
S
alable Computing: Pra
ti
e and Experien
eVolume 9, Number 4, pp. 281�292. http://www.s
pe.org ISSN 1895-1767
© 2008 SCPEDEEP WEB NAVIGATION BY EXAMPLEYANG WANG AND THOMAS HORNUNG∗Abstra
t. Large portions of the Web are buried behind user-oriented interfa
es, whi
h 
an only be a

essed by �lling out forms.To make the therein 
ontained information a

essible to automati
 pro
essing, one of the major hurdles is to navigate to the a
tualresult page. In this paper we present a framework for navigating these so-
alled Deep Web sites based on the page-keyword-a
tionparadigm: the system �lls out forms with provided input parameters and then submits the form. Afterwards it 
he
ks if it hasalready found a result page by looking for pre-spe
i�ed keyword patterns in the 
urrent page. Based on the out
ome either furthera
tions to rea
h a result page are exe
uted or the resulting URL is returned.Key words: form analysis, deep Web navigation by page-keyword-a
tions1. Introdu
tion. The Web 
an be 
lassi�ed into two 
ategories with respe
t to a

ess patterns: theSurfa
e Web and the Deep Web [7℄. The Surfa
e Web 
onsists of stati
 and publi
ly available Web pages, whi
h
ontain links to other pages and 
an be represented as a dire
ted graph. This Web graph 
an be traversed by
rawlers (also known as spiders) and the found pages are then traditionally indexed by sear
h engines.The Deep Web in 
ontrast 
onsists of dynami
ally generated result pages of numerous databases, whi
h
an be queried via a Web form. These pages 
annot be rea
hed by following links from other pages and it istherefore 
hallenging to index their 
ontent. Figure 1 depi
ts the general intera
tion pattern between the userand a Deep Web site. The user �lls out the form �eld with the desired information (1) and the Web form issent to the server where it is transformed in a database query. In this phase it is possible, that the systemneeds further user input due to ambiguity in the underlying data, e.g. there might be too many results for aquery, and the user has to provide further information on intermediate pages (2). Finally, the Web server hasgathered all ne
essary information to generate the result page and it is delivered to the user (3).[12℄ dis
overed an exponential growth and great subje
t diversity of these Deep Web sites. Among othersthey arrived at the following 
on
lusions:
• There are approximately 43.000�96.000 Web-a

essible databases,
• The Deep Web is 400�500 times larger than the Surfa
e Web,
• 95% of the available data and information on the Deep Web is freely available.Taking into a

ount this vast amount of high-quality data, whi
h is geared towards human visitors, it is notsurprising that many di�erent resear
h questions are a
tively pursued in this area at the moment, e.g. verti
alsear
h engines [13℄.In this paper we present DNavigator, a framework to automate the ne
essary intera
tion steps to obtaindata from Deep Web sites. The idea is to re
ord the user intera
tions from the initial Web form to the desiredresult page. These intera
tions are generalized, where two di�erent phases 
an be distinguished: the �llingout and submission of the frontend form (
f. (1) in Figure 1) and the a
tions performed on intermediate pages(
f. (2) in Figure 1). Consequently, DNavigator 
onsists of two 
omponents: Web form analysis and Deep Webnavigation modeling.This framework has been motivated by the FireSear
h proje
t [15℄, whi
h is geared towards 
olle
ting andanalyzing Deep Web data at query time. The ultimate extra
tion and labeling of data from the result page isdone with the ViPER extra
tion system [23℄. However, as the framework has been implemented in JavaS
riptand Java as a Firefox plugin it 
ould be used with minor modi�
ations in other proje
ts, e.g. for a domain-spe
i�
Meta Sear
h engine, where the relevant Deep Web sour
es 
ould be integrated by an interested 
ommunity, aswell.The paper is stru
tured as follows: we start with a des
ription of the two main 
omponents of our framework,namely the analysis of form �elds in Se
tion 2 and the navigation model in Se
tion 3. Se
tion 4 deals with theintri
a
ies of implementing our resear
h prototype in the Firefox browser. In Se
tion 5 we present an evaluationof our system and in Se
tion 6 we dis
uss related work. Finally, we give an outlook on future work in Se
tion 7and 
on
lude with Se
tion 8.

