; and calling remote
operations.

SGProxyCert handles issues arising from the need to support ’single sign-on’ for users of the Grid and dele-
gation of credentials: namely the creation and destruction of proxy certificates, retrieval of information
about the owner of a certificate and about the lifetime of a proxy certificate.

SGUtils provides additional functionality for explicit file transfer, file deletion and remote job execution.
To access the functionality provided by these three classes it is necessary to create new class instances.

Generally, however, CASs do not offer such functionality by default and therefore it is necessary to run the
supplied Java classes in a child process created by the CAS. This process then communicates with the CAS
using standard input/output streams to pass parameters and return values (Figure 4.2). The CAS will create
a child processes by launching a script that starts a Java class called RunManager. The main method of this
class should be called with an array of string type arguments:

java RunManager arg0 arg1 arg2 . . . argN

where the arg0 represents the Java class to load, arg1 is the name of the method to invoke, and remaining
arguments are passed to the method. RunManager is a generic command that exploits Java reflection capabilities
to allow the execution of any class.

4.2. Usage scenario. The primary functionality of CAGS lies in obtaining a list of Grid or Web services
registered at a certain URL; obtaining the signatures of those operations that are exposed by a certain Grid or
Web service; calling an operation and retrieving the result of an operation call. Secondary functionality includes
file transfer and job submission, and managing utilities for proxy certificates.
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+getGridServiceList(in containerURL, in toMatch, in passphrase) : String

+getWebServiceList(in registryURL, in toMatch, in options) : String

+getOperationsList(in serviceURL, in toMatch) : String

+isGridService(in serviceURL) : String

+getWSResourceEPR(in contactURL, in operationName, in args) : String

+callOperation(in serviceID, in operationName, in args) : String

SGServices

+createProxyFile(in proxyCertPath, in userCertPath, in userKeyPath, in passphrase) : String

+getCertInfo() : String

+getCertInfo(in proxyPath) : String

+proxyDestroy(in proxyPath) : String

+isProxyValid() : String

+isProxyValid(in proxyPath) : String

SGProyCert

+copyFile(in serviceBasePath, in sourceURL, in destURL) : String

+deleteFile(in serviceBasePath, in fileURL) : String

+runJob(in machine, in executable, in counter, in arguments, in runDir, in stdoutFile, in stderrFile) : String

+getJobStatus(in jobID : String) : String

+getJobFiles(in jobId, in machine, in stdoutFile, in stderrFile) : String

SGUtils

+main(in input : String) : String

RunManager

Fig. 4.1. CAGS structure

CAGS

SGProxyCert

SGServices

SGUtils

Run 

Manager
CAS

Fig. 4.2. Interactions CAS—CAGS

A typical scenario begins with the discovery of a service by consulting a service registry URL:

start scenario(registry_URL)

if(is_Web_service_registry(registry_URL))

service_list:=get_Web_service_list(registry_URL,toMatch,options)

else

service_list:=get_Grid_service_list(registry_URL,toMatch)

endif

service:=select_service(service_list)

operation_list:=get_operation_list(service,toMatch)

operation:=select_operation(operation_list)

[create_proxy_certificate();]

result:=call_operation(service,operation,parameters)

end scenario

Here, the registry URL parameter is a valid URL of a UDDI registry or a Globus container. The toMatch param-
eter is a selection string that must be a substring of the service name in the get Web service list/get Grid service
list combined with a substring of the operation name in the get operation list. The selection functions select
service/select operation are user-defined functions that can be used to select the desired service/operation.
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Note that this scenario assumes that the user only knows the registry URL. If the user already knows, for
instance, the service URL and the signature of the operation, the unnecessary steps can be omitted.

