
Salable Computing: Pratie and ExperieneVolume 9, Number 4, pp. 281�292. http://www.spe.org ISSN 1895-1767© 2008 SCPEDEEP WEB NAVIGATION BY EXAMPLEYANG WANG AND THOMAS HORNUNG∗Abstrat. Large portions of the Web are buried behind user-oriented interfaes, whih an only be aessed by �lling out forms.To make the therein ontained information aessible to automati proessing, one of the major hurdles is to navigate to the atualresult page. In this paper we present a framework for navigating these so-alled Deep Web sites based on the page-keyword-ationparadigm: the system �lls out forms with provided input parameters and then submits the form. Afterwards it heks if it hasalready found a result page by looking for pre-spei�ed keyword patterns in the urrent page. Based on the outome either furtherations to reah a result page are exeuted or the resulting URL is returned.Key words: form analysis, deep Web navigation by page-keyword-ations1. Introdution. The Web an be lassi�ed into two ategories with respet to aess patterns: theSurfae Web and the Deep Web [7℄. The Surfae Web onsists of stati and publily available Web pages, whihontain links to other pages and an be represented as a direted graph. This Web graph an be traversed byrawlers (also known as spiders) and the found pages are then traditionally indexed by searh engines.The Deep Web in ontrast onsists of dynamially generated result pages of numerous databases, whihan be queried via a Web form. These pages annot be reahed by following links from other pages and it istherefore hallenging to index their ontent. Figure 1 depits the general interation pattern between the userand a Deep Web site. The user �lls out the form �eld with the desired information (1) and the Web form issent to the server where it is transformed in a database query. In this phase it is possible, that the systemneeds further user input due to ambiguity in the underlying data, e.g. there might be too many results for aquery, and the user has to provide further information on intermediate pages (2). Finally, the Web server hasgathered all neessary information to generate the result page and it is delivered to the user (3).[12℄ disovered an exponential growth and great subjet diversity of these Deep Web sites. Among othersthey arrived at the following onlusions:
• There are approximately 43.000�96.000 Web-aessible databases,
• The Deep Web is 400�500 times larger than the Surfae Web,
• 95% of the available data and information on the Deep Web is freely available.Taking into aount this vast amount of high-quality data, whih is geared towards human visitors, it is notsurprising that many di�erent researh questions are atively pursued in this area at the moment, e.g. vertialsearh engines [13℄.In this paper we present DNavigator, a framework to automate the neessary interation steps to obtaindata from Deep Web sites. The idea is to reord the user interations from the initial Web form to the desiredresult page. These interations are generalized, where two di�erent phases an be distinguished: the �llingout and submission of the frontend form (f. (1) in Figure 1) and the ations performed on intermediate pages(f. (2) in Figure 1). Consequently, DNavigator onsists of two omponents: Web form analysis and Deep Webnavigation modeling.This framework has been motivated by the FireSearh projet [15℄, whih is geared towards olleting andanalyzing Deep Web data at query time. The ultimate extration and labeling of data from the result page isdone with the ViPER extration system [23℄. However, as the framework has been implemented in JavaSriptand Java as a Firefox plugin it ould be used with minor modi�ations in other projets, e.g. for a domain-spei�Meta Searh engine, where the relevant Deep Web soures ould be integrated by an interested ommunity, aswell.The paper is strutured as follows: we start with a desription of the two main omponents of our framework,namely the analysis of form �elds in Setion 2 and the navigation model in Setion 3. Setion 4 deals with theintriaies of implementing our researh prototype in the Firefox browser. In Setion 5 we present an evaluationof our system and in Setion 6 we disuss related work. Finally, we give an outlook on future work in Setion 7and onlude with Setion 8.