∗Institute of Computer S
ien
e, Albert-Ludwigs University Freiburg, Germany,{wangy,hornungt}�informatik.uni-freiburg.de 281



282 Y. Wang and T. Hornung

Fig. 1.1. A

essing a Deep Web site2. Form analysis. Web forms are omnipresent: whether the user sear
hes for information on Google,parti
ipates in an online vote, or 
omments an entry in a blog, she always provides information via �lling outand submitting a form. On a more te
hni
al level, ea
h input element (in the 
ontext of this paper we refer toall elements in the form �eld that 
an be provided with a value, e.g. 
he
kboxes, as input elements) of a Webform is asso
iated with a unique ID and on submission of the form the value assignments are en
oded as eitherGET or POST HTTP request [3℄.
Fig. 2.1. Web form with HTML representationFigure 2.1 shows an example of a simple Web form. The unique ID for the input element labeled Firstname is s1 and thus the asso
iated HTTP GET request looks as follows:GET /sear
h.
gi?s1=Yang&s2=Wang HTTP/1.1Host: www.example.orgUser-Agent: Mozilla/4.0A

ept: image/gif, image/jpeg, */*Conne
tion: 
loseIn Se
tion 2.1 we dis
uss how to map user-de�ned labels onto input elements, while we deal in Se
tion 2.2with the problem of dependen
ies between di�erent input elements. Finally, in Se
tion 2.3 we show how togenerate a valid HTTP POST/GET request based on the 
olle
ted data.



Deep Web Navigation by Example 2832.1. Labeling of Input Elements. Initially for ea
h new Web page we store all o

urring forms withall input elements, IDs and the range of legal values (i. e. for dropdown menu lists, this would be the set oflegal options), in a database for later analysis. Afterwards the user 
an load the desired form �eld and label thedesired input elements, e.g. in Figure 2.2 the maximum desired pri
e the visitor is willing to pay for a used 
arhas been labeled Pri
e-To. The labeling of the Web forms is inspired by the idea of so
ial bookmarking [14℄:ea
h user has a personal, evolving vo
abulary of tags. Here a tag is a 
ombination of a string label with anXML datatype [15℄. The example in Figure 2.2 shows the user vo
abulary in the upper 
orner, where the sizeof the labels is determined by the frequen
y they have been used before.Overall she has labeled six input elements, e.g. the desired brand and the make of the 
ar. Now we 
he
kfor ea
h labeled input element, if they are stati
 or if there are any dynami
 dependen
ies, whi
h might be dueto Ajax intera
tions with the server. Note, that only these input elements of the form 
an be used later on forquerying that have been labeled in this stage.

Fig. 2.2. Labeling of input elementsOur running example is the analysis of a Web sear
h engine for used 
ars (http://www.autos
out24.de),where ea
h 
ar model depends on its 
ar make. The other input elements are stati
, i. e. they do not 
hange ifone of the other input elements is 
hanging.2.2. Dependen
y Che
k of Input Elements. The dynami
 and stati
 
ombinations are determinedautomati
ally after the user has �nished labeling the desired input elements based on the following idea: modifythe �rst dropdown menu (only dropdown menus are 
urrently 
onsidered as 
andidates for dynami
 elements, allother input element types are assumed to be stati
 by default) and 
he
k all other labeled dropdown menus, if theavailable options have 
hanged. If this is the 
ase, then modify the dependent dropdown menu to un
over layereddependen
ies and mark the dependent menu as dynami
. After all dropdown menus have been 
he
ked, we markall menus that are not dynami
 as stati
. To avoid loops, we only 
he
k possible dropdown menus that have notparti
ipated in a dependen
y in the 
urrent analysis 
y
le before, e.g. in the example shown in Figure 2.2 the
ar model would not be 
onsidered if we 
he
k for further dynami
 dependen
ies for the 
ar make input element.Figure 2.3 and Figure 2.4 show the resulting stati
 and dynami
 dependen
ies for our running example.After the dependen
y 
he
k, the form is submitted and either a POST or GET HTTP request [3℄ is gener-ated, whi
h en
odes the value assignments for the input elements. Here we store the request URL, the a
tionattribute of the form, and the spe
i�
 value assignments, whi
h are later used for building new requests o�ine.



284 Y. Wang and T. Hornung

Fig. 2.3. Relation tree for stati
 input elements for http://www.autos
out24.de

Fig. 2.4. Relation tree for dynami
 input elements for http://www.autos
out24.de2.3. Simulation of Web Form Behavior. Using the gathered data we now have two possible options tosimulate the Web form behavior: we 
an either use the variable bindings for the user-de�ned tags to �ll out andsubmit the Web form online, taking into 
onsideration the dynami
 and stati
 dependen
ies or we 
an dire
tlygenerate a POST/GET HTTP request o�ine. For obvious reasons, we usually prefer the o�ine generation, butas is dis
ussed in Se
tion 5.2 it is sometimes ne
essary to (automati
ally) �ll out the Web form online.Suppose the user provided the following variable bindings for our running 
ar sear
h exampleCar-Brand=BMWCar-Model=850and the originally 
aptured request URL washttp://www.autos
out24.de/List.aspxwith the following sear
h partvis=1&make=9&model=16581&...Now we �rst mat
h the tags to the 
orresponding URL �eld and the string representation to the asso
iatedvalue, yieldingmake=13model=1664



