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UNEVENNESS IN NETWORK PROPERTIES ON THE SOCIAL SEMANTIC WEB

RAF GUNS*

Abstract. This paper studies unevenness in network properties on the social Semantic Web. First, we propose a two-step
methodology for processing and analyzing social network data from the Semantic Web. Using the SPARQL query language, a
derived RDF graph can be constructed that is tailored to a specific question. After a brief introduction to the notion of unevenness,
this methodology is applied to examine unevenness in network properties of semantic data. Comparing Lorenz curves for different
centrality measures, it is shown how examinations of unevenness can provide crucial hints regarding the topology of (social) Semantic
Web data.
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1. Introduction. The social Semantic Web is a broad, non-technical term, referring to data on the Se-
mantic Web (encoded in RDF) that contain social information. The most prevalent ontology on the social
Semantic Web is the FOAF (Friend Of A Friend) vocabulary [9]. FOAF can express information “about people
and the things they make and do” and especially about how they are related. In this article, we will use a
socio-cultural ontology that is (partly) based on FOAF and also uses concepts from other well-known ontologies
like Dublin Core.

The Semantic Web [5] in general is conceived as a large-scale distributed information system. While some
constituents are still in development and its current uptake is relatively modest, the Semantic Web graph already
shows the traits of a complex system. Complex systems are encountered in many different contexts and include
such diverse examples as computer networks, social networks, neural networks and cellular networks [13]. As a
complex system, the Semantic Web is characterized by [3, 17]:

e Small world properties: Made famous by Stanley Milgram’s [25] letter experiment, the small world
notion refers to the fact that the average shortest path length in a graph is very short (comparable
to that of a random graph). In practice, this means that it takes only a few steps to reach any other
(reachable) node in the network. It is advisable to also take the longest shortest path, known as the
diameter, into account. During the last decade, several models have been proposed to account for the
small-world effect [26, 31].

e High clustering: The neighbours of a given node are likely also neighbours of each other.

o Skewed degree distribution: The probability P(k) that a node has degree k (is connected to k other
nodes) is not randomly distributed. Instead, it follows a power law P(k) ~ Ak~7. Moreover, complex
systems typically exhibit power law distributions in more than one way. With regard to the Semantic
Web, previous research has shown that a diversity of relations—such as the relation between websites
(domain names) and their number of Semantic Web documents or the relation between an ontology
and its frequency of use—follows a power law [15].

These properties, however, raise several questions as well. In this article, we first discuss a two-step method-
ology for extracting the Semantic Web data (or ‘semantic data’ for short) that we are interested in from the
rest. We then focus on the last characteristic and try to compare the skewedness of several network measures.
We try to provide an answer to the following two research questions.

First, how can data on the social Semantic Web be used for Social Network Analysis (SNA)? Significant
research in this area has already been performed by, among others, Ding et al. [15] and Peter Mika [23, 24]. Much
work has concentrated on acquiring and aggregating data (often FOAF data),—especially merging information
about unique persons turns out to be far from trivial. In the present article, we assume that ‘clean’ semantic
data are already available and concentrate on the following step: the development of a methodology for using
one single RDF graph as the ‘master’, which can be used as the basis for several kinds of SNA. Ideally, we
want to keep as much information as possible and extract a multitude of potentially interesting relations. This
particular aspect has received less attention so far.

Second, it is very rarely examined how skewed a distribution is. How can this notion be measured? Quan-
tification of unevenness is crucial for a thorough understanding of a power law distribution; moreover, it can be
used for comparison purposes between distributions and between networks.
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Both questions will be discussed and demonstrated using semantic data from Agrippa. Agrippa is the
catalogue and database of the Archive and Museum of Flemish Cultural Life (AMVC Letterenhuis, located in
Antwerp, Belgium). Where applicable, the RDF version builds upon existing ontologies like FOAF and Dublin
Core. Agrippa contains a wealth of information about both the archived materials and the socio-cultural actors
(people and organizations) that have created them. We will mostly use Agrippa information about the 237,062
letters present at the AMVC Letterenhuis and their writers and recipients.

2. Two-step methodology. Semantic data can be stored in many different ways: as a (set of) document(s)
in one of the many RDF syntaxes [4]; in a ‘classic’ relational database; or in a triplestore, a dedicated RDF
database. For performance and convenience reasons, we are using a triplestore, but most techniques can also
be performed on, for instance, RDF documents. The triplestore used is Sesame, freely available at http:
//www .openrdf .org/.!

