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PARALLEL ADVANCED VIDEO CODING: MOTION ESTIMATION ON MULTI-CORES
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Abstract. The new Advanced Video Coding (AVC) standards further exploit temporal correlation between images on a
sequence by considering multiple reference frames and variable block sizes. It increases the compression rate for a given video quality
at the cost of a significant increase in the computational load. Specialized hardware processors have been proposed to perform
real time motion estimation on AVC, but the non-recurring engineering cost of these solutions is too high. This paper proposes a
parallel algorithm that exploits the capacity of the current multi-core processors to implement real time motion estimation for AVC.
In particular, exploiting the computational capacity and the fast memory system of the heterogeneous multi-core CELL processor,
the synergetic processors accelerate the motion estimation while the main processor executes in parallel the other components of
the AVC system. Experimental results show that motion estimation can be performed in less than 50ms per frame, for CIF video
format, with up to 5 reference frames and variable block sizes, by programming the CELL with the proposed parallel algorithm.
In addition, the scalability of the proposed solution is proven regarding the video sequence resolution, the number of cores and
reference frames used.
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1. Introduction. Motion Estimation allows the reduction of temporal redundancy in video sequences, but
it is the most computationally expensive component of a video encoder. The mostly adopted Block Matching
Motion Estimation (BMME) technique, divides each frame in rectangular blocks, called Macroblocks (MBs),
which are basic Motion Estimation (ME) units. ME applies a search algorithm on the MBs to find the best match
in a Reference Frame (RF), according to a distortion measure based on the Sum of Absolute Differences (SAD).

The newly introduced techniques proposed by the H.264/MPEG-4 AVC coding standards, such as Rate-
Distortion Optimization (RDO), variable MB sizes and Multiple Reference Frame Motion Estimation (MRF-
ME) [1], highly improve the coding quality. However, they drastically increase the involved computational load,
being estimated that ME typically represents up to 80% of the whole set of computations, when MRF-ME and
the optimal Full-Search Block-Matching (FSBM) [2] are used. With the high demands of the H.264/AVC video
coding standard, it is very hard to implement motion estimation in real time, especially when a full configuration
with 5 RFs and 7 different MB shapes is considered. To overcome this problem, adaptive search algorithms, such
as Hybrid Unsymmetrical-cross Multi-Hexagon-grid Search (UMHexagonS) [3] have been adopted and dedicated
processors have been developed [4]. Recently, multi-threading multimedia processors have been realized, namely
for implementing an H.264 video coder based on a fast ME search algorithm [5]. The main thread running on
the RISC processor is responsible for controls and synchronization of data communication among threads, while
the subordinate threads, running on specialized cores, are used for multimedia acceleration, such as parallel
SAD calculation. The current MB and Search Area (SA) are cached on shared on-chip memory.

Other approach is to program multimedia applications on heterogenous multi-cores, such as the Sony
Computer Entertainment, Toshiba, and IBM (STI) Cell Broadband Engine Processor. The Cell heterogenous
multi-core processor integrates two groups of cores [6]. One is a general purpose 64bit Power Processor Element
(PPE), which contains a Power Processor Unit (PPU) with access up to 512MBytes of external memory; the
other cores are Synergistic Processor Elements (SPEs), with specialized dual issue 128bit architecture, and a
total of 256kBytes of Local Storage (LS). Each SPE is composed of two components: a Synergistic Processor
Unit (SPU) and a Memory Flow Controller (MFC). Moreover, specialized instructions are offered in the SPU
intrinsic library [7].

In [8], an H.264 video encoder is used as a part of a video surveillance system implemented on the STI
Cell Broadband Engine Processor. The ME is implemented on a single SPE, only considering one RF and a
fixed MB size. Frame data is partitioned and transferred to the SPE in a row basis. However, no information
is provided about the adopted search algorithm.