Deep Web Navigation by Example 285These two key-value pairs 
an then be inserted in the original sear
h part, whi
h gives us the new sear
h part:vis=1&make=13&model=1664&...Depending if a POST or GET request is required, the variable bindings are either en
oded in the body ofthe message or dire
tly in the URL.After the HTTP request is send to the server, we either dire
tly get ba
k the result page, or alternatively anintermediate page. In the latter 
ase we automati
ally navigate to the result page based on the Page-Keyword-A
tion paradigm, whi
h is presented in the next se
tion.3. Deep Web navigation. The navigation model is a 
ru
ial part of our system. Based on the modelthe system 
an determine anytime, if it has already rea
hed the result page or if it is on an intermediate page.Additionally the model determines the a
tions, whi
h should be performed for a spe
i�
 intermediate page, e.g.to 
li
k on a link or �ll out a new form �eld. The key idea of our Page-Keyword-A
tion paradigm is that thesystem �rst determines its lo
ation (intermediate vs. result page) based on a page keyword and then invokes aseries of asso
iated a
tions if appropriate.

Fig. 3.1. Navigation pro
ess3.1. Deep Web Navigation. The overall navigation pro
ess is illustrated in Figure 3.1: the user providesthe system with a value map that 
ontains for ea
h desired input element label/value 
ombinations. If the form�eld 
ontains dynami
 input elements for whi
h she has provided input label/value 
ombinations we 
he
k ifthey are legal. If so, we subsequently �ll out and submit the form �eld with these 
ombinations, whi
h yields anew Web page (additionally, we use the information obtained during form analysis for dire
tly generating therequest POST/GET URL; thereby we 
an o�ine mimi
 the behavior of the form �eld). For this Web page we
he
k, if we 
an �nd one of our de�ned keywords (
f. Se
tion 3.2). If so, we perform the asso
iated a
tionswhi
h result in a new Web page and 
he
k again if we are on a intermediate page. The 
y
le 
ontinues as longas we 
an �nd keywords on the Web page. To avoid an in�nite loop, the user 
an spe
ify an upper bound on thenumber of possible intermediate pages, after whi
h an error message is returned. If we 
annot �nd a keywordon the 
urrent Web page, we have found the goal page and return its URL.3.2. Intermediate Page Keyword. Deep Web pages are typi
ally 
reated dynami
ally, i. e. data froma ba
kground database is �lled into a prede�ned presentation template. Therefore, we 
an usually identify�xed elements, whi
h are part of the template and are almost identi
al between di�erent manifestations. Afterthe form analysis is �nished the user 
an iteratively submit the form with di�erent options. If an input value
ombination leads her to an intermediate page, she 
an identify the relevant keyword as des
ribed in thefollowing. If she has already rea
hed a result page for a value 
ombination no further user intera
tions arerequired. Note that as long as she is in the 
ontext of the 
urrently a
tive form �eld, she 
an also a

ess aseries of intermediate pages and for ea
h page spe
ify a series of a
tions. For the identi�
ation of a spe
i�
intermediate page we opted for a stati
 text �eld. The reason is that it 
an be in
luded in many HTML elements,e.g. the div, h2, or the span tag and given our template assumption they serve as a su�
ient dis
riminatoryfa
tor. Other more advan
ed te
hniques based on visual markers on the page or more IR-related te
hniques,su
h as text 
lassi�
ation approa
hes [19℄, 
ould be used in this 
ontext as well and are planned as future work.In Figure 3.2 we have marked potential 
andidates for keywords with a re
tangle.



286 Y. Wang and T. Hornung

Fig. 3.2. Intermediate pages for http://www.autos
out24.de (left) and http://www.imdb.
om (right)The most likely 
andidates whi
h are most 
hara
teristi
 are en
ir
led with an ellipse, e.g. the error messagefor the 
ar sear
h servi
e shown on the left. After the user has identi�ed the keyword in the page, she 
an nowspe
ify a
tions that should be performed in order to rea
h the result page.3.3. Intermediate Page A
tions. The above spe
i�ed keywords 
an be used to identify intermediatepages. However, our ultimate goal is to �nd a result page given a set of input value 
ombinations for the initialform �eld. Therefore some a
tions, su
h as 
li
king on a link or �lling out and submitting a new (intermediate)form, have to be performed to a

ess the next�preferably result�page. In order to uniquely identify theappropriate HTML elements on whi
h the stored a
tions should be exe
uted, we de�ned a path addressinglanguage 
alled KApath, whi
h is a semanti
 subset of XPath [5℄. In order to a