One of the initial SymGrid-Services targets is the GAP [9] computational algebra system. A demonstrator
library of GAP functions was built to allow a GAP user to access the CAGS functionality without needing to
know the details of the implementation. Here we ahev developed a single function in the GAP library for each
method in the CAGS interface. The general pattern used to wrap the CAGS functionality is:

directoryName := DirectoryCurrent();

fileName:=Filename(directoryName,"script.sh");

ListMethods := function(arg2\dots argN)

local jm, response;

jm:= InputOutputLocalProcess(DirectoryCurrent(),fileName,[]);

#send handler method: class, method, no. args, args, end signal

WriteLine(jm, "java_class_to_call"); WriteLine(jm, "method_name");

WriteLine(jm, "nr_of_parameters");

WriteLine(jm, arg2); \dots WriteLine(jm, argN);

WriteLine(jm, "quit");

#retrieve response from the process

repeat

response := ReadLine(jm);

if (response <> fail) Print(response); fi;

until (response = fail);

end;

Since Java cannot be invoked directly from a GAP program, the solution is to invoke instead a shell script
that starts a Java program using the InputOutputLocalProcess function of the GAP. The needed parameters
are passed to the script script.sh. The variable jm is the handle to the running process. It can be used as
an argument to the WriteLine function to pass the arguments. Arguments provided to the shell script will be
mapped to the parameters required to call the RunManager.

4.3. Usage examples. We illustrate below how the CAGS can be used from the command line by invoking
several methods in the public interface of the tool with the help of the RunManager utility.

Three categories of services have been used for the initial tests:

1. general Web services (see the paper [3]);
2. domain-specific symbolic Web services such as these provided by MONET [22] and GENSS [10];
3. simple test Grid services, that we have deployed on a single cluster and wraped publicly available CASs:

CoCoA, Fermat, GAP, Kant, Macaulay, MuPAD, PARI, Singular and Yacas. These test services were
deployed in a Globus container (available, for example at http://matrix.grid.info.uvt.ro:8082/).

A registry can be interrogated to obtain the list of services registered to that registry. For example, the
command:

java science.run.RunManager science.clients.wrappers.SGServices

getWebServiceList "http://matrix.grid.info.uvt.ro:8082/wsrf/services/"

"Service" "caseSensitiveMatch"

produces the result:

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/CoCoAService

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/FermatService

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/GAPService

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/KANTService

...

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/YACASService

This is a list of service URLs representing all services in the registry whose names include the substring
“Service”.

Once the address of a service is known, CAGS can supply the signatures of the operations exposed by the
service. Based on the list of the methods exposed, the user can then discover all details that are needed to call
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a remote operation. In the case of the service wrapping Fermat that is deployed on the SymGrid testbed, as
the result of the command:

java science.run.RunManager science.clients.wrappers.SGServices

getOperationsList "http://matrix.grid.info.uvt.ro:8082/wsrf/services/

science/FermatService" ""

the following list of operations can be obtained:

string Bin (string)

string Prime (string)

...

Remote operation invocation is one of the main reasons for using CAGS. To call the Fermat service operation
that calculates the greatest common divisor of 96 and 80, one should use the following:

java science.run.RunManager

science.clients.wrappers.SGServices callOperation

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/

FermatService GCD "96,80"

obtaining as result string:16. Note that the GCAS version of the services described in the next section accepts
only two OpenMath objects instead of the two integer values currently allowed by the service used in this
example.

To show how GAP can use CAGS to interact with external services, we have built an example in which
GAP calls an external service. The external service is a YACAS instance, that easily interacts with OpenMath
objects. The first step in the example is to list all the services from a Globus container that can be matched
using the string “YACAS”. From the list of services that are obtained, we choose the wrapping service, and
ask for the list of operations supported by that service that relate to OpenMath (OM). The final step of the
example launches a call from GAP to the YACAS service. The result of the call is displayed by GAP on the
console:

gap> SG_CreateProxy("path_proxy","","","pswd");

gap> gridServList := SG_GridServiceList(

"http://matrix.grid.info.uvt.ro:8082/wsrf/services/","YACAS");

http://matrix.grid.info.uvt.ro:8082/wsrf/services/science/

YACASService

gap> operationList := SG_OperationList(gridServiceList[1], "OM");

string YACAS_OMDef (string)

string YACAS_OMForm (string)

string YACAS_OMRead (string)

gap> SG_CallOperation(gridServiceList[1],operationList[2], "25");

string:<OMOBJ> <OMI>25</OMI> </OMOBJ>

5. GCAS interface of SymGrid-Services. This section introduces the CAS Server architecture as the
main component of the GCAS interface of the SymGrid-Services. The CAS Server was presented first in the
paper [5], and the description is extended by this paper.

