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t. This paper studies unevenness in network properties on the so
ial Semanti
 Web. First, we propose a two-stepmethodology for pro
essing and analyzing so
ial network data from the Semanti
 Web. Using the SPARQL query language, aderived RDF graph 
an be 
onstru
ted that is tailored to a spe
i�
 question. After a brief introdu
tion to the notion of unevenness,this methodology is applied to examine unevenness in network properties of semanti
 data. Comparing Lorenz 
urves for di�erent
entrality measures, it is shown how examinations of unevenness 
an provide 
ru
ial hints regarding the topology of (so
ial) Semanti
Web data.Key words: semanti
 Web, so
ial network analysis, SPARQL, unevenness1. Introdu
tion. The so
ial Semanti
 Web is a broad, non-te
hni
al term, referring to data on the Se-manti
 Web (en
oded in RDF) that 
ontain so
ial information. The most prevalent ontology on the so
ialSemanti
 Web is the FOAF (Friend Of A Friend) vo
abulary [9℄. FOAF 
an express information �about peopleand the things they make and do� and espe
ially about how they are related. In this arti
le, we will use aso
io-
ultural ontology that is (partly) based on FOAF and also uses 
on
epts from other well-known ontologieslike Dublin Core.The Semanti
 Web [5℄ in general is 
on
eived as a large-s
ale distributed information system. While some
onstituents are still in development and its 
urrent uptake is relatively modest, the Semanti
 Web graph alreadyshows the traits of a 
omplex system. Complex systems are en
ountered in many di�erent 
ontexts and in
ludesu
h diverse examples as 
omputer networks, so
ial networks, neural networks and 
ellular networks [13℄. As a
omplex system, the Semanti
 Web is 
hara
terized by [3, 17℄:
• Small world properties : Made famous by Stanley Milgram's [25℄ letter experiment, the small worldnotion refers to the fa
t that the average shortest path length in a graph is very short (
omparableto that of a random graph). In pra
ti
e, this means that it takes only a few steps to rea
h any other(rea
hable) node in the network. It is advisable to also take the longest shortest path, known as thediameter, into a

ount. During the last de
ade, several models have been proposed to a

ount for thesmall-world e�e
t [26, 31℄.
• High 
lustering : The neighbours of a given node are likely also neighbours of ea
h other.
• Skewed degree distribution: The probability P (k) that a node has degree k (is 
onne
ted to k othernodes) is not randomly distributed. Instead, it follows a power law P (k) ≈ Ak−γ . Moreover, 
omplexsystems typi
ally exhibit power law distributions in more than one way. With regard to the Semanti
Web, previous resear
h has shown that a diversity of relations�su
h as the relation between websites(domain names) and their number of Semanti
 Web do
uments or the relation between an ontologyand its frequen
y of use�follows a power law [15℄.These properties, however, raise several questions as well. In this arti
le, we �rst dis
uss a two-step method-ology for extra
ting the Semanti
 Web data (or `semanti
 data' for short) that we are interested in from therest. We then fo
us on the last 
hara
teristi
 and try to 
ompare the skewedness of several network measures.We try to provide an answer to the following two resear
h questions.First, how 
an data on the so
ial Semanti
 Web be used for So
ial Network Analysis (SNA)? Signi�
antresear
h in this area has already been performed by, among others, Ding et al. [15℄ and Peter Mika [23, 24℄. Mu
hwork has 
on
entrated on a
quiring and aggregating data (often FOAF data),�espe
ially merging informationabout unique persons turns out to be far from trivial. In the present arti
le, we assume that `
lean' semanti
data are already available and 
on
entrate on the following step: the development of a methodology for usingone single RDF graph as the `master', whi
h 
an be used as the basis for several kinds of SNA. Ideally, wewant to keep as mu
h information as possible and extra
t a multitude of potentially interesting relations. Thisparti
ular aspe
t has re
eived less attention so far.Se
ond, it is very rarely examined how skewed a distribution is. How 
an this notion be measured? Quan-ti�
ation of unevenness is 
ru
ial for a thorough understanding of a power law distribution; moreover, it 
an beused for 
omparison purposes between distributions and between networks.
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272 R. GunsBoth questions will be dis
ussed and demonstrated using semanti
 data from Agrippa. Agrippa is the
atalogue and database of the Ar
hive and Museum of Flemish Cultural Life (AMVC Letterenhuis, lo
ated inAntwerp, Belgium). Where appli
able, the RDF version builds upon existing ontologies like FOAF and DublinCore. Agrippa 
ontains a wealth of information about both the ar
hived materials and the so
io-
ultural a
tors(people and organizations) that have 
reated them. We will mostly use Agrippa information about the 237,062letters present at the AMVC Letterenhuis and their writers and re
ipients.2. Two-step methodology. Semanti
 data 
an be stored in many di�erent ways: as a (set of) do
ument(s)in one of the many RDF syntaxes [4℄; in a `
lassi
' relational database; or in a triplestore, a dedi
ated RDFdatabase. For performan
e and 
onvenien
e reasons, we are using a triplestore, but most te
hniques 
an alsobe performed on, for instan
e, RDF do
uments. The triplestore used is Sesame, freely available at http://www.openrdf.org/.1Partly due to their distributed nature, semanti
 data may appear quite dazzling: many di�erent kinds ofdata, drawn from several ontologies, between whi
h a multitude of relations exist. How 
an one make heads ortails out of them? Assuming the existen
e of a set of fairly 
learly de�ned questions to be answered, we proposea two-step methodology, whi
h 
riti
ally depends on the SPARQL query language [27℄ or a query language withsimilar 
apabilities. In short, the two steps are:1. Constru
t an extra
tion query in SPARQL and apply it to the RDF graph. This yields a derived graph,spe
i�
ally tailored to the question(s).2. Convert the derived graph to a format intended for SNA.We will now dis
uss both steps in greater detail, using a part of Agrippa as an example (shown in Figure 2.1).Both Organization and Person are a kind of Agent. A LetterContext ties together the di�erent parti
ipantsin the a
t of letter-writing: the writer(s), the re
ipient(s) and the letter as a physi
al obje
t. A letter 
an bewritten and re
eived by either an Agent or an A�liationContext. This refers to a person (the `a�liatee') a
tingon behalf of his/her a�liation to an organization (the `a�liator').