In [9], a parallel H.264 video coder was implemented in the Cell. Video Coding (VC) components are
implemented in different SPEs, and successive partitions of a frame are passed through the pipeline. A single
frame is divided into four 16Byte aligned partitions. The PPE is responsible for data partitioning and scheduling.
By using the SPU Single Instruction Multiple Data (SIMD) instructions the SAD is computed in parallel. Like
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in [8], the ME is performed just over a single RF, using a fixed MB size and a fast search algorithm. Experimental
results, regarding encoding and ME time, are not provided.

In [10], a parallel ME algorithm for multi-core architectures is described and implemented in the Cell
processor. A VC is running in the main processor and the ME is offloaded to the SPEs. This algorithm considers
several RFs, and each RF is processed in a different SPE. The same Current Frame (CF) is transferred to each
SPE and one row is processed in each iteration. However, this approach is not scalable, namely referring to the
number of cores and RFs. Moreover, the presented time results just consider the time that VC has to wait for
ME to be finished, and not the ME processing time in the SPEs.

The present work starts with the algorithm presented in [10], improves it to obtain a scalable solution that
achieves efficient ME independently of the number of RFs and cores. This scalability, which is also extended
to the image resolution is achieved in a row-based communication and computation approach. The presented
time for ME on SPE can be hidden behind the rest of the VC executing in parallel in the PPE. Experimental
results for High Definition (HD) video sequences are also presented.

The rest of the paper is organized as follows. In Section 2 it is presented the parallelization approach, which
includes the new scalable solution. Section 3.1 describes the implementation of the improved algorithm on the
Cell platform. Section 4 presents experimental results, including the ones for ME time on the SPE side, and
also for the HD test video sequences. Finally, Section 5 concludes this paper.

2. Parallelization Approach. Although the proposed parallelization approach is general for multi-core
processors, for simplicity it will be explained here referring to the CELL architecture.

2.1. Basic parallel algorithm. The Asymmetric-Thread Runtime programming model [11] is adopted in
the proposed parallelization approach. The PPE runs the main task, which includes almost all video encoding
process, except the ME part, and the control procedure. The ME, as the most computationally intensive part, is
divided into threads running in the various SPEs. Each SPE runs a unique thread, performing Direct Memory
Access (DMA) data loading from the main memory and executing the ME algorithm in an autonomous way.

Figure 2.1 shows the proposed parallelization approach. It exploits data parallelism by applying the same
search algorithm to the different RFs on the various SPEs. The optimal configuration of the H.264/AVC video
encoder in terms of quality versus bit rate uses 5 different RFs. Therefore, with this approach, up to 5 SPEs
can be used if we want resources to be busy. Pixels from different RFs are loaded from the frame to the SPEs’
LS, while pixels from the CF are loaded at the same time in the LS of all SPEs. When the ME process is
finished, results are passed back to the PPE, that is responsible for the remaining components of the video
coding process.

ME is running in threads in parallel with the main VC process. When results are received, ME for the next
row can start and run in parallel with the rest of the VC, as it is shown in Figure 2.2.

An SPE has access to the data frame in chunks according to the MB organization. Each data chunk is
composed by a row of MBs from the CF and a row of SAs from RF. The pixels in a data chunk are loaded into
the LS of an SPE doing one DMA transaction. This “row oriented” approach is used to maximize data reuse:
for the first row of MBs and SAs all pixels have to be loaded, but for the next ones only the pixels not present
in the intersection of two consecutive rows of SAs have to be transferred. Figure 2.3 shows the initial data from
both CF and RFs that need to be loaded, as well as the additional pixels that need to be loaded for the next
two MB/SA rows in two individual DMA transactions. Figure 2.3 b) illustrates the SAs that have to be loaded
in consecutive rows; only non-overlapping regions have to be transferred to the SPEs’ LS.

In the rest of the paper, a MB is considered to have 16×16 adjacent pixels and all sub-units in a MB,
independently of their size, will be called sub-blocks. The order by which the MB and sub-blocks are processed
is decided by the SPEs. Process is repeated for each MB in a row. When all MB are processed, the calculated
Motion Vector (MV)s and the distortion measures are passed back to the PPE in a single DMA transaction.

Synchronization points are introduced whenever DMA transfers for either pixels or results are finished,
allowing data buffers reuse. It is worth to notice that, in the case of specialized processors, memory is a sparse
resource; and it could be very useful to save memory for robust search algorithm implementation purposes.