The main functionality of the CAS Server is to enable virtually any CAS to have its own functions remotely
accessible. Several CASs can be exposed through the same CAS Server at the same time. Additionally to the
services that where exposed in the testing phase of the CAGS, the CAS Server allows the limitation of the
number of functions exposed for a CAS and the interrogation of the CAS Server about the functions exposed.
The following subsection is an overview of the CAS Server architecture.

Let us stress that integration of legacy software in service oriented architectures must consider three major
issues: data encoding, exposing technology, and wrapping the legacy system. These issues are treated in different
subsections that follow. Implementation issues are provided at the end of the section.

5.1. Architecture of CAS Server. GCAS aims to expose CASs functionality as services. The interac-
tion between these services can lead to computing efficiency gains when solving complex symbolic problems.
Unfortunately, the different data encoding and algorithms used within distinct CASs to solve the same problem
hinders the integration process.
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Fig. 5.1. CAS-wrapper service architecture.

We assume that it is the client’s responsibility to choose the right functions needed for a computation,
just as she would have had the CAS installed on the local machine. Alternatives like predefined workflows or
patterns for service composition are subject of later developments of the SymGrid-Services’ GCAS component.
Patterns description were described first in [11] and were recently implemented in the composer component of
the GCAS described in [6] and shortly in Section 6.

The first and most important issue to deal with in the component design is to find means to expose CAS
functions in order to make them available through service invocation. Other issues that must be taken care of
are related to user assistance tools and security.

A significant number of existing CASs is not conceived to be remotely accessible. Most of them allow
interaction with the external world through line commands. Only few of them have special facilities like socket
connections or multi-threading. In general, the redesign of these systems to allow modern communication with
outside world cannot be achieved easily. Due to these reasons, we have considered the wrapper approach for
integrating CASs.

Wrapping legacy software and exposing their functionality using service technologies involves the creation
of a three level architecture at the server side, as shown in Figure 5.1. The server has the role of receiving
the calls from the client, resolving them using underlying legacy software and returning the result(s) of the
computation to the client.

The proposed architecture intends to expose functions implemented by several CASs in a secure manner. To
achieve this goal the simple wrapper architecture is augmented with several features. Setting up the architecture
on a server machine requires that all necessary software tools and components are available on the machine,
namely the service tools and the CASs. A simple tool should allow the administrator of the machine to register
into a CAS registry the CAS functions that he wants to expose. Every function exposed by a CAS will have an
entry in the registry. Thus, a method that does not appear in this registry is considered inaccessible to remote
invocations (for example the system function available in different CASs).

The remote clients of the system may interrogate the system in order to find out the available functions
and their signatures. The signatures of the functions should not differ in any way from the original signature
of the function as provided by a CAS. The remote invocation of a function should be reduced to the invocation
of a remote

execute(CAS ID,call object)

where the CAS ID is the CAS unique identifier and the call object represents an OpenMath object, as described
in the following subsection.

Additionally, several other related operations should be available: find the list of the CASs that are installed
on the CAS Server machine or find the list of the available functions that were exposed.

5.2. Parameter encoding level. One important aspect of interactions between the client and the legacy
system is the model of data exchange. The data model used by the client must be mapped to the internal data
model of the legacy software. Currently, the available CASs use a variety of encoding standards, from plain text
to XML structured documents. Due to the benefits involved in representation and manipulation of the data in
a structured manner, the XML standard was adopted as the natural choice for machine to machine interaction.
Representation of mathematical objects was achieved by MathML and OpenMath standards. However, while
the former is well suited for representing mathematical objects in Web browsers, the latter is more appropriate
for describing mathematical objects with semantic context.
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Efforts to enable parsing of OpenMath objects are under way for several CASs. A standard encoding for
CAS invocations is described in [17].

Since most currently existing CASs do not support OpenMath, for the immediate implementation purposes,
we considered an intermediate approach: a function procedure(Arg1,Arg2) is translated into a corresponding
OpenMath object as the one shown in the following:

<OMOBJ>

<OMA>

<OMS cd="casall1" name="procedure_call"/>

<OMSTR>procedure</OMSTR>

<OMOBJ>Arg1</OMOBJ>

<OMOBJ>Arg2</OMOBJ>

</OMA>

<OMOBJ>

The parser will use the information encapsulated in the OpenMath object to create the appropriate CAS
command.