Fig. 2.1. Part of the Agrippa ontology, showing the relations between six 
lasses2.1. SPARQL information extra
tion. Four SPARQL query types exist: SELECT, CONSTRUCT, ASK andDESCRIBE. SPARQL queries are usually SELECT queries, whi
h return a table of results. In this step, we employCONSTRUCT queries, whi
h return a new RDF graph. A similar ar
hite
ture 
an also be found in the MESURproje
t [8, 28℄. We will refer to the original graph as sour
e graph and to the newly 
onstru
ted graph as derivedgraph.First, we 
ompare the original graph in the triplestore and the questions to be answered. Some questionssimply involve the extra
tion of parts of the RDF graph (ignoring the rest), like the following example. Supposewe want to examine only those letters that were 
reated in an organizational 
ontext. This boils down toextra
ting the letters that are written by an Organization or an A�liationContext:PREFIX : <http://anet.ua.a
.be/agrippa#>CONSTRUCT {?
ontext a :LetterContext ;
1For an overview of triplestores, see [20℄.
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ial Semanti
 Web 273:hasLetterWriter ?writer ;:hasRe
ipient ?re
ipient ;:hasLetter ?letter .}WHERE {?
ontext a :LetterContext ;:hasLetterWriter ?writer ;:hasRe
ipient ?re
ipient ;:hasLetter ?letter .{ ?writer a :Organization } UNION{ ?writer a :AffiliationContext }} Other questions also require knowledge on how relations in the model intera
t,�these involve both ex-tra
tion and 
ombination of parts of the model. Here are two examples from Agrippa. The following query
onstru
ts a derived graph of persons and their a�liations to organizations. The result is a bipartite graph, i. e.a graph with two kinds of nodes (persons and organizations).PREFIX : <http://anet.ua.a
.be/agrippa#>CONSTRUCT { ?person :affiliatedWith ?org }WHERE {?aff :hasAffiliator ?org ;:hasAffiliatee ?person .} And the following query 
onstru
ts a simple derived graph that links author(s) and re
ipient(s) of ea
hletter:PREFIX : <http://anet.ua.a
.be/agrippa#>CONSTRUCT { ?sender <urn:agrext#writesLetterTo> ?re
ipient }WHERE {?
ontext :hasLetterWriter ?sender ;:hasRe
ipient ?re
ipient .} It should be noted that it is often easier to obtain the desired results using one or more intermediateextra
tion queries. As su
h, a derived graph may be
ome the sour
e graph in a next step and so on. One 
ould,for example, use the result of the �rst example as the sour
e graph for the third example query. Althoughextra
tion queries are obviously not as powerful as a dedi
ated program or full-�edged reasoner, they are oftensu�
ient and mu
h faster to implement.One of the advantages of storage in a triplestore is availability of the SPARQL proto
ol [14℄. As its nameimplies, the SPARQL proto
ol is designed for ex
hanging SPARQL queries and results between 
lients andservers. It is entirely based on Web standards like HTTP and XML.2.2. Conversion for SNA analysis. On
e a derived graph has been obtained, it 
an be studied. Thereexist several proje
ts for visualizing and exploring RDF and FOAF data, su
h as FOAF Explorer,2 RDF-Gravity3 and Visual Browser.4 These tools, however, generally do not provide SNA measures like 
entralityand 
lustering, although Flink [23℄ seems a promising ex
eption. Moreover, they generally do not s
ale to verylarge graphs. As long as there exist virtually no appli
ations that su