ess the appropriate a
tionelement, the system �rst �nds the 
ommon an
estor of the keyword element and the a
tion element and thendes
ends downwards in the a
tion element bran
h. Afterwards, the registered a
tions are exe
uted for the founda
tion element. Thus, KApath supports the following path expressions:
• /Node[�aname1=avalue1=℄ . . . [�anamen=avaluen℄: The element in the DOM tree thatmat
hes the spe
i�ed attribute name-value 
ombinations of type Node,
• /P: Immediate parent node of 
urrent node,
• /P::P: All (transitive) parent nodes of 
urrent node,
• /P::P/Node[�aname1=avalue1℄ . . . [�anamen=avaluen℄: The �rst found parent node in theDOM tree that mat
hes the spe
i�ed attribute name-value 
ombinations starting from the 
urrent nodeand is of type Node,
• /Child: Immediate 
hild nodes of 
urrent node,
• /Child::Child: All (transitive) 
hild nodes of the 
urrent node,
• /Child::Child/Node[�aname1=avalue1℄ . . . [�anamen=avaluen℄: The �rst found 
hild nodein the DOM tree that mat
hes the spe
i�ed attribute name-value 
ombinations starting from the 
urrentnode and is of type Node.Figure 3.3 shows an example how the asso
iated a
tion element in a page 
an be referen
ed with respe
tto the page keyword with a KApath expression. Here, the TBODY node is the �rst 
ommon parent node forboth (keyword and a
tion) elements. Therefore the system automati
ally generates a KApath expression whi
hallows optional intermediate elements between the keyword and the �rst 
ommon parent node. For �nding the
orre
t a
tion element it is 
ru
ial to 
onsider its attributes as well.If the desired a
tion elements have no (e.g. links) or dynami
 attributes (e.g. visibility), we additionallystore the absolute path from keyword to a
tion element and the tree stru
ture starting from the 
ommon parent.Another situation where we 
an make use of the absolute path is when the HTML page stru
ture has 
hangedand the 
ommon parent node is still on the same level in the DOM tree but in another bran
h. The treestru
ture is helpful if there are 
hanges on the way downwards from the 
ommon parent node.



Deep Web Navigation by Example 287

Fig. 3.3. Example KAPath expression, whi
h allows optional HTML elements in the intermediate page3.4. Re
ording User A
tions. Based on the user's browsing behavior, the system 
an generate the
omplete navigation model. First, she identi�es the keyword for an intermediate page by 
li
king on therelevant text in the Web page. Then, the system determines the 
losest surrounding HTML element and storesthe relevant 
ontext information. Afterwards, the system monitors the user behavior and stores ea
h a
tion sheperforms until she rea
hes a new page. Based on this a
tion log, the system 
an automati
ally determine thepaths and tree stru
tures for ea
h a
tion.To ease the re
ording of the user a
tions we have implemented WS
ript, a HTML a
tion language similar toChi
kenfoot [8℄. This intermediate s
ript language is 
onvenient, be
ause in order to �nd the HTML elementson whi
h the a
tions have to be invoked we have to rely on the navigation stru
tures de�ned in Se
tion 3.3.Therefore, the provided a
tions have a navigation and (if appli
able) an input part.The following types of a
tions are supported by our system:
• Cli
king on links: link(absolute path, KApath, tree stru
ture),
• Entering text in input �elds: enter(absolute path, KApath, tree stru
ture, element name, element ID,input value),
• Sele
ting a 
he
kbox or radio button: 
li
k(absolute path, KApath, tree stru
ture, element name, elementID),
• Sele
ting an option from a dropdown menu: dropdown(absolute path, KApath, tree stru
ture, optiontext, element name, element ID), and
• Submitting forms: 
li
k(absolute path, KApath, tree stru
ture, element name, element ID).The element name and ID that are present for some a
tions are identi
al to the name and ID attributes ofthe underlying HTML element and are used �rst to �nd the relevant HTML element. If the lookup by ID andname fails, the sear
h for the a
tion element 
ontinues with the KApath as des
ribed in Se
tions 3.3 and 4.2.For example the following a
tion expression would enter Hallo World into the text input �eld of the HTML treein Figure 3.3:enter(/ParentNode/ParentNode/ParentNode/Child[1℄/Child[1℄/Child[0℄,/P::P/TBODY[�a1=v1℄[�a2=v2℄/Child::Child/INPUT[�a3=v3℄,TBODY(TR,TR)/TR(TD,TD)/TD(INPUT)�,Hallo World)Together, keyword and the asso
iated a
tions form the navigation model for this intermediate page (
f.Figure 3.3).4. Implementation. In this se
tion, we des
ribe in detail the implementation of DNavigator. Be
ausethe framework is geared towards 
asual Web users, important requirements must be met, most notably thetool must be easy to use. The DNavigator fun
tionality is implemented as a Firefox extension in Java andJavaS
ript running a MySQL database for storing the ne
essary metadata (
f. Figure 4.1). LiveConne
t [11℄



288 Y. Wang and T. Hornungprovides JavaS
ript with the ability to 
reate and manipulate standard Java obje
ts so that the system 
an
onne
t to the database, e.g. to store the extra
ted dynami
 dependen
ies and the navigation model, and fet
hthe prede�ned navigation models from the database to manipulate an intermediate page.