The internal OMOBJ objects must be OpenMath encoding of the corresponding mathematical objects,
either atoms or compound. For the case of a CAS that does not parse OpenMath objects it is possible to
encapsulate the generic representation of Arg1, Arg2 using OMSTR atoms; the CAS is then responsible to
convert the encapsulated string to the CAS object.

5.3. Exposing technology. In what follows we argue that exposing the full functionality of the CASs
is difficult due to the high number of functions that CASs implement. Another issue is security since certain
functions exposed could represent a security gap.

The first approach to expose functions of a CAS that one might consider is a one-to-one approach. This
means that for every function of a CAS a corresponding operation of a service should be implemented. The
experience gained by constructing the CAGS tool (see [3] for more details) leads us to the conclusion that
this approach is not feasible for a large number of operations. A service with many operations exposed makes
impossible dynamic creation and invocation of the service. Additionally, the WSDL 2.0 standard explicitly
forbids that operations with the same name exist within the same service definition, while in a CAS functions
from different libraries can have the same name.

The second approach (considered also in the GENSS platform) is to implement a generic operation: exe-
cute(function name, parameters). In this call the function name represents the name of the CAS function and
the parameters represent encoding for the parameters of the function. In this case, a Java method with the
name function name can be dynamically invoked using the reflection mechanisms. Afterwards, this method has
to invoke the function exposed by the CAS. Hoever, also this solution, has some drawbacks. Deploying such
services into a service container is not efficient and obtaining the list of the exposed functions and assuring
access to them on a per user basis is not trivial.

The solution that we have considered for the GCAS uses the second approach as a starting point. We
have created a registry mechanism that allows the administrator of the server to register CAS functions into a
database. The general execution schema associated with this approach is composed from several steps:

1. The client invokes an execute(CAS ID,call object) operation on the service.
2. The server verifies that the CAS identified by CAS ID is available on the server and that the function

encoded in the call object is available.
3. The server returns a unique job identifier that identifies the job and starts the execution.
4. At a later moment the client will use the job identifier to retrieve information about the status of the

job and the results of the computation.
As mentioned above, the interaction between the client and the server is carried out in an asynchronous

manner. Additional functionality is available using this approach, such as: the list of the CASs exposed, the
list of functions of a certain CAS that are exposed, the signature of functions, and so on.

5.4. Wrapper interaction with the legacy system. CASs were meant to run on a single machine, or
sometimes on clusters, in order to solve very specific computational tasks. Usually the interaction with these
systems involves a command line interface. According to [32] software can be encapsulated at several levels: job
level, transaction level, program level, module level and procedure level. The way that the wrapper interacts
with the legacy software component depends on the native technology of the legacy component. The wrapper
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may use TCP/IP sockets, redirecting of the I/O streams for a process, input and output files or it may have to
use JNI encapsulation.

The communication model we had to use depends on the CAS that we want to communicate with. As
a regular basis, we communicate with the CASs by redirecting I/O streams in a program level encapsulation
style. For the GAP and the KANT we have used the RunManager component shortly described in the previous
section and detailed in [3]. The interaction with Maple was implemented using the Java API that it provides.

The WS-GRAM service offered by Globus Toolkit enables to run command line batch jobs. As an alternative
to the RunManager component we implemented the interaction to the CAS by making appropriate calls to the
WS-GRAM service. An efficiency comparison of the two approaches is presented in [5] proving that RunManager
approach is much faster.

5.5. Implementation details. The CAS server that we implemented exposes two main categories of
service operations. The first category includes operations that offer information about the CASs exposed on
that server and the functions that the client is able to call. The second category refers to the generic operation
that allows remote invocation of CAS functions.

The first operation category includes:
getCASList(),
getFunctionList(CAS ID),
getNrFunction(CAS ID),
getFunctionsByIndex(CAS ID, startIndex, endIndex),
getFunctionsMatch(CAS ID, stringToMatch).

These functions offer functionality for the client to discover the CASs installed on the server machine, and, for
the exposed CASs, the functions being exposed. The parameter CAS ID uniquely identifies a CAS system. The
identifier of CASs can be obtained by calling the getCASList() function. Since the number of functions exposed
on the CAS Server can be large, we created convenient operations to filter the list of function signatures when
issuing a getFunctionList(CAS ID) call. For example, we can display functions with a certain name or we can
display a limited number of functions that match a certain criteria.