Partly due to their distributed nature, semantic data may appear quite dazzling: many different kinds of
data, drawn from several ontologies, between which a multitude of relations exist. How can one make heads or
tails out of them? Assuming the existence of a set of fairly clearly defined questions to be answered, we propose
a two-step methodology, which critically depends on the SPARQL query language [27] or a query language with
similar capabilities. In short, the two steps are:

1. Construct an extraction query in SPARQL and apply it to the RDF graph. This yields a derived graph,
specifically tailored to the question(s).
2. Convert the derived graph to a format intended for SNA.

We will now discuss both steps in greater detail, using a part of Agrippa as an example (shown in Figure 2.1).
Both Organization and Person are a kind of Agent. A LetterContext ties together the different participants
in the act of letter-writing: the writer(s), the recipient(s) and the letter as a physical object. A letter can be
written and received by either an Agent or an AffiliationContext. This refers to a person (the ‘affiliatee’) acting
on behalf of his/her affiliation to an organization (the ‘affiliator’).

Agent

/ V\ hasRecipient hashetterWriter

Organization Person LetterContext

has“‘%‘f\ hadhfiiiatee | ooreoPent  has

AffiliationContext

terWriter hasletter

Letter

Fic. 2.1. Part of the Agrippa ontology, showing the relations between siz classes

2.1. SPARQL information extraction. Four SPARQL query types exist: SELECT, CONSTRUCT, ASK and
DESCRIBE. SPARQL queries are usually SELECT queries, which return a table of results. In this step, we employ
CONSTRUCT queries, which return a new RDF graph. A similar architecture can also be found in the MESUR
project [8, 28]. We will refer to the original graph as source graph and to the newly constructed graph as derived
graph.

First, we compare the original graph in the triplestore and the questions to be answered. Some questions
simply involve the extraction of parts of the RDF graph (ignoring the rest), like the following example. Suppose
we want to examine only those letters that were created in an organizational context. This boils down to
extracting the letters that are written by an Organization or an AffiliationContext;:

PREFIX : <http://anet.ua.ac.be/agrippa#>
CONSTRUCT {
7context a :LetterContext ;

LFor an overview of triplestores, see [20].
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:hasLetterWriter 7writer ;

:hasRecipient ?recipient ;
:hasLetter ?letter .

}

WHERE {

7?context a :LetterContext ;

:hasLetterWriter ?writer ;
:hasRecipient ?recipient ;
:hasLetter ?letter .

{ ?writer a :0rganization } UNION
{ 7writer a :AffiliationContext }

}

Other questions also require knowledge on how relations in the model interact,—these involve both ex-
traction and combination of parts of the model. Here are two examples from Agrippa. The following query
constructs a derived graph of persons and their affiliations to organizations. The result is a bipartite graph, i. e.
a graph with two kinds of nodes (persons and organizations).

PREFIX : <http://anet.ua.ac.be/agrippa#>
CONSTRUCT { 7person :affiliatedWith Torg }
WHERE {
?7aff :hasAffiliator 7org ;
thasAffiliatee 7person .

And the following query constructs a simple derived graph that links author(s) and recipient(s) of each
letter:

PREFIX : <http://anet.ua.ac.be/agrippa#>
CONSTRUCT { 7sender <urn:agrext#writesLetterTo> Precipient }
WHERE {
7context :haslLetterWriter 7sender ;
:hasRecipient ?recipient .

It should be noted that it is often easier to obtain the desired results using one or more intermediate
extraction queries. As such, a derived graph may become the source graph in a next step and so on. One could,
for example, use the result of the first example as the source graph for the third example query. Although
extraction queries are obviously not as powerful as a dedicated program or full-fledged reasoner, they are often
sufficient and much faster to implement.

One of the advantages of storage in a triplestore is availability of the SPARQL protocol [14]. As its name
implies, the SPARQL protocol is designed for exchanging SPARQL queries and results between clients and
servers. It is entirely based on Web standards like HTTP and XML.

2.2. Conversion for SNA analysis. Once a derived graph has been obtained, it can be studied. There
exist several projects for visualizing and exploring RDF and FOAF data, such as FOAF Explorer,> RDF-
Gravity? and Visual Browser.* These tools, however, generally do not provide SNA measures like centrality
and clustering, although Flink [23] seems a promising exception. Moreover, they generally do not scale to very
large graphs. As long as there exist virtually no applications that successfully bring network analysis to RDF,
it seems advisable to convert the derived graph to a more generic file format for network analysis.

Thus, while not strictly necessary, this step ensures compatibility with other SNA efforts and permits
techniques that are difficult to perform on plain RDF graphs. We handle these conversions by integrating
with pyNetConv, a Python library that can convert to most common formats, including Pajek, NetworkX, and
GML.

%http://xml.mfd-consult.dk/foaf/explorer/
Shttp://semweb.salzburgresearch.at/apps/rdf-gravity/
“http://nlp.fi.muni.cz/projekty/visualbrowser/
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3. Unevenness.