The SPU and MFC allow independent execution of computation and data transferring in an SPE [12]. This
feature is exploited in the proposed parallel programming approach by overlapping processing and memory
accesses through the double buffering technique. Figure 2.4 shows the proposed parallelization approach, namely
the progress in time of DMA transfers and data processing. The DMA transfers and data processing segments
are presented with boxes, while the double lines represents synchronization points. The algorithm performs one
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Fig. 2.2. Time diagram of described VC approach.

iteration for each MB row (n is the number of MB rows). Firstly, in Iteration 0, each SPE loads the initial
row of MBs and the corresponding row of SAs in the pels0 buffer. In the next iterations, in parallel with the
processing of data in pels(i mod 2) buffer, data are loaded into the pels((i+1) mod 2) buffer. After each iteration
exits a synchronization point is introduced, in order to ensure that data to be processed in next iterations is
already loaded into the LS. It is important to mention that n does not represent the number of rows in a frame,
but the total number of rows for the whole sequence, because the loading of the first row of the next frame can
be performed in parallel with the processing of the last row of the current frame. In such a way the pipeline
processing/loading is maintained, saving the time required to individually transfer the initial row.

Figure 2.5 presents in detail the steps of one iteration of the proposed algorithm both in the PPE and the
SPE, where SPU and MFC are represented separately. When the PPE already prepared MB/SA buffers for
row k + 1, a DMA transfer is started. Then, PPE waits for a signal from the SPE announcing that the ME
results for the row k − 1 are ready. When the signal arrives, the PPE uses the available results to continue the
VC of row k − 1. As soon as the reading of the buffer for row k is finished, SPU can start ME for row k. This
ME process is executed in the SPU in parallel with the DMA transfer of row k + 1 performed by the MFC.
When the ME is finished, results are sent to PPE through a new DMA transfer. As soon as the DMA transfer
is finished, a signal is sent to the PPE, in order to continue VC.
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2.2. Scalable algorithm. The proposed basic parallel algorithm is efficient but it does not scale, in the
sense that the maximal parallelism achieved, which means in this case the maximal number of used cores is
limited by the number of RFs. In order to achieve a scalable algorithm, CF and related RFs can be divided in
sub-CFs and sub-RFs, corresponding in this case to vertical slices. An example with 6 SPE cores and 2 RFs
is presented in Figure 2.6. The scalable algorithm is obtained by applying the basic parallel algorithm to the
sub-CFs and the sub-RFs, wich can be seen as full CF and RF. A slight overhead is introduced to organize the
vertical slices, but the advantage is that the algorithm is able to use any number of cores to perform in parallel
the ME independently of the number of RFs used. The same approach can be followed if the video sequence
resolution is so high, that a single MB/SA row can not fit in the LS.

3. Motion Estimation.

3.1. An Implementation of the H.264/MPEG-4 AVC on the CELL processor. The proposed
parallel algorithm is programmed in the JM 14.0 H.264/MPEG-4 AVC software [13]. Only P frames are
considered in this work. Encoder uses the maximum number of 7 different sub-block types, multiple RFs
and full pixel precision. Synchronization between the PPE process and the threads executing on the SPEs is



Parallel Advanced Video Coding: Motion Estimation on Multi-cores 211

SPE

PPE

time

fill k+1

SPU

MFC

VC k-2 wait

ME k-1

read k

send res

VC k-1 fill k+2

read k+2

read k+1

ME k

wait

send res

VC k

ME k+1wait wait

Fig. 2.5. Data flow and phases in an iteration of proposed diagram.

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

SPE

LS

RF1

RF0

PICTURE
FRAME STORE

DMA
TRANSFER

ME
THREADS

VIDEO
CODING

DMA
TRANSFER

PPE

CF

Fig. 2.6. Scalable parallelization approach.

achieved by using mailboxes. By a matter of organization, the PPE program is presented first, followed by the
SPE program, and at the end, the way of using the SIMD instruction extensions to exploit further parallelism
and additionally speed up is given.