∗Institute of Computer Siene, Albert-Ludwigs University Freiburg, Germany,{wangy,hornungt}�informatik.uni-freiburg.de 281



282 Y. Wang and T. Hornung

Fig. 1.1. Aessing a Deep Web site2. Form analysis. Web forms are omnipresent: whether the user searhes for information on Google,partiipates in an online vote, or omments an entry in a blog, she always provides information via �lling outand submitting a form. On a more tehnial level, eah input element (in the ontext of this paper we refer toall elements in the form �eld that an be provided with a value, e.g. hekboxes, as input elements) of a Webform is assoiated with a unique ID and on submission of the form the value assignments are enoded as eitherGET or POST HTTP request [3℄.
Fig. 2.1. Web form with HTML representationFigure 2.1 shows an example of a simple Web form. The unique ID for the input element labeled Firstname is s1 and thus the assoiated HTTP GET request looks as follows:GET /searh.gi?s1=Yang&s2=Wang HTTP/1.1Host: www.example.orgUser-Agent: Mozilla/4.0Aept: image/gif, image/jpeg, */*Connetion: loseIn Setion 2.1 we disuss how to map user-de�ned labels onto input elements, while we deal in Setion 2.2with the problem of dependenies between di�erent input elements. Finally, in Setion 2.3 we show how togenerate a valid HTTP POST/GET request based on the olleted data.



Deep Web Navigation by Example 2832.1. Labeling of Input Elements. Initially for eah new Web page we store all ourring forms withall input elements, IDs and the range of legal values (i. e. for dropdown menu lists, this would be the set oflegal options), in a database for later analysis. Afterwards the user an load the desired form �eld and label thedesired input elements, e.g. in Figure 2.2 the maximum desired prie the visitor is willing to pay for a used arhas been labeled Prie-To. The labeling of the Web forms is inspired by the idea of soial bookmarking [14℄:eah user has a personal, evolving voabulary of tags. Here a tag is a ombination of a string label with anXML datatype [15℄. The example in Figure 2.2 shows the user voabulary in the upper orner, where the sizeof the labels is determined by the frequeny they have been used before.Overall she has labeled six input elements, e.g. the desired brand and the make of the ar. Now we hekfor eah labeled input element, if they are stati or if there are any dynami dependenies, whih might be dueto Ajax interations with the server. Note, that only these input elements of the form an be used later on forquerying that have been labeled in this stage.

Fig. 2.2. Labeling of input elementsOur running example is the analysis of a Web searh engine for used ars (http://www.autosout24.de),where eah ar model depends on its ar make. The other input elements are stati, i. e. they do not hange ifone of the other input elements is hanging.2.2. Dependeny Chek of Input Elements. The dynami and stati ombinations are determinedautomatially after the user has �nished labeling the desired input elements based on the following idea: modifythe �rst dropdown menu (only dropdown menus are urrently onsidered as andidates for dynami elements, allother input element types are assumed to be stati by default) and hek all other labeled dropdown menus, if theavailable options have hanged. If this is the ase, then modify the dependent dropdown menu to unover layereddependenies and mark the dependent menu as dynami. After all dropdown menus have been heked, we markall menus that are not dynami as stati. To avoid loops, we only hek possible dropdown menus that have notpartiipated in a dependeny in the urrent analysis yle before, e.g. in the example shown in Figure 2.2 thear model would not be onsidered if we hek for further dynami dependenies for the ar make input element.Figure 2.3 and Figure 2.4 show the resulting stati and dynami dependenies for our running example.After the dependeny hek, the form is submitted and either a POST or GET HTTP request [3℄ is gener-ated, whih enodes the value assignments for the input elements. Here we store the request URL, the ationattribute of the form, and the spei� value assignments, whih are later used for building new requests o�ine.



284 Y. Wang and T. Hornung

Fig. 2.3. Relation tree for stati input elements for http://www.autosout24.de

Fig. 2.4. Relation tree for dynami input elements for http://www.autosout24.de2.3. Simulation of Web Form Behavior. Using the gathered data we now have two possible options tosimulate the Web form behavior: we an either use the variable bindings for the user-de�ned tags to �ll out andsubmit the Web form online, taking into onsideration the dynami and stati dependenies or we an diretlygenerate a POST/GET HTTP request o�ine. For obvious reasons, we usually prefer the o�ine generation, butas is disussed in Setion 5.2 it is sometimes neessary to (automatially) �ll out the Web form online.Suppose the user provided the following variable bindings for our running ar searh exampleCar-Brand=BMWCar-Model=850and the originally aptured request URL washttp://www.autosout24.de/List.aspxwith the following searh partvis=1&make=9&model=16581&...Now we �rst math the tags to the orresponding URL �eld and the string representation to the assoiatedvalue, yieldingmake=13model=1664