essfully bring network analysis to RDF,it seems advisable to 
onvert the derived graph to a more generi
 �le format for network analysis.Thus, while not stri
tly ne
essary, this step ensures 
ompatibility with other SNA e�orts and permitste
hniques that are di�
ult to perform on plain RDF graphs. We handle these 
onversions by integratingwith pyNetConv, a Python library that 
an 
onvert to most 
ommon formats, in
luding Pajek, NetworkX, andGML.
2http://xml.mfd-
onsult.dk/foaf/explorer/
3http://semweb.salzburgresear
h.at/apps/rdf-gravity/
4http://nlp.fi.muni.
z/projekty/visualbrowser/



274 R. Guns3. Unevenness.3.1. The Lorenz 
urve and the Gini evenness index. The distribution of degrees on the Semanti
Web is�like many other relations�highly uneven: a small number of nodes has a huge amount of links, whilethe vast majority has very few. How 
an this unevenness be quanti�ed?Unevenness or inequality has been studied extensively in e
onometri
s and informetri
s. Sin
e not allexisting measures satisfy all ne
essary requirements [1, 16℄, we will limit the present dis
ussion to two methods,using the following simple array as an example: X = (1, 3, 4, 7, 10, 15). These numbers 
ould express thedistribution of wealth, the number of publi
ations per author or the number of links per node. Clearly, there issome unevenness, but how mu
h exa
tly?The Lorenz 
urve [21℄ is a graphi
al representation of unevenness. First, we determine the relative amounts:
ai =

xi
∑

xresulting in (1/40, 3/40, 1/10, 7/40, 1/4, 3/8). The horizontal axis of the Lorenz 
urve has the points i/N (i =
1, 2, . . ., N). The verti
al axis of the Lorenz 
urve has their 
umulative fra
tion: a1 + a2 + . . . + ai. We thus
onstru
t the Lorenz 
urve (Figure 3.1). The diagonal line represents the 
ase of perfe
t evenness�everyonepossesses the same amount. The further the 
urve is removed from the diagonal, the greater the unevenness.Note that we have ranked our numbers in in
reasing order, resulting in a 
onvex Lorenz 
urve. The 
on
aveLorenz 
urve results from ranking in de
reasing order and is 
ompletely equivalent. Complete unevenness�oneperson has everything, and the rest nothing�would be represented as a 
onvex 
urve following the bottom andthe right side of the plot.

Fig. 3.1. Convex Lorenz 
urve of the array (1, 3, 4, 7, 10, 15)Suppose we want to express this unevenness in a number. A good measure is the Gini evenness index G′[29℄, originally devised to 
hara
terize the distribution of wealth over so
ial 
lasses [18℄,
G′(X) =