3.2. PPE. The program in the PPE executes Algorithm 1. Initialization of the program includes: def-
inition and calculation of the required parameters, allocation of memory for the buffers, and creation of the
threads. General algorithm parameters are defined, such as the number of threads, the number of vertical
slices, width in MBs of each vertical slice, search area range, search algorithm that will be performed etc. After
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Algorithm 1 PPE side of the algorithm
1: allocate buffers, create and initialize threads
2: calculate the required number of vertical slices
3: for each P frame and row do

4: if row is first and frame is first then

5: ppu msg = NEW FRAME

6: else

7: ppu msg = NEW ROW

8: end if

9: if row is not last then

10: for each vertical slice and RF do

11: fill the buffer of the related thread
12: end for

13: send ppu msg to threads
14: end if

Ensure: confirmation is received
15: end for

16: send KILL message to threads

that, pels0, pels1 and results buffers are allocated for each thread, the threads are created, and, finally, initial
parameters are passed to the SPEs. The addresses of the related buffers are also sent to the SPEs.

For each P frame the following actions are performed: i) A row of MBs/SAs is loaded into the buffers
corresponding to the different vertical slices and RFs; ii) when the buffers are filled a message is passed to each
thread in order to start the DMA transfer for the next row or the next frame if the last row of the previous
frame was already transferred. The reason for distinction between NEW ROW and NEW FRAME messages
is that the SA chunk for the initial row in a frame has a different size, as it was shown in Figure 2.3; and iii)
the PPE waits for the ME results and for the confirmation message from each thread that a row is finished.
The time passed since entering in the loop till the confirmation message is received corresponds to the time
that VC has to wait for ME to be finished, and it is called ME row delay. By summing all the ME row delays
in a frame we get the ME time for a single frame. When all P frames are examined, a KILL message is sent to
SPE threads.

3.3. SPE. SPE threads implement the search algorithm according to the steps represented in Algorithm 2.
The algorithm is divided in three main parts: i) the first one performs direct communication with the PPE,
ii) the second part is responsible for the buffers’ management, and iii) the final part implements the search
algorithm.

The first part initializes the process and starts the infinite loop, waiting for the PPE commands. The
initialization part includes allocation of the buffers, namely pels0, pels1 and results, and the registration of
the DMA addresses, namely pels0 addr, pels1 addr and results addr. These addresses are set up with the
corresponding pels0, pels1 and results buffer lines, on the PPE side. The NEW FRAME, NEW ROW or KILL
messages are expected in mailboxes during the execution of the infinite loop. If NEW FRAME or NEW ROW
messages are received, the algorithm reaches the first synchronization point, which means that the pixels of the
current row are loaded. Then the SPE starts the loading of the next row pixels in parallel with the processing
of the current row. If it is the initial row, an initial delay has to be introduced, because no data exists to be
processed in parallel. In the case of NEW FRAME message all SA pixels in a row have to be loaded, while in
the case of the NEW ROW message, just the new pixels are loaded while the ones that belong to the previous
SA row are reused, (see Figure 2.3). When the ME of current row is finished, the results are sent back to the
PPE.

The third part (line 16) corresponds to the implementation of the search procedure. The search procedure
is not the aim of this work, so the proposed parallelization approach considers the implementation of both
computationally intensive and robust search algorithms (requiring less computation but more memory). After
processing a whole MB row, the content of the result buffer is passed to the main memory (PPE) by a DMA
transfer. When the transfer is finished, a confirmation message is sent to the PPE notifying that the results are
available and can be used by VC. The algorithm is finished when a KILL mail is received.

3.4. Using specialized SIMD instructions. The CELL architecture offers a set of vector instructions
in both PPE and SPE. In the proposed encoder, these available instructions are used to compute in parallel
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the SAD defined in eq. 3.1, for different pixels:

SAD(vx, vy) =

N−1∑

m,n=0

|CF (x + m, y + n) − RF (x + vx + m, y + vy + n)|, (3.1)

where (vx,vy) are coordinates of the MV referring to the SA and (x,y) are the coordinates of the left-up angle
of the considered MB referring to the frame.

