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EFFICIENT IMPLEMENTATION OF WIMAX PHYSICAL LAYER ON MULTI-CORE

ARCHITECTURES WITH DYNAMICALLY RECONFIGURABLE PROCESSORS

WEI HAN, YING YI, MARK MUIR, IOANNIS NOUSIAS, TUGHRUL ARSLAN, AHMET T. ERDOGAN

Abstract. Wireless internet access technologies have significant market potential, especially the WiMAX protocol which can
offer data rate of tens of Mbps. A significant demand for embedded high performance WiMAX solutions is forcing designers to seek
single-chip multiprocessor or multi-core systems that offer competitive advantages in terms of all performance metrics, such as speed,
power and area. Through the provision of a degree of flexibility similar to that of a DSP and performance and power consumption
advantages approaching that of an ASIC, emerging dynamically reconfigurable processors are proving to be strong candidates for
future high performance multi-core processor systems. This paper presents several new single-chip multi-core architectures, based
on newly emerging dynamically reconfigurable processor cores, for the WiMAX physical layer. A simulation platform is proposed
in order to explore and implement various multi-core solutions combining different memory architectures and task partitioning
schemes. The paper describes the architectures, the simulation environment, several task partitioning methods and demonstrates
that up to 4.9x speedup can be achieved by employing five dynamically reconfigurable processor cores each having individual local
memory units.
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1. Introduction. Since the advent of the internet, people have come to depend on it more and more.
There is an increasing desire to access it at any time from anywhere. Obviously, cable based internet cannot
satisfy this demand. The wireless internet protocol was born in 1997 when IEEE 802.11 [1] was released.
In the last decade, more standards have emerged with higher and higher data rates as well as longer and
longer ranges. The IEEE 802.16 standard is a wireless broadband access standard which helps make the
vision of pervasive connectivity a reality [2]. WiMAX (Worldwide Interoperability for Microwave Access) is
its commercial name. WiMAX technology can provide up to tens of Mbps symmetric bandwidth over many
kilometers. This gives WiMAX a significant advantage over other alternatives like Wi-Fi and DSL. The physical
layer of WiMAX includes both downlink (channel coding and IFFT) and uplink (FFT, modulation and decoding)
data processing, as shown in Fig. 1.1. WiMAX applications demand high performance, strict low power, and
in-field reprogrammability to follow the evolving standard. Recently, some solutions have been proposed for
industry targeting WiMAX that are based on multi-core processor systems, such as [3, 4]. Ever since the first
effort to design a parallel machine (called SOLOMON) failed in 1958 [5], the parallel computing paradigm
has been improved dramatically. Within the past half century, many advanced technologies have been created
and became popular, such as single instruction multiple data (SIMD), symmetric multiprocessing (SMP) and
multithreading. The rapid development and demand for parallel architectures are driven by application trends,
semiconductor technology trends, and microprocessor and system design trends [6]. Again compelled by those
trends, parallel architectures are applied to smaller and smaller computer systems, from the original mainframes,
to servers, and to PCs, and now even to embedded systems. Twenty years ago, an 8-bit microcontroller could
satisfy most of the requirements of embedded systems. But now, even an advanced 32-bit reduced instruction
set computer (RISC) processor may not be able to realize a complicated embedded application. Moreover,
as more and more complex applications are mapped onto embedded systems, and the concern about power
consumption and heat dissipation increases, there is a need to distribute the processing load of large embedded
programs over multiple processors. A multi-core processor gains the advantage over multi-chip SMP in terms
of all performance metrics, due to the shorter distances the signals between processors have to travel. Here
a multi-core processor (or multi-core) is defined as a single chip combining two or more independent general
purpose processor or DSP cores.