Fig. 4.1. System ar
hite
tureThe rest of this se
tion des
ribes the implementation as well as the main issues we solved while implementingthe system.4.1. Navigation Model Creation. The system tra
ks a user's navigation a
tions on an intermediatepage by adding JavaS
ript event handlers to Web pages before re
ording. These event handlers are invokedwhen 
ertain user a
tions o

ur (e.g., 
li
king on text, 
li
king on a link, 
hanging the sele
ted option in adropdown menu, et
.), whi
h are supported by our system. The re
ording pro
ess is as follows: when the userpresses the analysis button in the Firefox plugin window, the system sets event handlers on all 
li
kable elementsin the page displayed in the browser (i. e., handlers for links, handlers for forms, et
.). When an event �res,the system re
ords all the ne
essary information for the event, e.g. KApath, absolute path, tree stru
ture et
.It must then wait until the following page is loaded to repeat the pro
ess of adding handlers and waiting forevents.In order to determine the KApath, absolute path and tree stru
ture with respe
t to the keyword and a
tionelement the system traverses the Do
ument Obje
t Model [1℄ tree starting from both elements.4.2. Deep Web Navigation. After submitting the o�ine generated HTTP request, the �rst web pageis returned from the target server. The system inserts an onload handler in the Web page to dete
t when thepage has been 
ompletely loaded. Then, after the page has been downloaded, the navigation is invoked, i. e. thesystem will 
he
k whether one of our prede�ned keyword elements exist in this returned page. If this is the 
ase,it is an intermediate page. Be
ause for ea
h keyword element we have saved its HTML type, attributes sequen
eand 
ontained text, the 
he
k pro
ess was realized in JavaS
ript using the do
ument obje
t and node obje
tbased on the DOM tree, i. e. with the method getElementsByTagName(). The system �rst �nds all HTMLelements that have identi
al HTML types as keyword element. After the 
omparison between the attributes ofthese found elements and the stored attributes of the keyword element, and between the saved keyword textand the found keyword text, the system 
an determine whether a saved keyword (keyword element) exists inthis intermediate page.For any intermediate page a number of related a
tions must be performed, so that the system is able tonavigate in the dire
tion of the result page. Before su
h a
tions are exe
uted, the system must �rst �nd thea
tion-related elements, i. e. we must �nd all HTML elements, on whi
h the a
tion-events have to be a
tivated.For this goal we use WS
ript that was presented in Se
tion 3.4. The asso
iated s
ript will be fet
hed from thedatabase using the Website ID and the identi�ed keywords. Afterwards, an interpreter fun
tion is invoked toparse and exe
ute every WS
ript expression step by step. Here, we iteratively use the following approa
hes:1. When the 
orresponding element's attributes id or name are available, the a
tion element 
an be easilyfound with the method getElementById() and getElementsByName().



Deep Web Navigation by Example 2892. Otherwise, we try to �nd the a
tion element based on the KApath-expression.3. Finally, if the a
tion element after exe
uting the �rst two strategies 
annot be found, the system usesthe absolute path and the tree stru
ture to lo
ate the a
tion element.The exe
ution of related a
tions is simulated using DOM Level 2 events [1, 2℄, i. e. fake event obje
ts are
reated using the do
ument.
reateEvent() method. Afterwards, they are a
tivated on the desired a
tion elementusing the element.dispat
hEvent() method.5. Evaluation. In our experiments, we evaluated the following aspe
ts for our two major 
omponents:a

ura
y and runtime. For this, we sele
ted 100 Deep Web sites from di�erent domains, e.g. 
ar sear
h andvideo sear
h. 60 of them were dire
tly adopted from the website table in [7℄, be
ause they 
ontain a largeamount of data. The others were sele
ted by a fo
used sear
h on Google on Deep Web repositories. For a fulllist of the tested Web sites we refer the interested reader to [25℄.5.1. Experimental Results. All experiments have been 
ondu
ted on a Thinkpad T60 (Intel Core Duo2 Pro
essor T7200 2,00Ghz with a 667MHz front side bus and 2GB of main memory) running Windows Vista,MySQL Server 5.0, Java JDK 1.6 and Firefox 2.0.0.12. The maximal download rate of the internet 
onne
tionwas 2048 Kbit/s and the maximum upload rate 256 Kbit/s.5.1.1. Frontend Analysis. For 99% of the tested Web sites the frontend analysis was su

essful, �ndingthe 
orre
t stati
 and dynami
 dependen
ies. Depending on the number of items in the dropdown menus of theform �elds, the time needed for analysis took from 0.5 to 30 se
onds, i. e. 4.28 se
onds on average. Sin
e thisanalysis has only to be performed on
e, we feel that performan
e optimizations for this analysis are of limitedbene�t, be
ause our major fo
us is on 
orre
tly identifying hidden dependen
ies between the dropdown menus.Table 5.1Time (in se
onds) for navigation experiments.# Int. Pages # Web Sites Page Load 1 Model 6 Models0 58 2.25 2.26 2.311 22 - 4.60 4.662 14 - 6.47 6.553 4 - 8.12 8.234 1 - 9.70 9.835 1 - 11.06 11.225.1.2. Deep Web Navigation. For 96% of the tested Web sites we were able to su