As it is well known, data misalignment is one of the main constraints when using vector instructions. The
SPE loads and stores only support quadword (16-byte) aligned data, masking the 4 least significant bits of
the address. However, search algorithms for ME run in a pixel-by-pixel basis, therefore requiring pixel based
(misaligned) data access and calculation. In the proposed data alignment scheme presented in Figure 3.1 data is
packed in aligned byte element vectors using the instructions from the SPE SIMD intrinsics library. Specialized
spu shuffle intrinsic combines the bytes of two vectors, according to the organization defined in a third vector.
The required alignment patterns are stored in a pre-calculated look-up table in SPE LS. Two typical aligning
situations of both misaligned MB and SA are presented in Figure 3.1 a) and b), respectively. Each MB line
is placed in a single 16Bytes area, because the first MB starts from an aligned position, and the MB width of
16 pixels is used. Therefore, the sub-block lines can only be “shifted” inside of a single 16Bytes aligned area.
However, SAs’ vectors can be divided between two successive 16Bytes areas, and in this case one additional
spu shuffle instruction has to be used.

Figure 3.1 c) depicts the SAD value calculation. The scheme is similar to the one proposed in [9]. First the
absolute difference (spu ad intrinsic) vectors are calculated for the SA and MB values packed in byte vectors.
Then the spu sumb intrinsic instruction is applied in order to sum each 4 elements of the vectors in 16bit result
values. Finally, the obtained values are accumulated in the SAD vector.

The same SIMD processing scheme is adopted in the PPE, with the exception that the luminance of the
pixels in the JM 14.0 encoder is stored as unsigned short values, which has a negative impact in the obtained
speedup.

Algorithm 2 SPE side of the algorithm
1: allocate buffers
2: read buffer addresses
3: repeat

4: read in mailbox
5: if msg = KILL then

6: end algorithm
7: end if

8: if msg = NEW FRAME or msg = NEW ROW then

9: if msg = NEW FRAME then

10: increase DMA transfer size
11: end if

12: if row is initial then

13: load first row pixels
14: end if

Ensure: DMA transfer of current row pixels is finished
15: start loading of next row
16: process current row
17: send results and confirmation
Ensure: DMA transfer of results is finished
18: end if

19: until true

4. Experimental Results. The experimental results are obtained by using the JM 14.0 software imple-
mentation of H.264/MPEG-4 AVC. Seven different sub-block types and 5 RFs are considered. The optimal
FSBM and adaptive Unsymmetrical-cross Multihexagon-grid Search (UMHS) search algorithms are both pro-
grammed. All frames except the first one are coded as P-frames, with the ME search range of 16 pixels, and a
quantization step QP=28. Both Common Intermediate Format (CIF), 352×288 pixels, and HD, 720×576 pixels,
test video sequences are used. Sequences akiyo, bus and foreman for CIF and blue sky, riverbed and rush hour

for HD are chosen because of their different characteristics regarding motion and spatial details. The presented
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Fig. 3.1. Data alignment and SAD calculation process on the SPEs: a) MB alignment b) SA alignment c) SAD calculation

results correspond to average values for 50 frames. In addition to the described implementation, experimental
results are obtained for ME implemented in the PPU, also using the AltiVec SIMD extensions and a Dual core
AMD Opteron 170 cental processor unit (CPU), with 2GBytes of main memory and SuSe 10.3 operating system.
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Table 4.1
ME time (ms) per frame for the different systems and search algorithms

C E L L C P U P P U

UMHS FSBM UMHS FSBM UMHS FSBM

akiyo CIF 18 349 352 3995 532 2382

bus CIF 79 348 695 4001 893 2356

foreman CIF 48 348 502 3998 703 2372

blue sky 720×576 205 1530 2105 16859 3357 10151

riverbed 720×576 286 1530 3117 16842 4238 10172

rush hour 720×576 188 1530 1870 16863 2179 10191

Table 4.2
Required SPU memory in kBytes

Program Data Total

without SIMD instr. 14.1 4 18.5

with SIMD instr. 15.5 5.5 21

UMHexagonS+SIMD 16.5 6.0 22.5

Table 4.1 presents the time required for ME in the Cell processor (proposed one), as well as in the PPU
and the CPU; for both UMHS and FSBM algorithms. Results prove the efficiency of the multi-core solution
compared with single core solutions on CPU and PPU. Even without partially hiding the ME behind the VC,
the real time ME for the CIF format is nearly achieved, when UMHS algorithm is used.