Today’s common general-purpose processors or DSPs cannot satisfy all the features required by current and
future embedded systems, including higher performance, higher power efficiency and higher flexibility. Filling
the gap between the high flexibility of DSPs and the high performance of ASICs, dynamically reconfigurable
(DR) processors offer an alternative solution for embedded systems. This paper extends our work in [27] and
presents several new single-chip multi-core architectures, based on newly emerging dynamically reconfigurable
processor cores, for the WiMAX physical layer. To address this, we have proposed a flexible simulation platform
that enables the analysis and investigation of multi-processor systems based on coarse-grained DR processors—
an area that as yet has been little explored. The WiMAX 802.16-2004 physical layer was ported on this
platform.
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The rest of this paper is organized as follows: section 2 reviews related research work on both WiMAX
implementations and multi-core processor solutions for embedded systems. Section 3 provides a brief overview of
the target dynamically reconfigurable processor and introduces the underlying multi-core processor architecture
within the platform. Section 4 presents a SystemC TLM based simulator which models this multi-core processor
architecture. Section 5 describes how to map multiple tasks onto the multi-core processor architecture and
several different task partitioning scenarios for efficiently implementing WiMAX physical layer on the multi-
core processor simulator, the results of which are shown in section 6. Finally, conclusions are given in section 7.

2. Related Work.

2.1. WiMAX Implementations. Many market-leading companies today provide products based on
silicon implementations of WiMAX standards. Such products include ASIC, DSP or network processor tech-
nologies. For example, Wavesat DM256 [11] is an ASIC solution, and the Intel NetStructure WiMAX Baseband
Card is based on the Intel IXP2350 network processor [12], while both Freescale MSC8126 DSP [3] and Picochip
PC203 [4] use the multi-core DSP approach. In [13], a multitasked version of the WiMAX physical layer has
been mapped onto a single DR architecture with a real-time operating system (RTOS) - µC/OS - II.

2.2. Chip-level Multiprocessor in the Embedded Field. System architects today acknowledge that
higher clock rates, deeper pipelining, and increasing instruction-level parallelism (ILP) cannot be relied on
any more in order to increase performance. This is due to overheads introduced by such techniques. For this
reason, industry has started looking at multi-core processor solutions. Besides multi-core DSPs mentioned
above, other multi-core processor products include Cell Broadband Engine Architecture [18], ARM11 MPCore
[20], intellaSys SEAforth-24A [21], and Ambric Am2000 family [19]. Few multi-core processor projects are based
on coarse-grained DR processors: One such example being the work on developing a multi-core processor based
on the Montium Tile Processor (TP) from RECORE [14]. However, to the best of our knowledge, currently
Montium TP does not support development from high-level languages, and its homogeneous processing part
array (PPA) is not efficient in terms of hardware resource occupancy. While our chosen DR processor can provide
high performance at low power and area, addressing all the desired requirements for future portable devices.
The cell array configuration can be tailored towards different application domains. A series of power saving
techniques have been adopted, which include using registers for interim storage, avoiding large multiplexers and
multiple-load busses, increasing the program kernel, and using heterogeneous instruction cells.

3. Multiple Reconfigurable Processor Architecture.

3.1. The target Dynamically Reconfigurable Processor. Recently, several new coarse-grained DR
architectures have emerged, such as HiveFlex [7], RaPiD [8], and the reconfigurable instruction cell array [9].
In this paper, the target DR processor used within the proposed multi-core processor platform is the DR archi-
tecture introduced in [9].This architecture consists of a heterogeneous array of instruction cells interconnected
through an island-style mesh fabric, and supports development from high level languages such as C in a manner
very similar to conventional microprocessors and DSPs. One of the key features of the chosen architecture is
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that it is largely indistinguishable from a conventional processor, except for the memory access patterns (for
both data and program memory) which can be quite different. This is one of the key issues addressed in this
research. It supports operation chaining—the ability to execute both dependent and independent instructions
in parallel, which leads to high degree of parallelism. This demands higher data memory bandwidth in order
to keep the array fed with data, a demand which has been met by providing a multi-bank memory system
that is quite different to that seen in conventional processor based multi-core processor systems. Furthermore,
the instruction stream fetch patterns are unusual in that successive iterations of certain loops can be executed
following only a single fetch. The instruction words are also quite large compared to those in existing DSPs.
ANSI-C programs can be compiled into a sequence of configuration contexts, the contents of which are executed
concurrently by the DR processor according to the availability of hardware resources. Formed by a sophisticated
scheduling algorithm [10], each context packs together as many chains of operations as possible, and takes a
variable number of clock cycles to execute, in order for all chains to complete. Another salient characteristic of
the DR processor is that it is tailorable and extensible, and can be customised at design stage according to the
application requirements. A number of algorithms have been tested to demonstrate that the target processor
can achieve up to 6 times less energy consumption than a DSP such as a TI very long instruction word (VLIW)
and 8 times higher throughput than RISC CPUs such as OR32 [9].