2

µN2





N
∑

j=1

(N + 1 − j)xj



 −
1

Nwith xj ranked in in
reasing order and µ the mean of the set xj . There exists a dire
t relation between theLorenz 
urve and the Gini evenness index: G′ is equal to twi
e the area under the 
onvex Lorenz 
urve.
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ial Semanti
 Web 275Lorenz 
urves determine a partial order: in some, but not all, 
ases, an order 
an be determined from the
omparison of two Lorenz 
urves. Indeed, if one 
onvex Lorenz 
urve is 
ompletely below another, then theformer expresses less evenness than the latter. It should be stressed that Lorenz 
urves may `overlap' or 
rossea
h other. In these 
ases, no order 
an be determined from the 
urves [29℄.3.2. Appli
ation to Agrippa.3.2.1. Overview of network measures. Let us take the author-re
ipient graph 
onstru
ted in the lastexample of 2.1 N = 40, 914 as an example. Ea
h node is 
onne
ted by 5.08 links on average, but the a
tual in-and out-degree follow a power law distribution (Figure 3.2). We will 
onsider the following network measures,most of whi
h are de�ned by Wasserman & Faust [30℄:
• Degree 
entrality (DC): is the number of links 
onne
ted to a given node.
• Betweenness 
entrality (BTC): 
hara
terizes the importan
e of a given node for establishing shortpathways between other nodes.
• Closeness 
entrality (CC): 
hara
terizes how fast other nodes 
an be rea
hed from a given node.
• Pagerank (PR): 
hara
terizes the importan
e of a given node by 
ombining its number of in-links withthe importan
e of the nodes that link to it. The algorithm was originally 
reated for determining a webpage's importan
e [10℄ but has sin
e been used in many other 
ontexts as well (e.g., [12, 22℄).This small list of measures is in no way intended to be exhaustive. Many other measures exist and even theones listed here have several varieties themselves. They have been 
hosen be
ause they are both well-known andgenerally used and a

epted. Moreover, they 
an be 
omputed using standard software tools. For the 
urrentarti
le, we used the igraph R pa
kage, available at http://
neuro
vs.rmki.kfki.hu/igraph/.The 
entrality measures listed above all have variants for dire
ted and undire
ted networks, but we willonly 
onsider the dire
ted variants. Both degree 
entrality and 
loseness 
entrality have di�erent algorithms forin-links and out-links. We 
an distinguish between in-degree 
entrality (IDC ) and out-degree 
entrality (ODC ),and between in-
loseness 
entrality (ICC ) and out-
loseness 
entrality (OCC ). This distin
tion is not useful forbetweenness 
entrality and PageRank.

Fig. 3.2. Power law distribution for in-degree and out-degree3.2.2. Comparison of unevenness between network measures. The graph is not fully 
onne
ted,but the main 
omponent (N = 40, 303) a

ounts for the vast majority of nodes (98.5%). Hen
eforth, we willonly 
onsider the nodes that are part of the main 
omponent, sin
e very small 
omponents (e.g., N = 2) 
andistort the overall pi
ture. For instan
e, a node v in su
h a 
omponent may have CCv = 1, even if its position



276 R. Gunsin the overall network is obviously marginal. We therefore 
onsider it methodologi
ally more 
orre
t to only
onsider nodes that are part of the main 
omponent.Comparing IDC to ODC and ICC to OCC (Figure 3.3), we see that in both 
ases the measure based onin-links is more uneven. In spite of this di�eren
e, it should be noted that in both 
ases the shape of the Lorenz
urve of the in-link-based measure is similar to that of the out-link-based one.PageRank is, in a sense, a more re�ned version of in-degree 
entrality. Whereas the latter only 
onsidersthe lo
al neighbourhood (i. e. the number of links to a given node), PageRank also 
onsiders the status ofthe nodes that are linking to a given node by iteratively passing status between nodes. Figure 3.4 shows thatPageRank is a
tually more even than in-degree 
entrality. In other words: some extreme variations in degreeare `evened out' by looking at a node's status in the entire network rather than just its number of in-links.Inspe
tion of the data reveals that this is almost ex
lusively due to nodes with a low number of in-links fromsome very high status nodes. Put another way, di�eren
es between PageRank and IDC may be due to IDCeither `overrating' or `underrating' some nodes; at least for this example, the latter is mostly the 
ase. Despitethe outliers, PageRank and in-degree 
entrality are highly 
orrelated. Figure 3.4 also illustrates the usefulnessof the Lorenz 
urve for 
omparing di�erent measures: it makes it possible to, for instan
e, 
ompare raw numbers(IDC) to normalized ones (PageRank).