In figure 4.1 the four different charts show the scalability of the proposed algorithm regarding the indepen-
dence between the number of threads and the number of RFs used, as well as video sequence resolution, when
6 SPUs are used. In the cases when less than 6 RFs are used, all the CF and the RFs are divided in vertical
slices, namely 2, 3 and 6 slices, for 3, 2 and 1 RFs, respectively.

Figures 4.1 a) and c) show results for the optimal FSBM algorithm but with different resolutions. As it is
shown in the charts for both resolutions a regular ME time decrease is obtained using the parallel algorithm
with the reduction of RFs, or, what is equivalent, with the increase in the number of vertical slices considered
for each frame.

Figures 4.1 b) and d) show results for the UMHS search algorithm. In both charts it is visible a trend of ME
time decrease, with increase in number of vertical slices that each frame is divided in (inversely proportional
to the number of RFs). A faster ME time decrease with the increase in the number of vertical slices when the
motion is spatially more balanced, as in the bus and riverbed sequences, is also visible. In the case of riverbed

sequence the curve evolution is very similar to the one for the FSBM algorithm, because motion is quite well
spatially balanced.

Figure 4.2 presents the time that the remaining part of VC has to wait for the ME to be finished, which
includes preparation of the buffers and communication between the PPU and SPUs. The ME for the next MB
row is running in parallel with the VC of the current MB row, and, therefore, ME is almost hidden behind the
VC time.

Figure 4.3 shows that ME is no longer the bottleneck of video coding if the proposed encoder is used. In
the case when either PPU or CPU is used, ME takes up to 95% of encoding time, as it was already reported,
but in the presented approach it takes less than 15%. Results are even better if HD video sequences are used,
because VC time increases more than the ME delay.

Table 4.2 presents the SPU memory required by the proposed motion estimator. The values show that a
very small part of the 256kByte total LS is used (less than 15%), and therefore there is plenty of space for fast
algorithms development, which can require a lot of memory. The presented result for UMHS includes only spatial
prediction. If a full version with the temporal prediction is used the MVs and distortion measures for multiple
frames need to be stored, and up to 30kBytes per prediction frame is required for temporal prediction [3], if
CIF format is considered.

5. Conclusions. Starting from a parallel algorithm proposed by the author of this paper, a scalable ME
parallel algorithm was proposed. This algorithm supports a variable number of cores and RFs achieved by
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Fig. 4.1. Time(ms) per frame for 6 SPUs, considering different number of RFs, video formats and search algorithms: a) CIF
video format and FSBM b) CIF video format and UMHS c) 720×526 resolution and FSBM b) 720×526 resolution and UMHS

subdividing CF and RFs into vertical slices, according to the number of cores available and the number of
RFs required. The parallel algorithm was implemented in a STI CELL Broadband Engine Processor, using
SIMD extensions to compute multiple SADs in parallel. To evaluate the efficiency of the proposed model,
H.264/MPEG-4 AVC motion estimation, with 5 RFs and 7 different MB shapes was considered. Experimental
results are presented for both CIF and HD video formats. For comparison purposes, both results for ME on
PowerPC(labeled as a PPU) and Dual Core PC are also presented. Results show that the proposed algorithm is
scalable, regarding the video resolution, the number of cores and the number of used RFs. In this work only P
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Fig. 4.2. ME delay (ms) per frame for the different implementations of ME.
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Fig. 4.3. Percentage in total encoding time for the different motion estimators.

frames and full pixel accuracy are considered. Moreover, it is shown that the CELL processor is able to perform
ME in real time for CIF images, if the optimal full search approach is adopted.
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