Deep Web Navigation by Example 285These two key-value pairs an then be inserted in the original searh part, whih gives us the new searh part:vis=1&make=13&model=1664&...Depending if a POST or GET request is required, the variable bindings are either enoded in the body ofthe message or diretly in the URL.After the HTTP request is send to the server, we either diretly get bak the result page, or alternatively anintermediate page. In the latter ase we automatially navigate to the result page based on the Page-Keyword-Ation paradigm, whih is presented in the next setion.3. Deep Web navigation. The navigation model is a ruial part of our system. Based on the modelthe system an determine anytime, if it has already reahed the result page or if it is on an intermediate page.Additionally the model determines the ations, whih should be performed for a spei� intermediate page, e.g.to lik on a link or �ll out a new form �eld. The key idea of our Page-Keyword-Ation paradigm is that thesystem �rst determines its loation (intermediate vs. result page) based on a page keyword and then invokes aseries of assoiated ations if appropriate.

Fig. 3.1. Navigation proess3.1. Deep Web Navigation. The overall navigation proess is illustrated in Figure 3.1: the user providesthe system with a value map that ontains for eah desired input element label/value ombinations. If the form�eld ontains dynami input elements for whih she has provided input label/value ombinations we hek ifthey are legal. If so, we subsequently �ll out and submit the form �eld with these ombinations, whih yields anew Web page (additionally, we use the information obtained during form analysis for diretly generating therequest POST/GET URL; thereby we an o�ine mimi the behavior of the form �eld). For this Web page wehek, if we an �nd one of our de�ned keywords (f. Setion 3.2). If so, we perform the assoiated ationswhih result in a new Web page and hek again if we are on a intermediate page. The yle ontinues as longas we an �nd keywords on the Web page. To avoid an in�nite loop, the user an speify an upper bound on thenumber of possible intermediate pages, after whih an error message is returned. If we annot �nd a keywordon the urrent Web page, we have found the goal page and return its URL.3.2. Intermediate Page Keyword. Deep Web pages are typially reated dynamially, i. e. data froma bakground database is �lled into a prede�ned presentation template. Therefore, we an usually identify�xed elements, whih are part of the template and are almost idential between di�erent manifestations. Afterthe form analysis is �nished the user an iteratively submit the form with di�erent options. If an input valueombination leads her to an intermediate page, she an identify the relevant keyword as desribed in thefollowing. If she has already reahed a result page for a value ombination no further user interations arerequired. Note that as long as she is in the ontext of the urrently ative form �eld, she an also aess aseries of intermediate pages and for eah page speify a series of ations. For the identi�ation of a spei�intermediate page we opted for a stati text �eld. The reason is that it an be inluded in many HTML elements,e.g. the div, h2, or the span tag and given our template assumption they serve as a su�ient disriminatoryfator. Other more advaned tehniques based on visual markers on the page or more IR-related tehniques,suh as text lassi�ation approahes [19℄, ould be used in this ontext as well and are planned as future work.In Figure 3.2 we have marked potential andidates for keywords with a retangle.