3.2. Master-Slave Shared Memory Architecture. In this paper, we propose a master-slave based
shared memory architecture for DR processors (shown in Fig. 3.1), targeting WiMAX applications. The shared
memory architecture is popular for multiprocessors based on a small number of cores. One of the key aspects
of this architecture is that it provides support for DR processors that may issue multiple concurrent memory
access requests per cycle. This architecture consists of one master processor core and multiple slave processor
cores. The main difference between the master and slaves is that the master core takes charge of the task
management. When the system starts up, the master dispatches tasks to slaves by sending the task information
through a router. When a slave finishes its current job, it sends an interrupt to the master, requesting a new
job. Then the master runs a corresponding interrupt handler to dispatch a new job to that slave. The target
DR processor is used for both master and slave cores, since it is suitable for executing both data path and
control path programs, as presented in [13], where both a RTOS and WiMAX protocol run concurrently on a
single DR architecture. To address the parallel memory access requirement of DR processors, this multi-core
processor architecture is based on a Harvard architecture where each core owns a program memory and all
processor cores share a multi-bank based data memory. Besides the shared data memory, each DR processor
core can have its own local private multi-bank data memory which cannot be addressed by other processors.
By having much smaller access latency than the shared memory, due to the adjacency to the processor and
smaller depth, the private memory alleviates the conflict in accessing the shared memory, and improves the
data locality, and therefore improves the throughput. Each data memory bank has an arbiter which arbitrates
the memory accesses to the bank from different processor cores or different memory ports of the same DR
processor core, which may contain multiple memory access ports. All shared data memory banks are connected
to all processor cores through switch bars. According to the number of banks and the referenced address, each
memory access request to the shared data memory from a memory port of a processor core is routed through
switches to the proper arbiters. Each processor core has one local interrupt controller. An interrupt channel
array is provided for communication transactions between interrupt resources and interrupt controllers.

3.3. Proposed Architectural Extensions. Besides shared and private memory blocks shown in Fig. 3.1,
this multiprocessor architecture has been extended and modified by incorporating the shared register file into the
system memory architecture in order to speed up data exchange and communication between processors. Multi-
port register files are commonly used for VLIW processors which need to access several registers simultaneously.
It is well known that the number of ports and the size of the register file affect its energy consumption, access
time and area. Most of the previous work on the register file has been related to techniques of reducing
access time and power consumption. Some of the authors [22] have studied the hardware complexity of shared
register files and proposed distributed schemes as opposed to a central implementation. Similarly, [23, 26] used
techniques to split the global micro-architecture into distributed clusters with subsets of the register file and
functional units. Multilevel register file organizations [24] have also been introduced to reduce the register files
size. All the above mentioned works focus on reducing the number of registers. Conversely, other techniques
split the register file into interleaved banks which reduces the total number of ports in each bank, but retain
the idea of a centralized architecture [25]. Different from other techniques, we proposed to split the register
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Fig. 3.1. Master-slave shared data memory architecture

file into independent banks with a reduced number of ports per bank for reducing the number of register file
ports.
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The proposed approach employs a multi-bank dual-port register file where each bank consists of a 32x32-bit
1-write-port and 1-read-port data register file. Some custom register file interface cells, which provide access
to these banks, are introduced into the target DR processor to support distributed shared register files. The
register file interface cells have 32-bit for data write, 32-bit for data read, 5-bit for write address, 5-bit for read
address, and 2-bit for configuration which indicates the access model as read-only, write-only or read before
write. The number of register file banks can be parameterised at synthesis stage. Fig. 3.2 illustrates a design
of a shared 4-banks register file where each bank has an individual arbiter. All instruction cells in the DR
processor can be connected to all register interface cells, and each interface cell is only able to connect to one
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fixed register file bank. For example, register file interface cell RI0 is only connected to bank0 and register file
interface cell RI1 can only access bank1. This scheme keeps all possible connections between the instruction
cell and the shared register bank with a reduced MPSoC interconnection complexity.