Fig. 3.3. Comparison of unevenness between in-link-based and out-link-based measures. (a) Comparison of ICC to OCC, (b)Comparison of IDC to ODCBetweenness 
entrality is remarkably uneven (Figure 3.5). Indeed, we immediately see that more than 80%of all nodes have zero betweenness 
entrality. The Lorenz 
urve 
learly reveals that betweenness 
entrality is
onsiderably less even than any of the other measures dis
ussed here.3.3. Dis
ussion. Comparing the Lorenz 
urves of the di�erent 
entrality measures reveals a remarkablydiversi�ed pi
ture. Betweenness 
entrality is 
learly least even of all. Subsequently, we get degree 
entrality,PageRank and 
loseness 
entrality. The Gini evenness indi
es basi
ally tell the same story and are summarizedin Table 3.1.As a tentative explanation, we suggest that these di�eren
es may be largely due to the small-world e�e
t[26, 31℄. Even marginal nodes are relatively 
lose to all others, a

ounting for minimal di�eren
es in 
loseness.Indeed, the length of the diameter�the longest shortest path�is only 11 and the average shortest path lengthonly 4.12!As a whole, the graph �ts well into the bow-tie or 
orona models [6, 7, 11℄, whi
h were originally devisedfor modelling and explaining link stru
ture on the World Wide Web. The 
ore of the main 
omponent is theLargest Strongly Conne
ted Component or LSCC (N = 9, 723), a 
omponent in whi
h any node 
an be rea
hed(obeying the dire
tion of the links). The LSCC itself has a nu
leus of hubs [13, 19℄, through whi
h almostall other shortest paths pass. These hub nodes typi
ally have extremely high degree 
entrality. This has two
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Fig. 3.4. Comparison of unevenness between PageRank and in-degree 
entrality

Fig. 3.5. Unevenness of betweenness 
entralityinteresting, seemingly opposite, e�e
ts. On the one hand, 
loseness is in
reased and 
loseness 
entrality be
omesmore even. On the other hand, it brings about a very uneven betweenness 
entrality distribution.PageRank distribution is more even than one might intuitively expe
t. The hubs have a high status, whi
his partially transmitted to ea
h of the nodes they link to. As su
h, a large number of nodes gains a higherPageRank than might be expe
ted from their in-degree 
entrality or betweenness 
entrality. Indeed, even if noshortest paths pass through them, their PageRank will still be relatively high. This property of PageRank isvery desirable for ranking Web pages, but may be unwanted in some appli
ations of SNA.4. Con
lusions. We have shown how SPARQL 
an be used in pro
essing so
ial Semanti
 Web data in asimple two-step methodology, 
onverting the sour
e graph to a better suited derived graph. While SPARQLis obviously less powerful than a `real' reasoning engine or a dedi
ated program, it is often su�
ient and maywell prove simpler and faster to implement. RDF tools are generally not geared towards SNA, although Flink[23℄ in
orporates some basi
 SNA statisti
s. Therefore, 
onversion to other formats is 
urrently re
ommendablebut, lu
kily, straightforward.



278 R. GunsTable 3.1Gini evenness index of all 
entrality measures in in
reasing order of evennessCentrality measure G'Betweenness 
entrality 0.01In-degree 
entrality 0.12Degree 
entrality (in and out) 0.25Out-degree 
entrality 0.26PageRank 0.35In-
loseness 
entrality 0.73Out-
loseness 
entrality 0.88Closeness 
entrality (in and out) 0.94The Lorenz 
urve and the Gini evenness index G′ are two ex
ellent methods for studying unevenness. TakingAgrippa as a 
on
rete example, it 
an be seen that unevenness measures may 
on�rm or enfor
e hypothesesregarding the network topology. In the example dis
ussed, the massive di�eren
e between betweenness 
entralityand 
loseness 
entrality distribution 
on�rms the small-world hypothesis and reveals the topology of the graphwith a small nu
leus, through whi
h most other paths must pass. The example also illustrates the need for awide variety of 
entrality measures: they are indeed very di�erent (as is obvious from just 
omparing the Lorenz
urves) and ea
h reveals a di�erent aspe
t of the network.Most of these results, su
h as the establishment of the small-world e�e
t, 
ould have been a
hieved withoutstudying the unevenness of network properties. Consequently, the 
urrent paper should be regarded as a �rststep: it illustrates how unevenness measures 
an be used to a
hieve results similar to existing, well-establishedmethods. In future resear
h, we hope to expand upon these results by studying a greater variety of (so
ial)networks, in
luding di�erent 
lasses of small-world networks [2℄.A
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