286 Y. Wang and T. Hornung

Fig. 3.2. Intermediate pages for http://www.autosout24.de (left) and http://www.imdb.om (right)The most likely andidates whih are most harateristi are enirled with an ellipse, e.g. the error messagefor the ar searh servie shown on the left. After the user has identi�ed the keyword in the page, she an nowspeify ations that should be performed in order to reah the result page.3.3. Intermediate Page Ations. The above spei�ed keywords an be used to identify intermediatepages. However, our ultimate goal is to �nd a result page given a set of input value ombinations for the initialform �eld. Therefore some ations, suh as liking on a link or �lling out and submitting a new (intermediate)form, have to be performed to aess the next�preferably result�page. In order to uniquely identify theappropriate HTML elements on whih the stored ations should be exeuted, we de�ned a path addressinglanguage alled KApath, whih is a semanti subset of XPath [5℄. In order to aess the appropriate ationelement, the system �rst �nds the ommon anestor of the keyword element and the ation element and thendesends downwards in the ation element branh. Afterwards, the registered ations are exeuted for the foundation element. Thus, KApath supports the following path expressions:
• /Node[�aname1=avalue1=℄ . . . [�anamen=avaluen℄: The element in the DOM tree thatmathes the spei�ed attribute name-value ombinations of type Node,
• /P: Immediate parent node of urrent node,
• /P::P: All (transitive) parent nodes of urrent node,
• /P::P/Node[�aname1=avalue1℄ . . . [�anamen=avaluen℄: The �rst found parent node in theDOM tree that mathes the spei�ed attribute name-value ombinations starting from the urrent nodeand is of type Node,
• /Child: Immediate hild nodes of urrent node,
• /Child::Child: All (transitive) hild nodes of the urrent node,
• /Child::Child/Node[�aname1=avalue1℄ . . . [�anamen=avaluen℄: The �rst found hild nodein the DOM tree that mathes the spei�ed attribute name-value ombinations starting from the urrentnode and is of type Node.Figure 3.3 shows an example how the assoiated ation element in a page an be referened with respetto the page keyword with a KApath expression. Here, the TBODY node is the �rst ommon parent node forboth (keyword and ation) elements. Therefore the system automatially generates a KApath expression whihallows optional intermediate elements between the keyword and the �rst ommon parent node. For �nding theorret ation element it is ruial to onsider its attributes as well.If the desired ation elements have no (e.g. links) or dynami attributes (e.g. visibility), we additionallystore the absolute path from keyword to ation element and the tree struture starting from the ommon parent.Another situation where we an make use of the absolute path is when the HTML page struture has hangedand the ommon parent node is still on the same level in the DOM tree but in another branh. The treestruture is helpful if there are hanges on the way downwards from the ommon parent node.



Deep Web Navigation by Example 287

Fig. 3.3. Example KAPath expression, whih allows optional HTML elements in the intermediate page3.4. Reording User Ations. Based on the user's browsing behavior, the system an generate theomplete navigation model. First, she identi�es the keyword for an intermediate page by liking on therelevant text in the Web page. Then, the system determines the losest surrounding HTML element and storesthe relevant ontext information. Afterwards, the system monitors the user behavior and stores eah ation sheperforms until she reahes a new page. Based on this ation log, the system an automatially determine thepaths and tree strutures for eah ation.To ease the reording of the user ations we have implemented WSript, a HTML ation language similar toChikenfoot [8℄. This intermediate sript language is onvenient, beause in order to �nd the HTML elementson whih the ations have to be invoked we have to rely on the navigation strutures de�ned in Setion 3.3.Therefore, the provided ations have a navigation and (if appliable) an input part.The following types of ations are supported by our system:
• Cliking on links: link(absolute path, KApath, tree struture),
• Entering text in input �elds: enter(absolute path, KApath, tree struture, element name, element ID,input value),
• Seleting a hekbox or radio button: lik(absolute path, KApath, tree struture, element name, elementID),
• Seleting an option from a dropdown menu: dropdown(absolute path, KApath, tree struture, optiontext, element name, element ID), and
• Submitting forms: lik(absolute path, KApath, tree struture, element name, element ID).The element name and ID that are present for some ations are idential to the name and ID attributes ofthe underlying HTML element and are used �rst to �nd the relevant HTML element. If the lookup by ID andname fails, the searh for the ation element ontinues with the KApath as desribed in Setions 3.3 and 4.2.For example the following ation expression would enter Hallo World into the text input �eld of the HTML treein Figure 3.3:enter(/ParentNode/ParentNode/ParentNode/Child[1℄/Child[1℄/Child[0℄,/P::P/TBODY[�a1=v1℄[�a2=v2℄/Child::Child/INPUT[�a3=v3℄,TBODY(TR,TR)/TR(TD,TD)/TD(INPUT)�,Hallo World)Together, keyword and the assoiated ations form the navigation model for this intermediate page (f.Figure 3.3).4. Implementation. In this setion, we desribe in detail the implementation of DNavigator. Beausethe framework is geared towards asual Web users, important requirements must be met, most notably thetool must be easy to use. The DNavigator funtionality is implemented as a Firefox extension in Java andJavaSript running a MySQL database for storing the neessary metadata (f. Figure 4.1). LiveConnet [11℄



288 Y. Wang and T. Hornungprovides JavaSript with the ability to reate and manipulate standard Java objets so that the system anonnet to the database, e.g. to store the extrated dynami dependenies and the navigation model, and feththe prede�ned navigation models from the database to manipulate an intermediate page.

