ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 9, Number 4, pp. 303-314. http://www.scpe.org (© 2008 SCPE

FUZZY CONSTRAINT-BASED SCHEMA MATCHING FORMULATION

ALSAYED ALGERGAWY, EIKE SCHALLEHN, AND GUNTER SAAKE*

Abstract. The deep Web has many challenges to be solved. Among them is schema matching. In this paper, we build
a conceptual connection between the schema matching problem SMP and the fuzzy constraint optimization problem FCOP. In
particular, we propose the use of the fuzzy constraint optimization problem as a framework to model and formalize the schema
matching problem. By formalizing the SMP as a FCOP, we gain many benefits. First, we could express it as a combinatorial
optimization problem with a set of soft constraints which are able to cope with uncertainty in schema matching. Second, the
actual algorithm solution becomes independent of the concrete graph model, allowing us to change the model without affecting the
algorithm by introducing a new level of abstraction. Moreover, we could discover complex matches easily. Finally, we could make
a trade-off between schema matching performance aspects.

Key words: schema matching, constraint programming, fuzzy constraints, objective function

1. Introduction. The deep Web (also known as Deepnet or the hidden Web) refers to the World Wide
Web content that is not a part of the surface Web. It is estimated that the deep Web is several orders of
magnitude larger than the surface Web [4]. As the number of deep Web sources has been increasing as the
efforts needed to enable users to explore and integrate these sources become essential. As a result software
systems have been developed to open the deep Web to users. Schema matching is the core task of these systems.

Schema matching is the task of identifying semantic correspondences among elements of two or more
schemas. It plays a central role in many data application scenarios [22, 17]: in data integration, to identify
and characterize inter-schema relationships between multiple (heterogeneous) schemas; in data warehousing,
to map data sources to a warehouse schema; in E-business, to help to map messages between different XML
formats; in the Semantic Web, to establish semantic correspondences between concepts of different web sites
ontologies; and in data migration, to migrate legacy data from multiple sources into a new one [10].

Due to the complexity of schema matching, it was mostly performed manually by a human expert. However,
manual reconciliation tends to be a slow and inefficient process especially in large-scale and dynamic environ-
ments. Therefore, the need for automatic schema matching has become essential. Consequently, many schema
matching systems have been developed for automating the process, such as Cupid [17], COMA/COMA++ [6, 1],
LSD [8], Similarity Flooding [20], OntoBuilder [13], QOM [12], BTreeMatch [11], S-Match [14], and Spicy [3].
Manual semantic matching overcomes mismatches which exist in element names and also differentiates between
differences of domains. Hence, we could assume that manual matching is a perfect process. On the other hand,
automatic matching may carry with it a degree of uncertainty, as it is based on syntactic, rather than semantic,
means. Furthermore, recently, there has been renewed interest in building database systems that handle un-
certain data in a principled way [9]. Hence a short rant about the relationship between databases that manage
uncertainty and data integration systems appears. Therefore, we should surf for a suitable model which is able
to meet the above requirements.

A first step in discovering an effective and efficient way to solve any difficult problem such as schema
matching is to construct a complete problem specification. A suitable and precise definition of schema matching
is essential for investigating approaches to solve it. Schema matching has been extensively researched, and
many matching systems have been developed. Some of these systems are rule-based [6, 17, 20] and others are
learning-based [16, 7, 8]. However, formal specifications of problems being solved by these systems do not exist,
or are partial. Little work is done towards schema matching problem formulation e.g. in [25, 23].

In the rule-based approaches, a graph is used to describe the state of a modeled system at a given time,
and graph rules are used to describe the operations on the system’s state. As a consequence in practice,
using graph rules has a worst case complexity which is exponential to the size of the graph. Of course, an
algorithm of exponential time complexity is unacceptable for serious system implementation. In general, to
achieve acceptable performance it is inevitable to consequently exploit the special properties of both schemas
to be matched. Beside that, there is a striking commonality in all rule-based approaches; they are all based on
backtracking paradigms. Knowing that the overwhelming majority of theoretical as well as empirical studies
on the optimization of backtracking algorithms is based on the context of constraint problem (CP), it is near

*Department of Computer Science, Magdeburg University, 39106 Magdeburg, Germany (Alshahat|eike|sakeQovgu.de).
303

304 A. Algergawy, E. Schallehn and G. Saake

to hand to open this knowledge base for schema matching algorithms by reformulating the schema matching
problem as a CP [24, 18, 5].

To summarize, we are in a need to a framework which is able to face the following challenges:

1. formalizing the schema matching problem: Although many matching systems have been developed to
solve the schema matching problem, but no complete work to address the formulation problem. Schema
matching research mostly focuses on how well schema matching systems recognize correspondences. On
the other hand, not enough research has been done on formal basics of the schema matching problem.

2. trading-off between schema matching performance aspects: The performance of a schema matching
system comprises two equally important factors; namely matching effectiveness and matching efficiency.
The effectiveness is concerned with the accuracy and the correctness of the match result while the
efficiency is concerned with the system resources such as the response time of the match system. Recent
schema matching systems report considerable effectiveness [6], however, the efficiency aspects remain a
missing area and represent an open challenge for the schema matching community. Improving schema
matching efficiency results in decreasing matching effectiveness, so a trade-off between the two aspects
should be considered.