The actual execution of a command can be achieved by calling a generic operation execute(). The operation
String execute(CAS ID, call object) returns a unique identifier for the submitted job. This identifier will be
used to retrieve information about the status and the result of the job.

The registry of the exposed functions can be populated by the system administrator using a registry editing
tool that we implemented. CAS related information stored into registry includes, but is not restricted to,
the identifier of the CAS, the path where the CAS is installed and a brief description of the CAS. Function
related information includes the function name, the signature and a brief description. If the CAS allows socket
connections, it can reside on another machine and the specific path can include the shell command that allows
the connection to that machine that runs the CAS.

GCAS’s main component, CAS Server, is implemented using Java 5 SDK with supporting tools and software
from Globus Toolkit 4, Apache Axis, Apache Tomcat 5 and RIACA’s OpenMath Java API. The generic services
implemented in the CAS Server architecture invoke CAS functions that are applied to OpenMath objects.

5.6. Grid services benefits. Several benefits already stated bellow and several others mentioned in [27]
motivate the migration to the WSRF standards and exposing CAS functionality using Grid service technology.

SymGrid-Services complies with the WSRF standard for Grid services. While Grid services have different
goals from pure web services (sharing computing power and resources like disk storage databases and software
applications, versus sharing information), a Grid service is basically a Web service with some additions: stateful
services, service instantiation, named service instances, two-level naming scheme, a base set of service capabili-
ties, and lifetime management. These supplementary capabilities allow improved user interaction with remote
symbolic computing services: previous computations performed by a service can be stored as service state,
personalized services are possible due to the instantiation facilities, services can be easily modified due to the
naming schemes, standard search facilities can be implemented due to the standard service data elements, and
resource management can be easily done due to the transient character of the services. Complying the WSRF
standard imposes not only that the interface is offered to the user, but that it preserves the original specified
behavior.

With non standard Web or Grid services, the architect of the service is the one that designs the access
interface to data. With the WSRF services, most of those access interfaces are already presumed and the
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Fig. 5.2. Data model for creating CAS services.

developer must only provide the functionality behind the scenes. Migrating from non standard approach to a
standard WSRF solution is not covered so far, to the best of our knowledge, by any methodology.

Grid services are the solution for sharing resources in a uniform way. Interfaces are described using WSDL
language and XSD technologies and the resources are described using XSD data types. The structure of a Grid
Resource is described, in XML terms, as a root document element that maps to the resource and several top level
complex elements representing the Resource Properties (RP). Implementations of the WSRF standards, e.g.
by Globus Toolkit 4, map XML documents that describe resources to in-memory representations as JavaBeans
classes. The access to attributes stored in resources, as specified by the WSRF, is achieved mainly using
standardized Web service operations. The Grid resource mechanism is not intended to state how data is stored
at server level; the most common mechanism to store data remains backend databases.

Databases normalization usually has as a basis the conceptual Entity-Relation (ER) diagram. A methodol-
ogy that transforms the ER into a blueprint of a Grid service that supports the access operations to data is an
important step in the widely adoption of Grid services. Several papers [1, 16] cover the process of transforming
ER diagrams to XML normalized documents. While the algorithms presented in these papers seem to offer a
satisfactory solution for converting ER to XML documents, these solutions cannot be used as they are because
they use attributed elements and reference attributes that are not allowed by the WSRF standard and they
cannot be used in the context of Grid Services to create JavaBeans.

Several changes may be applied on existing implementation of non WSRF Web services to create corre-
sponding Grid services. However, this approach would not represent the WSRF implementation in the semantic
sense because standard intended operations functionality is replaced by non standard ones. To leverage the full
power of Grid Services a simple translation would not be enough. Thus, having a set of guidelines in the Grid
Service process would improve the quality of the design. The experience gained in designing and implementing
Grid symbolic services led to identifying several design rules that were highlighted in [18].

Starting with the ER that was the conceptual basis for the Web service model we have presented in [5], we
expose in Figure 5.2 the process that led to the current Grid services model. The structure of the Grid services
we created uses the basic principles for designing Grid Resources defined in [18] and a variation of the algorithm
presented in [16].