The existing DR processor tool-flow provides full support for the inclusion of both combinatorial and
synchronous custom instruction cells through the simulator libraries. The function descriptions of the custom
cells such as the interface cells are modeled in C++ via template classes provided by the simulator. A fully
automated system generator compiles the standard simulator libraries with the custom cell objects and generates
all the required support files and the custom simulator, replacing the standard simulator used in the DR processor
tool flow. The shared register file has been synthesised with Cadence Ambit BuildGates using the UMC 0.18um
standard CMOS cell library which the DR processor is based on. The power consumption of the synthesized
register file has been obtained using Synopsys PrimePower. The generated timing, area and power information
is used in the DR processor tool flow for scheduling and simulation purposes.

3.4. Atomic Operation Support. In order to avoid race conditions caused by simultaneous accesses to a
shared resource from different processes, in this work the process synchronization was implemented with the use
of spinlocks. A spinlock is a lock where a task repeatedly checks the lock (synchronization variable)—a method
called busy-waiting. A spinlock allows only one task to access the shared resource protected by the lock at any
given time. Implementing a spinlock requires the support of atomic read-modify-write operations where the
content of a memory location is guaranteed to be read, modified and written back without intervening operations
from other processor cores. In this work, a pair of special instructions—load-linked and store-conditional (i. e.
LL/SC) [6] are used to implement atomic operations and therefore the spinlock. The idea behind the LL/SC
is that LL loads the synchronization variable into a register, and is immediately followed by an instruction
that manipulates the variable. For the spinlock, this instruction adds 1, then SC tries to write the variable
back to the memory location if and only if the location has not been written by other processor cores after
LL was completed by this processor core [6]. A pseudo-assembly code for the spinlock and unlock algorithms
implemented by LL/SC is shown below [6]:

Lock: LL reg1, location // LL the variable
BNZ reg1, lock // if locked, try again
SC location, reg2 //SC the variable
BEQZ lock //failed, try LL again

Unlock: WRITE location, 0 //write 0 to location

In the proposed multiprocessor architecture, for implementing LL/SC, each data memory arbiter contains
a hardware lock flag and a lock address register for each processor. When an LL instruction from one processor
reads a synchronization variable, the corresponding lock flag is set and the variable address is stored into the
corresponding lock address register. Whenever the referenced address of a write request (either normal write
or SC) is matched against the value of the lock address register, the lock flag is reset. A SC instruction enables
a check of the lock flag. If it has been reset, meaning that an intervening conflicting write occurred before, SC
fails, otherwise, it succeeds.

Obviously, the busy-waiting based spinlock causes more memory access conflicts and more power consump-
tion since the waiting core keeps checking the synchronization variable. In this paper, we have presented an
optimized method, called Lock&Signal, which can reduce the memory access competition and therefore the
power consumption. The idea is that if the lock required by a processor core is unavailable, the task will go
to sleep and the processor core will do nothing but wait. When the lock is released by another process, the
releasing process will send a signal to the waiting process, informing it that the lock is now available, through
an inter-processor interrupt. Then the waiting process can resume its operation. Therefore, memory access
conflicts due to the busy-waiting based spinlock, which may take up a reasonable ratio of the execution time,
are eliminated.

4. Multiprocessor Simulator. In this paper, we use SystemC transaction-level-modeling (TLM) [15,
16] to model the proposed multi-core processor architecture. There are a number of existing multiprocessor
simulation tools proposed by both the industry and academia [28, 29, 30, 31, 32, 33]. In [28], a multiprocessor
enhancement is proposed for SimpleScalar which is a popular simulation tool in the research community and
models a MIPS-like architecture. The authors of [29] presented a simulator called Rsim for shared-memory
multiprocessors with ILP processors. Both GEMS [30] and RASE [31] simulators interact with Simics, a full
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system simulator, by feeding timing information to it. Obviously, the simulation speed is dramatically decreased
since Simics is involved during the multiprocessor simulation. While SESC simulator [32] uses the instruction
streams generated by MINT, an emulator for MIPS architecture, to model chip-level multiprocessors with out-
of-order processors. In [33], a simulation environment called MPARM is proposed based on SystemC register
transfer level (RTL) and SWARM (software ARM) simulator. However, partially describing the system at lower
SystemC abstraction level, MPARM is inevitably slower than a TLM based simulation tool. Moreover, most of
these simulation tools are designed for multiprocessors with conventional processor architectures like ARM and
MIPS. To the best of our knowledge, there has been little research done for developing TLM based simulation
tools for MPSoCs targeting coarse-grained DR processors (e.g., [9]).