Fig. 4.1. System arhitetureThe rest of this setion desribes the implementation as well as the main issues we solved while implementingthe system.4.1. Navigation Model Creation. The system traks a user's navigation ations on an intermediatepage by adding JavaSript event handlers to Web pages before reording. These event handlers are invokedwhen ertain user ations our (e.g., liking on text, liking on a link, hanging the seleted option in adropdown menu, et.), whih are supported by our system. The reording proess is as follows: when the userpresses the analysis button in the Firefox plugin window, the system sets event handlers on all likable elementsin the page displayed in the browser (i. e., handlers for links, handlers for forms, et.). When an event �res,the system reords all the neessary information for the event, e.g. KApath, absolute path, tree struture et.It must then wait until the following page is loaded to repeat the proess of adding handlers and waiting forevents.In order to determine the KApath, absolute path and tree struture with respet to the keyword and ationelement the system traverses the Doument Objet Model [1℄ tree starting from both elements.4.2. Deep Web Navigation. After submitting the o�ine generated HTTP request, the �rst web pageis returned from the target server. The system inserts an onload handler in the Web page to detet when thepage has been ompletely loaded. Then, after the page has been downloaded, the navigation is invoked, i. e. thesystem will hek whether one of our prede�ned keyword elements exist in this returned page. If this is the ase,it is an intermediate page. Beause for eah keyword element we have saved its HTML type, attributes sequeneand ontained text, the hek proess was realized in JavaSript using the doument objet and node objetbased on the DOM tree, i. e. with the method getElementsByTagName(). The system �rst �nds all HTMLelements that have idential HTML types as keyword element. After the omparison between the attributes ofthese found elements and the stored attributes of the keyword element, and between the saved keyword textand the found keyword text, the system an determine whether a saved keyword (keyword element) exists inthis intermediate page.For any intermediate page a number of related ations must be performed, so that the system is able tonavigate in the diretion of the result page. Before suh ations are exeuted, the system must �rst �nd theation-related elements, i. e. we must �nd all HTML elements, on whih the ation-events have to be ativated.For this goal we use WSript that was presented in Setion 3.4. The assoiated sript will be fethed from thedatabase using the Website ID and the identi�ed keywords. Afterwards, an interpreter funtion is invoked toparse and exeute every WSript expression step by step. Here, we iteratively use the following approahes:1. When the orresponding element's attributes id or name are available, the ation element an be easilyfound with the method getElementById() and getElementsByName().



Deep Web Navigation by Example 2892. Otherwise, we try to �nd the ation element based on the KApath-expression.3. Finally, if the ation element after exeuting the �rst two strategies annot be found, the system usesthe absolute path and the tree struture to loate the ation element.The exeution of related ations is simulated using DOM Level 2 events [1, 2℄, i. e. fake event objets arereated using the doument.reateEvent() method. Afterwards, they are ativated on the desired ation elementusing the element.dispathEvent() method.5. Evaluation. In our experiments, we evaluated the following aspets for our two major omponents:auray and runtime. For this, we seleted 100 Deep Web sites from di�erent domains, e.g. ar searh andvideo searh. 60 of them were diretly adopted from the website table in [7℄, beause they ontain a largeamount of data. The others were seleted by a foused searh on Google on Deep Web repositories. For a fulllist of the tested Web sites we refer the interested reader to [25℄.5.1. Experimental Results. All experiments have been onduted on a Thinkpad T60 (Intel Core Duo2 Proessor T7200 2,00Ghz with a 667MHz front side bus and 2GB of main memory) running Windows Vista,MySQL Server 5.0, Java JDK 1.6 and Firefox 2.0.0.12. The maximal download rate of the internet onnetionwas 2048 Kbit/s and the maximum upload rate 256 Kbit/s.5.1.1. Frontend Analysis. For 99% of the tested Web sites the frontend analysis was suessful, �ndingthe orret stati and dynami dependenies. Depending on the number of items in the dropdown menus of theform �elds, the time needed for analysis took from 0.5 to 30 seonds, i. e. 4.28 seonds on average. Sine thisanalysis has only to be performed one, we feel that performane optimizations for this analysis are of limitedbene�t, beause our major fous is on orretly identifying hidden dependenies between the dropdown menus.Table 5.1Time (in seonds) for navigation experiments.# Int. Pages # Web Sites Page Load 1 Model 6 Models0 58 2.25 2.26 2.311 22 - 4.60 4.662 14 - 6.47 6.553 4 - 8.12 8.234 1 - 9.70 9.835 1 - 11.06 11.225.1.2. Deep Web Navigation. For 96% of the tested Web sites we were able to suessfully �nd akeyword and to navigate to the desired result page. The navigation proess took from 2.26 to 11.22 seonds,i. e. 3.79 seonds on average. As shown in Table 5.1 most of the time was spend for loading pages, i. e. 2.25seonds on average. The olumns labeled 1 Model and 6 Models indiate the number of registered navigationmodels for eah page. As an be seen, the overhead for heking multiple models was marginal in ontrast tothe time spent for loading pages. This is due to the fat that the exeution of the ations is performed by thebrowser on the lient side and sine no omputationally intensive algorithm is required to identify intermediatepages.5.2. Open Issues. Our evaluation revealed the following open issues of our system.5.2.1. Frontend Analysis.
• Delayed AJAX interations: For one Web site we were unable to orretly detet the dynami depen-denies beause the server took longer than our spei�ed threshold to hange the items in the respetivedropdown menu.This ould be remedied by inreasing our threshold value to some extent, but further investigation is neededto �nd a general solution for this problem.5.2.2. Deep Web Navigation.
• Dynami request URLs: Usually, di�erent request URLs only di�er in the searhpart, i.e. the part ofthe URL after ?, due to di�erent variable bindings, whih are transferred to the server. Two Web sitesin our test bed used di�erent paths as well, whih our system onverts into illegal request URLs.