essfully �nd akeyword and to navigate to the desired result page. The navigation pro
ess took from 2.26 to 11.22 se
onds,i. e. 3.79 se
onds on average. As shown in Table 5.1 most of the time was spend for loading pages, i. e. 2.25se
onds on average. The 
olumns labeled 1 Model and 6 Models indi
ate the number of registered navigationmodels for ea
h page. As 
an be seen, the overhead for 
he
king multiple models was marginal in 
ontrast tothe time spent for loading pages. This is due to the fa
t that the exe
ution of the a
tions is performed by thebrowser on the 
lient side and sin
e no 
omputationally intensive algorithm is required to identify intermediatepages.5.2. Open Issues. Our evaluation revealed the following open issues of our system.5.2.1. Frontend Analysis.
• Delayed AJAX intera
tions: For one Web site we were unable to 
orre
tly dete
t the dynami
 depen-den
ies be
ause the server took longer than our spe
i�ed threshold to 
hange the items in the respe
tivedropdown menu.This 
ould be remedied by in
reasing our threshold value to some extent, but further investigation is neededto �nd a general solution for this problem.5.2.2. Deep Web Navigation.
• Dynami
 request URLs: Usually, di�erent request URLs only di�er in the sear
hpart, i.e. the part ofthe URL after ?, due to di�erent variable bindings, whi
h are transferred to the server. Two Web sitesin our test bed used di�erent paths as well, whi
h our system 
onverts into illegal request URLs.



290 Y. Wang and T. Hornung
• Hidden form elements: Sin
e the user 
an only drag labels to visible form elements, values in hiddenform elements that have to be 
orrelated with visible elements 
annot be dete
ted by our system.
• Session IDs: Session IDs are often used to tra
k user intera
tions with Web pages and are only validfor a 
ertain period. Be
ause we are not able to produ
e a new (fake) session ID for ea
h servi
e, theo�ine generated URL be
omes invalid over time.All of the abovementioned issues 
ould be solved by �lling out the frontend form at runtime and skippingthe o�ine generation of the URL for su
h resour
es.
• Stati
 URLs: Our system determines, if a new Web page has been loaded based on the 
urrent URL.If the URL does not 
hange after a form has been submitted, we are not able to initiate the navigationpro
ess and add the required event handler as des
ribed in Se
tion 4.2.This 
an be solved by using another metri
 for determining if a new Web page has been loaded, e.g.a 
he
ksum of the Web page.6. Related Work. [22℄ presents a framework 
alled DEQUE for querying Web forms where input valuesare allowed from relations as well as from result pages. As a part of their system they also model Webform interfa
es, but their fo
us is more on the modeling of 
onse
utive forms and they did not 
onsider thedependen
ies between form input elements.A number of navigation 
on
epts have been proposed for a

essing Deep Web sour
es. [10℄ and [18℄ proposedpro
ess-oriented navigation maps, whi
h des
ribe a set of paths from a start page to a result page. But thesemaps rely on 
onse
utive state transitions and �xed intera
tions between them. In [16℄ the user a
tions froma spe
i�ed start page over possibly multiple intermediate pages to an end page are re
orded in a navigationmap. The a
tions that link two adja
ent pages are strongly 
onne
ted as well. A sophisti
ated Deep Webnavigation strategy based on the bran
hed navigation model is proposed in [6℄. The navigation is represented asa sequen
e of pages, with envisioned future support for standard pro
ess-�ow languages su
h as WS-BPEL [4℄.In [21℄ a navigation sequen
e was spe
i�ed in NESQL [20℄. The NESQL expression 
ontains metadata abouta
tion elements, for instan
e, their spe
i�ed names and types. Ea
h expression will be interpreted based onthese element properties. By storing histori
al information from previous a