3.1. The Lorenz curve and the Gini evenness index. The distribution of degrees on the Semantic
Web is—like many other relations—highly uneven: a small number of nodes has a huge amount of links, while
the vast majority has very few. How can this unevenness be quantified?

Unevenness or inequality has been studied extensively in econometrics and informetrics. Since not all
existing measures satisfy all necessary requirements [1, 16], we will limit the present discussion to two methods,
using the following simple array as an example: X = (1,3,4,7,10,15). These numbers could express the
distribution of wealth, the number of publications per author or the number of links per node. Clearly, there is
some unevenness, but how much exactly?

The Lorenz curve [21] is a graphical representation of unevenness. First, we determine the relative amounts:

=53

resulting in (1/40, 3/40, 1/10, 7/40, 1/4, 3/8). The horizontal axis of the Lorenz curve has the points i/N (i =
1,2,...,N). The vertical axis of the Lorenz curve has their cumulative fraction: a; + as + ... + a;. We thus
construct the Lorenz curve (Figure 3.1). The diagonal line represents the case of perfect evenness—everyone
possesses the same amount. The further the curve is removed from the diagonal, the greater the unevenness.
Note that we have ranked our numbers in increasing order, resulting in a convex Lorenz curve. The concave
Lorenz curve results from ranking in decreasing order and is completely equivalent. Complete unevenness—one
person has everything, and the rest nothing—would be represented as a convex curve following the bottom and
the right side of the plot.
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Fia. 3.1. Convex Lorenz curve of the array (1, 3, 4, 7, 10, 15)

Suppose we want to express this unevenness in a number. A good measure is the Gini evenness index G’
[29], originally devised to characterize the distribution of wealth over social classes [18],
al 1

N+1—jz; | — =

Jj=1

2
=N

G'(X)

with «; ranked in increasing order and p the mean of the set z;. There exists a direct relation between the
Lorenz curve and the Gini evenness index: G’ is equal to twice the area under the convex Lorenz curve.
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Lorenz curves determine a partial order: in some, but not all, cases, an order can be determined from the
comparison of two Lorenz curves. Indeed, if one convex Lorenz curve is completely below another, then the
former expresses less evenness than the latter. It should be stressed that Lorenz curves may ‘overlap’ or cross
each other. In these cases, no order can be determined from the curves [29].

3.2. Application to Agrippa.

3.2.1. Overview of network measures. Let us take the author-recipient graph constructed in the last
example of 2.1 N = 40,914 as an example. Each node is connected by 5.08 links on average, but the actual in-
and out-degree follow a power law distribution (Figure 3.2). We will consider the following network measures,
most of which are defined by Wasserman & Faust [30]:

o Degree centrality (DC): is the number of links connected to a given node.

e Betweenness centrality (BTC): characterizes the importance of a given node for establishing short
pathways between other nodes.

e Closeness centrality (CC): characterizes how fast other nodes can be reached from a given node.

e Pagerank (PR): characterizes the importance of a given node by combining its number of in-links with
the importance of the nodes that link to it. The algorithm was originally created for determining a web
page’s importance [10] but has since been used in many other contexts as well (e.g., [12, 22]).

This small list of measures is in no way intended to be exhaustive. Many other measures exist and even the
ones listed here have several varieties themselves. They have been chosen because they are both well-known and
generally used and accepted. Moreover, they can be computed using standard software tools. For the current
article, we used the igraph R package, available at http://cneurocvs.rmki.kfki.hu/igraph/.

The centrality measures listed above all have variants for directed and undirected networks, but we will
only consider the directed variants. Both degree centrality and closeness centrality have different algorithms for
in-links and out-links. We can distinguish between in-degree centrality (IDC) and out-degree centrality (ODC),
and between in-closeness centrality (ICC') and out-closeness centrality (OCC). This distinction is not useful for
betweenness centrality and PageRank.
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Fia. 3.2. Power law distribution for in-degree and out-degree

3.2.2. Comparison of unevenness between network measures. The graph is not fully connected,
but the main component (N = 40, 303) accounts for the vast majority of nodes (98.5%). Henceforth, we will
only consider the nodes that are part of the main component, since very small components (e.g., N = 2) can
distort the overall picture. For instance, a node v in such a component may have CC, = 1, even if its position
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in the overall network is obviously marginal. We therefore consider it methodologically more correct to only
consider nodes that are part of the main component.

Comparing IDC to ODC and ICC to OCC (Figure 3.3), we see that in both cases the measure based on
in-links is more uneven. In spite of this difference, it should be noted that in both cases the shape of the Lorenz
curve of the in-link-based measure is similar to that of the out-link-based one.