290 Y. Wang and T. Hornung
• Hidden form elements: Sine the user an only drag labels to visible form elements, values in hiddenform elements that have to be orrelated with visible elements annot be deteted by our system.
• Session IDs: Session IDs are often used to trak user interations with Web pages and are only validfor a ertain period. Beause we are not able to produe a new (fake) session ID for eah servie, theo�ine generated URL beomes invalid over time.All of the abovementioned issues ould be solved by �lling out the frontend form at runtime and skippingthe o�ine generation of the URL for suh resoures.
• Stati URLs: Our system determines, if a new Web page has been loaded based on the urrent URL.If the URL does not hange after a form has been submitted, we are not able to initiate the navigationproess and add the required event handler as desribed in Setion 4.2.This an be solved by using another metri for determining if a new Web page has been loaded, e.g.a heksum of the Web page.6. Related Work. [22℄ presents a framework alled DEQUE for querying Web forms where input valuesare allowed from relations as well as from result pages. As a part of their system they also model Webform interfaes, but their fous is more on the modeling of onseutive forms and they did not onsider thedependenies between form input elements.A number of navigation onepts have been proposed for aessing Deep Web soures. [10℄ and [18℄ proposedproess-oriented navigation maps, whih desribe a set of paths from a start page to a result page. But thesemaps rely on onseutive state transitions and �xed interations between them. In [16℄ the user ations froma spei�ed start page over possibly multiple intermediate pages to an end page are reorded in a navigationmap. The ations that link two adjaent pages are strongly onneted as well. A sophistiated Deep Webnavigation strategy based on the branhed navigation model is proposed in [6℄. The navigation is represented asa sequene of pages, with envisioned future support for standard proess-�ow languages suh as WS-BPEL [4℄.In [21℄ a navigation sequene was spei�ed in NESQL [20℄. The NESQL expression ontains metadata aboutation elements, for instane, their spei�ed names and types. Eah expression will be interpreted based onthese element properties. By storing historial information from previous aesses of a Deep Web resoure andutilizing browser pools, their system tries to reuse the urrent state of a browser. [24℄ desribe a system alledWebVCR, whih is able to reord and replay a series of browser steps as a smart bookmark, but they do notonsider optional intermediate pages.Our framework is not dependent on a rigid sequene of intermediate pages, beause for eah new page allkeyword patterns are heked and therefore the previous state of the system is not important for our page-oriented navigation model. Besides, we do not need a omplex navigation algebra or alulus for the navigationproess beause we just save the above desribed navigation model for eah intermediate page. For instane,the framework proposed by [10℄ relies on a subset of serial-Horn Transation F-Logi [17℄. As disussed inSetion 3.4, the saved ation sequenes are just maro proedures, whih are interpreted by our JavaSriptmaro engine.7. Future Work. At the moment we only perform a hard string math between user inputs and theoptions in a dropdown menu. If the strings do not math exatly an error is returned. At the moment weare investigating approximate string mathing tehniques [9℄ to alleviate this problem to some extent. Analternative would be to use semanti similarity metris, suh as proposed in [27℄, whih would also be able toapture the similarity between the two ar ompanies Toyota and Lexus (a division of Toyota). The work by[26℄ tries to automate the extration of query apabilities, suh as labeling form input elements and �nding legalranges of input values. This ould be interesting to ombine with our approah to suggest tags to the user, orto try to math the labels on the Web form with the tags in the user voabulary and thus easing the labelingof the Web forms.Our experiments suggest that the determination of a suitable keyword is ruial for the suessful identi-�ation of an intermediate page, and that for some ases it might be better to skip the o�ine generation ofthe start URL. Currently, we are extending our researh prototype to aept a list of keywords and work onan algorithm to automatially suggest meaningful and disriminatory keywords. Ultimately, we are interestedin generalizing the onept of immediate page identi�ation to more elaborate tehniques, suh as the visualappearane of the Web page.8. Conlusion. In this paper we presented DNavigator, a framework for aessing result pages of DeepWeb sites, whih ontributions are twofold: �rst, a frontend analysis has been desribed, whih needs only to