esses of a Deep Web resour
e andutilizing browser pools, their system tries to reuse the 
urrent state of a browser. [24℄ des
ribe a system 
alledWebVCR, whi
h is able to re
ord and replay a series of browser steps as a smart bookmark, but they do not
onsider optional intermediate pages.Our framework is not dependent on a rigid sequen
e of intermediate pages, be
ause for ea
h new page allkeyword patterns are 
he
ked and therefore the previous state of the system is not important for our page-oriented navigation model. Besides, we do not need a 
omplex navigation algebra or 
al
ulus for the navigationpro
ess be
ause we just save the above des
ribed navigation model for ea
h intermediate page. For instan
e,the framework proposed by [10℄ relies on a subset of serial-Horn Transa
tion F-Logi
 [17℄. As dis
ussed inSe
tion 3.4, the saved a
tion sequen
es are just ma
ro pro
edures, whi
h are interpreted by our JavaS
riptma
ro engine.7. Future Work. At the moment we only perform a hard string mat
h between user inputs and theoptions in a dropdown menu. If the strings do not mat
h exa
tly an error is returned. At the moment weare investigating approximate string mat
hing te
hniques [9℄ to alleviate this problem to some extent. Analternative would be to use semanti
 similarity metri
s, su
h as proposed in [27℄, whi
h would also be able to
apture the similarity between the two 
ar 
ompanies Toyota and Lexus (a division of Toyota). The work by[26℄ tries to automate the extra
tion of query 
apabilities, su
h as labeling form input elements and �nding legalranges of input values. This 
ould be interesting to 
ombine with our approa
h to suggest tags to the user, orto try to mat
h the labels on the Web form with the tags in the user vo
abulary and thus easing the labelingof the Web forms.Our experiments suggest that the determination of a suitable keyword is 
ru
ial for the su

essful identi-�
ation of an intermediate page, and that for some 
ases it might be better to skip the o�ine generation ofthe start URL. Currently, we are extending our resear
h prototype to a

ept a list of keywords and work onan algorithm to automati
ally suggest meaningful and dis
riminatory keywords. Ultimately, we are interestedin generalizing the 
on
ept of immediate page identi�
ation to more elaborate te
hniques, su
h as the visualappearan
e of the Web page.8. Con
lusion. In this paper we presented DNavigator, a framework for a

essing result pages of DeepWeb sites, whi
h 
ontributions are twofold: �rst, a frontend analysis has been des
ribed, whi
h needs only to



Deep Web Navigation by Example 291be performed on
e, and afterwards the system 
an simulate the behavior of the Web form o�ine. Se
ond, wehave proposed a simple but e�e
tive Deep Web navigation strategy, whi
h repla
es a heavy-weight navigation
al
ulus with an intermediate page identi�
ation pro
edure and a set of a
tions that navigate to the next page.The proposed navigation strategy has the following bene�ts:1. It is stateless. Be
ause for ea
h page, we 
he
k all available navigation models, we are not dependenton a spe
i�
 navigation order.2. Simple extensibility. If the system en
ounters a new and so far unknown immediate page, the user 
aneasily extend the existing navigation model with only a few steps.3. Simple presentation of the model. Ea
h navigation model has an intuitive textual representation whi
his easier to understand and use than a 
ompli
ated navigation 
al
ulus.To sum up, DNavigator o�ers a simple user interfa
e, but su

essfully deals with most of the problems that areposed by real-world Deep Web sites as our evaluation has shown.REFERENCES[1℄ Do
ument obje
t model (dom). http://www.w3.org/DOM/[2℄ Do
ument obje
t model (dom) level 2 events spe
i�
ation. http://www.w3.org/TR/DOM-Level-2-Events/[3℄ Hypertext transfer proto
ol�http/1.1 (rf
 2616). http://tools.ietf.org/html/rf
2616/[4℄ Web servi
es business pro
ess exe
ution language version 2.0. http://www-128.ibm.
om/developerworks/library/spe
ifi
ation/ws-bpel/[5℄ Xml path language (xpath) version 1.0. http://www.w3.org/TR/xpath[6℄ R. Baumgartner, M. Ceresna, and G. Ledermüller, Deep web navigation in web data extra
tion, in Pro
eedings of the2005 International Conferen
e on Computational Intelligen
e for Modelling, Control and Automation, and InternationalConferen
e on Intelligent Agents, Web Te
hnologies and Internet Commer
e., Vienna, Austria, 2005, pp. 698�703.[7℄ M. K. Bergman, The deep web: Surfa
ing hidden value, white paper. http://www.brightplanet.
om/images/stories/pdf/deepwebwhitepaper.pdf 2001.[8℄ M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C. Miller, Automation and 
ustomization of rendered web pages,in Pro
eedings of the 18th Annual ACM Symposium on User Interfa
e Software and Te
hnology, Seattle, WA, USA, 2005,pp. 163�172.[9℄ W. W. Cohen, P. Ravikumar, and S. E. Fienberg, A 
omparison of string distan
e metri
s for name-mat
hing tasks,in Pro
eedings of the Workshop on Information Integration on the Web, A
apul
o, Mexi
o, pp. 73�78.[10℄ H. Davul
u, J. Freire, M. Kifer, and I. V. Ramakrishnan, A layered ar
hite
ture for querying dynami
 web 
ontent, inPro
eedings of the ACM SIGMOD International Conferen
e on Management of Data, Philadelphia, Pennsylvania, USA,19999, pp. 491�502.[11℄ D. Flanagan, JavaS
ript: The De�nitive Guide, Fourth Edition, O�Reilly, Sebastopol, CA, USA, 2001.[12℄ B. He, M. Patel, Z. Zhang, and K. C. C. Chang, A