TLM is a higher abstraction level than RTL, and is a transaction-based modeling approach which enables
concurrent hardware/software co-design for early software development, architecture analysis and functional
verification. In TLM, system components are modeled as modules containing a number of concurrent SystemC
threads which represent their behavior. The communication among modules is achieved using transactions
through abstract channels which implement TLM interfaces. As the kernel of TLM, TLM interfaces can be
accessed by SystemC threads through module ports [16]. Fig. 3.1 illustrates how the architecture is imple-
mented using TLM. The master processor core, slave processor cores and arbiters are modeled as initiators
which contain SystemC threads initiating transactions to the target components such as memory banks and
the router. Meanwhile, an initiator could be a target as well, like the processor cores which also can receive
interrupt transactions from the interrupt controllers. Based on run-time communication between the memory
system and the DR processors, our multi-core processor simulator maintains the timing accuracy with a rapid
architecture analysis. The generated TLM executable, which is called multiple reconfigurable processor sim-
ulator (MRPSIM), is parameterizable in terms of the number of slave processor cores, the number of shared
memory banks, inter-process communication methods, single core or multi-core model and so on. For example,
by setting an option, each DR processor core can have its own local private memory which stores the local data
for the associated tasks on the processor core, while the shared data memory is only used for global data and
synchronization variables.

MPSIM is a trace-driven simulator. The advantage of the trace-driven simulation over execution-driven
simulation is that once the trace has been collected, it can be reused as a constant input to the simulator
when the MPSoC architecture varies. However, a difference from other trace-driven simulators - which sacrifice
accuracy for performance - MRPSIM can maintain the timing accuracy with a rapid architecture analysis. The
idea is that the functionality of the programs and the calculation of static timing are decoupled from dynamic
timing simulation. In our simulation approach, the entire simulation timing is separated into static timing
and dynamic timing. Static timing represents the time consumed by the combinatorial critical path in each
configuration context. It is not affected by the run-time execution. Dynamic timing refers to the time taken by
communication instructions (e.g., load and store memory), which can only be determined during at run-time
in the multiprocessor simulation, due to competition such as from multiple processors, or multiple memory
accesses from one of the processors.

To implement this approach, each program to be executed on MRPSIM should first be executed on a
single DR processor simulation model. MRPSIM uses static timing and instruction information from the
execution traces provided by the single DR processor simulator to determine the length of time each processor
core is occupied between memory accesses. Then, the dynamic delays imposed by memory access, process
synchronization and interrupts are obtained from the run-time behaviour of the TLM model. Through this
method, MRPSIM can correctly and efficiently simulate the run-time multi-core processor environment, allowing
the throughput of the modeled system to be measured. This approach is well suited to programs with simple
control flow, such as the WiMAX physical layer.

5. Mapping Methodology and Task Partition.

5.1. Mapping Methodology. For running multiple tasks onto the MRPSIM simulator, the mapping
methodology shown in Fig. 5.1 was developed. First, the target application is partitioned into multiple tasks.
Inter-task synchronization is done using the optimized Lock&Signal method, explained in Section 3. Together
with global data and synchronization variables such as locks, each task is compiled and simulated separately
with one DR processor. The resource mix for each processor in the system is allowed to differ, so that it
may be tailored to the particular tasks that it is intended to execute. The single DR processor simulator
generates an execution trace file for each task, which records the detailed program execution and the static
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timing information for configuration contexts. After that, parsers within MRPSIM convert those machine-
specific execution trace files into a machine-independent intermediate representation that captures the timing
model and flattened program control flow structure. Through this method, the multi-core processor model can
support both homogeneous and heterogeneous DR processor based multi-core architectures, or even conventional
DSPs. Other inputs of MRPSIM include the RAM files describing the layout of data symbols in the various
data memories, and an architecture description file which contains information for both the multi-core processor
architecture and the single DR processor. After performing simulations with MRPSIM, generated results are
used as feedback to change the design strategy such as the task partitioning and architecture parameters in
order to achieve better performance.