Deep Web Navigation by Example 291be performed one, and afterwards the system an simulate the behavior of the Web form o�ine. Seond, wehave proposed a simple but e�etive Deep Web navigation strategy, whih replaes a heavy-weight navigationalulus with an intermediate page identi�ation proedure and a set of ations that navigate to the next page.The proposed navigation strategy has the following bene�ts:1. It is stateless. Beause for eah page, we hek all available navigation models, we are not dependenton a spei� navigation order.2. Simple extensibility. If the system enounters a new and so far unknown immediate page, the user aneasily extend the existing navigation model with only a few steps.3. Simple presentation of the model. Eah navigation model has an intuitive textual representation whihis easier to understand and use than a ompliated navigation alulus.To sum up, DNavigator o�ers a simple user interfae, but suessfully deals with most of the problems that areposed by real-world Deep Web sites as our evaluation has shown.REFERENCES[1℄ Doument objet model (dom). http://www.w3.org/DOM/[2℄ Doument objet model (dom) level 2 events spei�ation. http://www.w3.org/TR/DOM-Level-2-Events/[3℄ Hypertext transfer protool�http/1.1 (rf 2616). http://tools.ietf.org/html/rf2616/[4℄ Web servies business proess exeution language version 2.0. http://www-128.ibm.om/developerworks/library/speifiation/ws-bpel/[5℄ Xml path language (xpath) version 1.0. http://www.w3.org/TR/xpath[6℄ R. Baumgartner, M. Ceresna, and G. Ledermüller, Deep web navigation in web data extration, in Proeedings of the2005 International Conferene on Computational Intelligene for Modelling, Control and Automation, and InternationalConferene on Intelligent Agents, Web Tehnologies and Internet Commere., Vienna, Austria, 2005, pp. 698�703.[7℄ M. K. Bergman, The deep web: Surfaing hidden value, white paper. http://www.brightplanet.om/images/stories/pdf/deepwebwhitepaper.pdf 2001.[8℄ M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller, Automation and ustomization of rendered web pages,in Proeedings of the 18th Annual ACM Symposium on User Interfae Software and Tehnology, Seattle, WA, USA, 2005,pp. 163�172.[9℄ W. W. Cohen, P. Ravikumar, and S. E. Fienberg, A omparison of string distane metris for name-mathing tasks,in Proeedings of the Workshop on Information Integration on the Web, Aapulo, Mexio, pp. 73�78.[10℄ H. Davulu, J. Freire, M. Kifer, and I. V. Ramakrishnan, A layered arhiteture for querying dynami web ontent, inProeedings of the ACM SIGMOD International Conferene on Management of Data, Philadelphia, Pennsylvania, USA,19999, pp. 491�502.[11℄ D. Flanagan, JavaSript: The De�nitive Guide, Fourth Edition, O�Reilly, Sebastopol, CA, USA, 2001.[12℄ B. He, M. Patel, Z. Zhang, and K. C. C. Chang, Aessing the deep web, Communiations of the ACM, 50 (2007),pp. 94�101.[13℄ H. He, W. Meng, C. T. Yu, and Z. Wu, Wise-integrator: A system for extrating and integrating omplex web searhinterfaes of the deep web, in Proeedings of the 31st International Conferene on Very Large Data Bases, Trondheim,Norway, 2005, pp. 1314�1317.[14℄ P. Heymann, G. Koutrika, and H. Garia-Molina, Can soial bookmarking improve web searh?, in Proeedings of theInternational Conferene on Web Searh and Web Data Mining, Palo Alto, California, USA, 2008, pp. 195�206.[15℄ T. Hornung, K. Simon, and G. Lausen, Mashing up the deep web�researh in progress, in Proeedings of the 4thInternational Conferene on Web Information Systems and Tehnologies, Funhal, Madeira�Portugal, 2008, pp. 58�66.[16℄ N. Julasana, A. Khandelwal, A. Lolage, P. Singh, P. Vasudevan, H. Davulu, and I. V. Ramakrishnan,Winagent:A system for reating and exeuting personal information assistants using a web browser, in Proeedings of the 2004International Conferene on Intelligent User Interfaes, Funhal, Madeira, Portugal, 2004, pp. 356�357.[17℄ M. Kifer, Dedutive and objet-oriented data languages: A quest for integration, in Proeedings of the 4th InternationalConferene on Dedutive and Objet-Oriented Databases, Singapore, 1995, pp. 187�212.[18℄ J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F. Laender, Colleting hidden web pages for data extration, inProeedings of the 4th ACM CIKM International Workshop on Web Information and Data Management, Virginia, USA,2002, pp. 69�75.[19℄ K. Nigam, A. MCallum, S. Thrun, and T. M. Mithell, Learning to lassify text from labeled and unlabeled douments,in Proeedings of the 15th National Conferene on Arti�ial Intelligene and Tenth Innovative Appliations of Arti�ialIntelligene Conferene, Wisonsin, USA, 1998, pp. 792�799.[20℄ A. Pan, J. Raposo, M. Alvarez, J. Hidalgo, and A. Vinaet, Semi-automati wrapper generation for ommerialweb soures, in Proeedings of the Working Conferene on Engineering information Systems in the Internet Context,Kanazawa, Japan, 2002, pp. 265�283.[21℄ J. Raposo, M. Alvarez, J. Losada, and A. Pan, Maintaining web navigation �ows for wrappers, in Proeedings of the2nd International Workshop on Data Engineering Issues in E-Commere and Servies, San Franiso, CA, USA, 2006,pp. 100�114.[22℄ D. Shestakov, S. S. Bhowmik, and E. P. Lim, Deque: Querying the deep web, Data & Knowledge Engineering, 52(2005), pp. 273�311.