For the simplicity reasons we assume that the user only wants to gather information about the CASs exposed
by the system and the functions he/she is allowed to use, to submit a request for a service, and to get the result
of a computation. Several attributes of several entities must be available for the user. Moreover, entities such
as the CAS and the Methods hold information that changes more often and the user should not have the right
to modify them. For this reason, the Factory service that we have implemented exposes these attributes as RPs
of a single Resource, not as multiple Resources, as the ER states. The Factory service is responsible for creating
an additional Resource that holds the details regarding the result of the computation.

As a result of this analysis we came to the conclusion that the GCAS interface must be composed by two
Grid services, i. e. a Factory stateful service and a Resource. The Factory stateful service has two RPs, the CAS
and the Method that hold the (casID, name), and the (methodID, casID, name, signature, package) respectively.
The Resource has as the RP the result of the computation.

The CAS Servers are implemented as Grid services deployed in GT4 containers. A CAS Server provides
access to CASs (e.g. GAP, Kant) installed on the same machine. The Resource associated with the service
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keeps track of the exposed CASs and functions. The Grid service’s Resource is stored persistently in a backbone
database rising problems of mapping these resources to database tables. For each received computation request
the server creates a new WS-Resources to handle the request. The results of the computations can also be
retrieved using operations specified by the WSRF standard. This is rather important advantage of using Grid
services for implementing CAS servers as they offer a standard interface for accessing information about the
exposed CASs.

6. Composing the SymGrid’s services. A service oriented architecture relays on loosely coupled soft-
ware components exposed as services. The service composition is usually done based on workflows descriptions
and engines.

The static composition in workflows is achieved at the design time by specifying all the details of the
composition elements, i. e. services and binding details for these services. A special type of static composition,
namely the workflows with dynamic bindings, offers the ability to specify the actual addresses of the services
at runtime.

The SymGrid’ set of publicly available Web and Grid services intends to be highly dynamic: some of the
services are occasionally available, others are vanishing, new and potentially better services become available,
while for some of them the interface changes. In this situation the static composition approach fails to offer a
robust solution. The alternative is to use dynamic workflows, generated at the runtime using latest information
available on the services to be composed. In this case special mechanisms and techniques to identify and invoke
the right Web services are required.

An in-between approach, namely semi-dynamic composition, that can be used when several characteristics of
the services involved in the composition are known, was considered for SymGrid-Services and reported in [4]. The
system does not have to have any a’priori knowledge about addresses of Web services needed by the composition
workflow thus the binding is dynamic. Known is the structure of the operations exposed by the services.

In what follows we outline the proposed solutions. Details can be found in the following recent papers
[4, 6, 18].

6.1. GCAS’ composer architecture. The composer obtains the execution of mathematical based work-
flows with the aid of several software components. At the server side level, the main components needed to
carry out the workflow execution and to manage related issues include a client manager component, an engine
needed to execute the workflow, and several CAS servers that expose CAS functionality as services (Figure 6.1).

A typical scenario implies that the users specify within a CAS the interdependent tasks that compose the
workflow. To execute it, the workflow is submitted to a service located at a previously known URL address.
An assumption is that the user is indicating the CAS system for every task.

Several steps are needed to transform the workflow described within the CAS to a format that complies
with a standard orchestration language. The workflow that results at the client side is not complete because
the client is not, and should not be aware of the URL addresses of the services that will compute the subtasks.
As a result, the client component sends an incomplete workflow to the client manager component.

One of the most important responsibilities of the client manager component is to obtain addresses of the
CAS servers that will execute the task by consulting the main registry and to supply this information to the
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execution engine. For every CAS server there is a corresponding local registry that contains information about
the CAS systems exposed and the functionalities supported by them. The main registry duplicates information
contained into local registries that are spread on different sites of the distributed infrastructure and it is used
to find appropriate CAS servers to solve the atomic tasks of the workflow.

Another responsibility of the client manager component is to send back to the client a workflow identifier
that will be used later by the client to retrieve the result of the whole computation.

The management of the workflow execution must be carried out by a workflow engine located at the server
side. The client management component is the one that invokes the operations provided by server machines
that expose CAS functionality as Web services. It must be emphasized that all client-server interactions as
well as servers to server component interactions are encoded in XML format. The description of mathematical
expressions uses the standard OpenMath.