essing the deep web, Communi
ations of the ACM, 50 (2007),pp. 94�101.[13℄ H. He, W. Meng, C. T. Yu, and Z. Wu, Wise-integrator: A system for extra
ting and integrating 
omplex web sear
hinterfa
es of the deep web, in Pro
eedings of the 31st International Conferen
e on Very Large Data Bases, Trondheim,Norway, 2005, pp. 1314�1317.[14℄ P. Heymann, G. Koutrika, and H. Gar
ia-Molina, Can so
ial bookmarking improve web sear
h?, in Pro
eedings of theInternational Conferen
e on Web Sear
h and Web Data Mining, Palo Alto, California, USA, 2008, pp. 195�206.[15℄ T. Hornung, K. Simon, and G. Lausen, Mashing up the deep web�resear
h in progress, in Pro
eedings of the 4thInternational Conferen
e on Web Information Systems and Te
hnologies, Fun
hal, Madeira�Portugal, 2008, pp. 58�66.[16℄ N. Julasana, A. Khandelwal, A. Lolage, P. Singh, P. Vasudevan, H. Davul
u, and I. V. Ramakrishnan,Winagent:A system for 
reating and exe
uting personal information assistants using a web browser, in Pro
eedings of the 2004International Conferen
e on Intelligent User Interfa
es, Fun
hal, Madeira, Portugal, 2004, pp. 356�357.[17℄ M. Kifer, Dedu
tive and obje
t-oriented data languages: A quest for integration, in Pro
eedings of the 4th InternationalConferen
e on Dedu
tive and Obje
t-Oriented Databases, Singapore, 1995, pp. 187�212.[18℄ J. P. Lage, A. S. da Silva, P. B. Golgher, and A. H. F. Laender, Colle
ting hidden web pages for data extra
tion, inPro
eedings of the 4th ACM CIKM International Workshop on Web Information and Data Management, Virginia, USA,2002, pp. 69�75.[19℄ K. Nigam, A. M
Callum, S. Thrun, and T. M. Mit
hell, Learning to 
lassify text from labeled and unlabeled do
uments,in Pro
eedings of the 15th National Conferen
e on Arti�
ial Intelligen
e and Tenth Innovative Appli
ations of Arti�
ialIntelligen
e Conferen
e, Wis
onsin, USA, 1998, pp. 792�799.[20℄ A. Pan, J. Raposo, M. Alvarez, J. Hidalgo, and A. Vinaet, Semi-automati
 wrapper generation for 
ommer
ialweb sour
es, in Pro
eedings of the Working Conferen
e on Engineering information Systems in the Internet Context,Kanazawa, Japan, 2002, pp. 265�283.[21℄ J. Raposo, M. Alvarez, J. Losada, and A. Pan, Maintaining web navigation �ows for wrappers, in Pro
eedings of the2nd International Workshop on Data Engineering Issues in E-Commer
e and Servi
es, San Fran
is
o, CA, USA, 2006,pp. 100�114.[22℄ D. Shestakov, S. S. Bhowmi
k, and E. P. Lim, Deque: Querying the deep web, Data & Knowledge Engineering, 52(2005), pp. 273�311.



292 Y. Wang and T. Hornung[23℄ K. Simon and G. Lausen, Viper: Augmenting automati
 information extra
tion with visual per
eption, in Pro
eedings ofthe 2005 ACM CIKM International Conferen
e on Information and Knowledge Management, Bremen, Germany, 2005,pp. 381�388.[24℄ A. Vinod, J. Freire, B. Kumar, and D. F. Lieuwenet, Automating web navigation with the webv
r, in Pro
eedings ofthe 9th International World Wide Web Conferen
e, Amsterdam, The Netherlands, 2000, pp. 503�517.[25℄ Y. Wang, Deep web navigation by example, master's thesis, Institute of Computer S
ien
e, Albert-Ludwigs UniversityFreiburg, 2008.[26℄ Z. Zhang, B. He, and K. C. C. Chang, Understanding web query interfa
es: Best-e�ort parsing with hidden syntax, inPro
eedings of the ACM SIGMOD International Conferen
e on Management of Data, Paris, Fran
e, 2004, pp. 107�118.[27℄ C. N. Ziegler, K. Simon, and G. Lausen, Automati
 
omputation of semanti
 proximity using taxonomi
 knowledge,in Pro
eedings of the ACM CIKM International Conferen
e on Information and Knowledge Management, Arlington,Virginia, USA, 2006, pp. 465�474.Edited by: Dominik Flejter, Tomasz Ka
zmarek, Marek Kowalkiewi
zRe
eived: January 11th, 2008A

epted: Mar
h 19th, 2008Extended version re
eived: June 25th, 2008