292 Y. Wang and T. Hornung[23℄ K. Simon and G. Lausen, Viper: Augmenting automati information extration with visual pereption, in Proeedings ofthe 2005 ACM CIKM International Conferene on Information and Knowledge Management, Bremen, Germany, 2005,pp. 381�388.[24℄ A. Vinod, J. Freire, B. Kumar, and D. F. Lieuwenet, Automating web navigation with the webvr, in Proeedings ofthe 9th International World Wide Web Conferene, Amsterdam, The Netherlands, 2000, pp. 503�517.[25℄ Y. Wang, Deep web navigation by example, master's thesis, Institute of Computer Siene, Albert-Ludwigs UniversityFreiburg, 2008.[26℄ Z. Zhang, B. He, and K. C. C. Chang, Understanding web query interfaes: Best-e�ort parsing with hidden syntax, inProeedings of the ACM SIGMOD International Conferene on Management of Data, Paris, Frane, 2004, pp. 107�118.[27℄ C. N. Ziegler, K. Simon, and G. Lausen, Automati omputation of semanti proximity using taxonomi knowledge,in Proeedings of the ACM CIKM International Conferene on Information and Knowledge Management, Arlington,Virginia, USA, 2006, pp. 465�474.Edited by: Dominik Flejter, Tomasz Kazmarek, Marek KowalkiewizReeived: January 11th, 2008Aepted: Marh 19th, 2008Extended version reeived: June 25th, 2008