Details about the composer implementation are provided in [4].

6.2. Using standard workflow patterns. The suitability of the BPEL workflow description language
for the dynamic composition of SymGrid services was investigated recently and results are reported in [6].
General workflow patterns are helping the CAS user to describe the relationships and sequence of service calls;
the resulted description is deployed and executed by SymGrid-Services components implemented using Java 5
SDK relaying on the ActiveBPEL workflow engine and the PostgreSQL database servers.

Application specialists need not be aware of all the details required for the complete specification of the whole
workflow using a specialized language. Instead, they only need to be able to combine several workflow patterns
in order to describe a high level solution to their problem. The user-specified workflow can be automatically
translated into a specialized workflow language, deployed and executed by a workflow management server. The
blueprint of the client component that we have implemented can be used to enable this functionality within
every CAS with a minimal effort. GAP system is used, again as representative CAS in the demonstration, to
combine workflow patterns and execute workflows that use the functionality of several other CASs installed on
remote machines.

The description of the problem specified at the client level is submitted to a server that will manage the rest
of the process. At the client side, the workflow specified within the CAS is encoded using the XML language
similar to BPEL that was described in [18]. The main reason for using an XML intermediate language instead
of a complete BPEL description is the significantly larger size of the completely specified BPEL workflow. The
drawback of this approach is the additional server load needed to convert the XML format to the BPEL format.
The client manager component is responsible not only for receiving new workflows and for providing clients
access to the result of their computation, but also for translating the XML workflow representation received
from the client to the corresponding BPEL workflow format, to deploy the workflow into the ActiveBPEL engine
and to launch the execution of the process.

6.3. A simple example. SymGrid-Services’ client is currently able to specify workflows by composing
standard workflow patterns. A very simple example is provided in [4, 6] to demonstrate the system functionality:
compute the value of the Gcd(Bernoulli(1000), Bernoulli(1200)) using remote machines and two different CASs,
GAP and KANT. The Gcd() is computed using the KANT system by combining the Bernoulli values obtained
from two separate instances of GAP. The system allows the execution of workflows that are not bound to a
two level invocation scheme. The corresponding GAP code that would allow obtaining the same result as the
previous system is:

startWorkflow();

startSequence();

startParallel();

v1:=invoke("KANT",Bernoulli(1000));

v2:=invoke("KANT",Bernoulli(2000));

endParallel();

invoke("GAP",gcd(v1,v2));

endSequence();

endWorkflow();

readOutput(processHandler);

The above code is translated at the client level into the simplified BPEL like format and it is submitted to
a server. The simplified BPEL format is the following:
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<workflow xmlns = "http://ieat.ro" >

<sequence>

<parallel>

<invoke invokeID = "invoke_0">

<casid>KANT</casid>

<call>Bernoulli(1000)</call>

</invoke>

<invoke invokeID = "invoke_1">

<casid>KANT</casid>

<call>Bernoulli(2000)</call>

</invoke>

</parallel>

<invoke invokeID = "invoke_2">

<casid>GAP</casid>

<call>gcd($invoke_0,$invoke_1)</call>

</invoke>

</sequence>

</workflow>

The server will translate this code into a regular BPEL workflow format (over 300 lines for the above
described example) and will manage the execution.

At a later time, the user may access the computed result based on the identifier that it is received when
submitting the workflow. More complex examples are provided in [6, 18]. The GAP library is presented in [18].

7. Conclusions. A service-oriented framework, SymGrid-Services, was introduced to manage mathemat-
ical services. One of its main components consists of several CAS servers representing symbolic computing
services. The services are wrapping legacy codes. The novelty of the wrapping approach, compared with similar
ones that were identified, is the fact that is based on current standards for Web and Grid services and the
only non-standard technique is given by the usage of a software and function register that is proved to be more
efficient than using the standard approach of a special service call. The novelty of the service access component
consists in the fact that it allows the seamless access from inside of computer algebra systems to both Web
and Grid services. Moreover, the symbolic computing services can be combined into complex application using
standard workflow patterns. SymGrid-Services will be further developed in the near future to include specific
dynamic resource brokers and schedulers. Performance tests are only at an infancy stage and a number of large
new demonstrator applications need to be provided soon.
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