PageRank is, in a sense, a more refined version of in-degree centrality. Whereas the latter only considers
the local neighbourhood (i. e. the number of links to a given node), PageRank also considers the status of
the nodes that are linking to a given node by iteratively passing status between nodes. Figure 3.4 shows that
PageRank is actually more even than in-degree centrality. In other words: some extreme variations in degree
are ‘evened out’ by looking at a node’s status in the entire network rather than just its number of in-links.
Inspection of the data reveals that this is almost exclusively due to nodes with a low number of in-links from
some very high status nodes. Put another way, differences between PageRank and IDC may be due to IDC
either ‘overrating’ or ‘underrating’ some nodes; at least for this example, the latter is mostly the case. Despite
the outliers, PageRank and in-degree centrality are highly correlated. Figure 3.4 also illustrates the usefulness
of the Lorenz curve for comparing different measures: it makes it possible to, for instance, compare raw numbers
(IDC) to normalized ones (PageRank).
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Fic. 3.3. Comparison of unevenness between in-link-based and out-link-based measures. (a) Comparison of ICC to OCC, (b)
Comparison of IDC to ODC

Betweenness centrality is remarkably uneven (Figure 3.5). Indeed, we immediately see that more than 80%
of all nodes have zero betweenness centrality. The Lorenz curve clearly reveals that betweenness centrality is
considerably less even than any of the other measures discussed here.

3.3. Discussion. Comparing the Lorenz curves of the different centrality measures reveals a remarkably
diversified picture. Betweenness centrality is clearly least even of all. Subsequently, we get degree centrality,
PageRank and closeness centrality. The Gini evenness indices basically tell the same story and are summarized
in Table 3.1.

As a tentative explanation, we suggest that these differences may be largely due to the small-world effect
[26, 31]. Even marginal nodes are relatively close to all others, accounting for minimal differences in closeness.
Indeed, the length of the diameter—the longest shortest path—is only 11 and the average shortest path length
only 4.12!

As a whole, the graph fits well into the bow-tie or corona models [6, 7, 11], which were originally devised
for modelling and explaining link structure on the World Wide Web. The core of the main component is the
Largest Strongly Connected Component or LSCC (N = 9,723), a component in which any node can be reached
(obeying the direction of the links). The LSCC itself has a nucleus of hubs [13, 19], through which almost
all other shortest paths pass. These hub nodes typically have extremely high degree centrality. This has two
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Fia. 3.4. Comparison of unevenness between PageRank and in-degree centrality
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Fia. 3.5. Unevenness of betweenness centrality

interesting, seemingly opposite, effects. On the one hand, closeness is increased and closeness centrality becomes
more even. On the other hand, it brings about a very uneven betweenness centrality distribution.

PageRank distribution is more even than one might intuitively expect. The hubs have a high status, which
is partially transmitted to each of the nodes they link to. As such, a large number of nodes gains a higher
PageRank than might be expected from their in-degree centrality or betweenness centrality. Indeed, even if no
shortest paths pass through them, their PageRank will still be relatively high. This property of PageRank is
very desirable for ranking Web pages, but may be unwanted in some applications of SNA.

4. Conclusions. We have shown how SPARQL can be used in processing social Semantic Web data in a
simple two-step methodology, converting the source graph to a better suited derived graph. While SPARQL
is obviously less powerful than a ‘real’ reasoning engine or a dedicated program, it is often sufficient and may
well prove simpler and faster to implement. RDF tools are generally not geared towards SNA, although Flink
[23] incorporates some basic SNA statistics. Therefore, conversion to other formats is currently recommendable
but, luckily, straightforward.
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TABLE 3.1
Gini evenness index of all centrality measures in increasing order of evenness

Centrality measure G’
Betweenness centrality 0.01
In-degree centrality 0.12
Degree centrality (in and out) 0.25
Out-degree centrality 0.26
PageRank 0.35
In-closeness centrality 0.73
Out-closeness centrality 0.88

Closeness centrality (in and out)  0.94

The Lorenz curve and the Gini evenness index G’ are two excellent methods for studying unevenness. Taking
Agrippa as a concrete example, it can be seen that unevenness measures may confirm or enforce hypotheses
regarding the network topology. In the example discussed, the massive difference between betweenness centrality
and closeness centrality distribution confirms the small-world hypothesis and reveals the topology of the graph
with a small nucleus, through which most other paths must pass. The example also illustrates the need for a
wide variety of centrality measures: they are indeed very different (as is obvious from just comparing the Lorenz
curves) and each reveals a different aspect of the network.

Most of these results, such as the establishment of the small-world effect, could have been achieved without
studying the unevenness of network properties. Consequently, the current paper should be regarded as a first
step: it illustrates how unevenness measures can be used to achieve results similar to existing, well-established
methods. In future research, we hope to expand upon these results by studying a greater variety of (social)
networks, including different classes of small-world networks [2].
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