5.2. Task Partition Methods. Important issues in multi-processor System-on-Chip (MPSoC) designs
are the communication infrastructure and task mapping. We use profiling-driven partition and static mapping
solutions. The execution time of a task performed by a single processor can be obtained by software profiling
using an instruction set simulator. Task merging and task replication are two main process transformations
to improve the application throughput [17]. The WiMAX physical layer application consists of five tasks
defined in [13], which are channel coding, IFFT, FFT, demodulation and decoding, as shown in Fig. 1.1, with
individual execution times of 60us, 108us, 109us, 28us and 1206us, respectively. The design challenge is to map
the application onto an architecture optimized in terms of the system performance and cost. This includes not
only the mapping strategy but also architectural design choices such as the number of processor cores and each
processor’s make up in terms of number of instruction cells and their types.

A simple mapping would assign each task to a processor core, resulting in a multi-core processor architecture
with five processor cores. However, this partitioning method would lead to a highly imbalanced workload. The
overall throughput of the WiMAX application is limited by the most time-consuming task, which is the decoding
task. To improve the load balance, merging and replicating tasks can be employed in the mapping strategy. We
employ a second partitioning method which merges the channel coding, IFFT, FFT and demodulation tasks
into a single task that sequentially performs the computation of the original tasks. Task merging reduces the
number of tasks from five to two, as shown in Fig. 5.2. However, the throughput for this partition is still
determined by the most time-consuming task (decoding). To further improve the throughput, task replication
can be applied to the decoding task. For example, the decoding task can be replicated to another three DR
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processor cores, as the execution time of the decoding task is four times that of the merged task. Ideally, the
decoding task will complete four parallel instances every 1206us, resulting in a 300% performance improvement.
Clearly, task merging and task replication can lead to higher performance solutions. However, task merging
requires more instruction memory and task replication requires more global data memory as well as more DR
processor cores. The execution time of the decoding task is larger than the execution times of all the other
tasks combined. Therefore, with two processors, the best allocation that can result from task merging alone
is to place the decoding task on the second processor, and all others on the first processor. However, this still
leaves the first processor idle for a significant fraction of the time, resulting in unbalanced workload. In order
to balance the workload among the two processor cores, we propose the fourth partitioning method, called
loop partitioning. This method uses loop splitting and instruction level partitioning in order to parallelise the
resulting code across different DR processor cores. The decoding task contains the most time-consuming loop
body with a loop-carried dependence, which means each iteration of a loop depends on values computed in an
earlier iteration. This prevents further efficient partitioning at the task level. As shown in Fig. 5.3 (a), the
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body of the main loop of the decoding task iterates 870 times and includes 16 butterfly operations. A butterfly
operation consists of independent and dependent data paths. The independent data paths can be run on
different processor cores to increase the instruction level parallelism. Loop splitting is a compiler optimization
technique that attempts to simplify a loop or eliminate dependencies by breaking it into multiple loops which
have the same bodies but iterate over different contiguous portions of the index range. To make use of this
idle time, loop splitting can be used to effectively move some of the work of the decoding task from the second
processor onto the first processor, during this idle time. To achieve this, the decoding loop body is written in
two ways: one with all the work being done on a single processor, and another where some of the butterflies
are moved to another processor, such that they can be performed in parallel, but out of sync to allow for the
dependencies to be met. The second processor then runs the first (single-processor) version when the first
processor is busy executing the merged tasks, then switches to the second version (dual-processor), allowing
the now idle first processor to share in the decoding task. Based on the execution time of the merged task, the
loop is split into two parts: the first 670 iterations and the last 200 iterations. The execution time of the last
200 iterations is nearly equal to the merged task. The body of the loop in the first 670 iterations is partitioned
across two processor cores, as shown in Fig. 5.3(b). After loop partitioning, the merged task and part of the first
670 iterations are assigned to one processor core, the remaining part of the first 670 iterations and the whole
of the last 200 iterations are assigned to the second processor core. The first processor’s idle time can be best
absorbed in this way by executing the dual-processor version of the decoding task for 670 iterations. The loop
partitioning results in a balanced workload; however it may introduce a large number of data exchange between
cooperating processor cores and increase communication overhead. If the data exchange happens in the shared
memory, the shared memory could become a performance bottleneck of the loop partitioning method due to the
frequent additional data communication between the DR processors. Therefore, a feasible optimization method
is mapping the frequent read and write shared data to the shared register file for reducing memory access time
and memory access conflicts.

6. Results. Several WiMAX multiprocessing scenarios, which combine different task partitioning methods
and memory architectures, have been implemented and simulated with MRPSIM. These scenarios are described
in Table 6.1. To make fair performance comparisons, all scenarios are executed with 100 OFDM symbols. The
clock frequency of the DR processor was set to 500MHz and the shared memory access delay was set to 6ns,
the local private memory access delay was set to 2ns, and the shared multi-bank register file access delay is 1ns.
Meanwhile, the WiMAX was executed on the single processor simulator with the same simulation parameters
except the local private memory and shared register file, for comparison.

Table 6.1

Multiprocessing scenarios

No. of Partitioning methods Memory mapping
DR processors

Scenario1 2 Task merging Shared

Scenario2 2 Task merging Shared&Private

Scenario3 2 Task merging + Loop partitioning Shared&Private

Scenario4 2 Task merging + Loop partitioning Shared&Private&Regfile

Scenario5 5 Task merging + Task replication Shared

Scenario6 5 Task merging + Task replication Shared&Private

Figures 6.1 and 6.2 show the speedup and parallel efficiency of WiMAX implemented on multi-core proces-
sors with the six different scenarios. The speedup is obtained by dividing the simulation time on single processor
by the simulation on multi-core processor. While the parallel efficiency (defined as the speedup divided by the
number of processor cores) is used to estimate how efficiently the processors are utilized in solving the prob-
lem [6]. Table 6.2 shows the idle ratio of DR processor cores for different scenarios. The idle ratio refers to
the ratio of the period when the DR processor core is idle to the overall simulation time. As the results show,
the scenarios employing task merging and replication achieve both the highest speedup and the highest parallel
efficiency, compared to other task mapping methods. This is mainly because task replication employs more
processor cores and dispatches more balanced workload to DR processor cores. In scenarios with task merging
and replication, all processor cores are much more efficient with very low idle ratios. The scenarios with local
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Fig. 6.2. The parallel efficiency of scenarios

memory have better throughput compared to their counterparts which have shared data memory only. Sce-
nario 6 with local memory achieved 4.92x speedup and a parallel efficiency of 0.98 with five target DR processor
cores. Due to the deeply imbalanced workload, scenarios only using task merging demonstrate very high idle
ratios for the processor cores. Based on the multi-core architecture with limited processor cores, scenario 4,
which uses task merging and loop level partitioning, has a much lower total idle ratio and better performance
compared to scenarios using task merging only. This is due to the improved instruction level parallelism and
the efficient multi-core architecture with a shared register file between different processor cores.

Table 6.2

The idle ratio of each PE for individual scenarios

PE0 PE1 PE2 PE3 PE4 Average
(master) (Slave0) (Slave 1) (Slave 2) (Slave 3)

Scenario1 73.5% 0.3% - - - 36.9%

Scenario2 75.9% 0.2% - - - 38.1%

Scenario3 12.2% 10.5% - - - 11.4%

Scenario4 14.3% 9.6% - - - 12.0%

Scenario5 3.5% 8.4% 8.3% 8.3% 8.4% 7.2%

Scenario6 7.4% 7.4% 3.7% 3.7% 3.7% 5.2%

7. Conclusion. Several multi-core processor solutions have been proposed for WiMAX physical layer ap-
plications, based on coarse-grained dynamically reconfigurable processor cores. Three different task partitioning
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methods have been applied, and their impact on the system performance has been discussed. A flexible multi-
core processor simulation platform, MRPSIM, has been proposed and developed in order to evaluate different
solutions which combine different task partitioning strategies and memory architectures. Simulation results
have demonstrated the effectiveness of the proposed strategies in terms of speedup and parallel efficiency.
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