3. dealing with uncertainty of schema matching: Schema matching systems should be able to handle
uncertainty arises during the matching process from different sources. Recently, there has been renewed
interest in building database systems that handle uncertain data and its lineage in a principled way, so
a short rant about the relationship between databases that manage uncertainty and lineage and data
integration systems appears. In addition to, in order to fully automate the matching process, we make
use of extractor tools which extract different data models and represent them as a common model. The
extraction process brings errors and uncertainties to the matching process

In this paper, we build a conceptual connection between the schema matching problem (SMP) and the fuzzy
constraint optimization problem (FCOP). On one hand, we consider schema matching as a new application of
fuzzy constraints; on the other hand, we propose the use of the fuzzy constraint satisfaction problem as a new
approach for schema matching. In particular, in this paper, we propose the use of the FCOP to formulate the
SMP. However, our approach should be generic, i. e. have the ability to cope with different data models and be
used for different application domains. Therefore, we first transform schemas to be matched into a common data
model called rooted labeled graphs. Then we reformulate the graph matching problem as a constraint, problem.
There are many benefits behind this formulation. First, we gain direct access to the rich research findings in the
CP area; instead of inventing new algorithms for graph matching from scratch. Second, the actual algorithm
solution becomes independent of the concrete graph model, allowing us to change the model without affecting
the algorithm by introducing a new level of abstraction. Third, formalizing the SMP as a FCOP facilitates
handling uncertainty in the schema matching process. Finally, we could simply deal with simple and complex
mappings.

The paper is organized as follows: Section 2 introduces necessary preliminaries. Our framework to unify
schema matching is presented in Section 3 in order to illustrate the scope of this paper. Section 4 shows how
to formulate the schema matching problem as a constraint problem. Section 5 describes the related work. The
concluding remarks and ongoing future work are presented in Section 6.

2. Preliminaries. This paper is based mainly on two existing bodies of research, namely graph theory [2]
and constraint programming [24, 18, 5]. To keep this paper self-contained, we briefly present in this section the
basic concepts of them.

2.1. Graph Model. A schema is the description of the structure and the content of a model and consists
of a set of related elements such as tables, columns, classes, or XML elements and attributes. There are
many kinds of data models, such as relational model, object-oriented model, ER model, XML schema, etc. By
schema structure and schema content, we mean its schema-based properties and its instance-based properties,
respectively. In this subsection we present formally rooted (multi-)labeled directed graphs used to represent
schemas to be matched as the internal common model.

A rooted labeled graph is a directed graph such that nodes and edges are associated with labels, and in
which one node is labeled in a special way to distinguish it from the graph’s other nodes. This special node is
called the root of the graph. Without loss of generality, we shall assume that every node and edge is associated
with at least one label: if some nodes (resp. edges) have no label, one can add an extra anonymous label that
is associated with every node (resp. edge). More formally, we can define the labeled graph as follows:

Fuzzy Constraint-Based Schema Matching Formulation 305

DEFINITION 2.1. A Rooted Labeled Graph G is a 6-tuple G = (Ng, Eq, Labg, src, tar, 1) where:
o Ng = {Nyoot; N2, - .., Ny } 08 a finite set of nodes, each of them is uniquely identified by an object identifier
(OID), where nyoor is the graph root.
o Eg = {(ni,nj)|ni,n; € Ng} is a finite set of edges, each edge represents the relationship between two
nodes.
o Labg ={ Labng, Labgg } is a finite set of node labels Labyg , and a finite set of edge labels Labgc.
These labels are strings for describing the properties (features) of nodes and edges.
e src and tar: Eg — Ng are two mappings (source and target), assigning a source and a target node to
each edge (i. e. if e = (n;,n;) then src(e) =n; and tar(e) =n;).
e | : NgUEFEg — Labg is a mapping label assigning a label from the given Labg to each node and each
edge.
e |Ng| = n is the graph size.
Now that we have defined a concrete graph model, in the following subsection we present basics of constraint
programming.

2.2. Constraint Programming. Many problems in computer science, most notably in Artificial Intelli-
gence, can be interpreted as special cases of constraint problems. Semantic schema matching is also an intel-
ligence process which aims at mimicking the behavior of humans in finding semantic correspondences between
schemas’ elements. Therefore, constraint programming is a suitable scheme to represent the schema matching
problem.

Constraint programming is a generic framework for declarative description and effective solving for large,
particularly combinatorial, problems. Not only it is based on a strong theoretical foundation but also it is
attracting widespread commercial interest as well, in particular, in areas of modeling heterogeneous optimization
and satisfaction problems. We, here, concentrate only on constraint satisfaction problems (CSPs) and present
definitions for CSPs, constraints, and solutions for the CSPs.

DEFINITION 2.2. A Constraint Satisfaction Problem P is defined by a 3-tuple P=(X,D,C) where,

o X ={x1,x9,...,x,} is a finite set of variables.

e D ={Di1,Ds,...,D,} is a collection of finite domains. FEach domain D; is the set containing the
possible values for the corresponding variable x; € X.

e C={C1,Cy,...,Cy} is a set of constraints on the variables of X.

DEFINITION 2.3. A Constraint Cs on a set of variables S = {x1,22,...2.} is a pair Cs = (S, Rs), where
R, is a subset on the product of these variables’ domains: Ry C D1 x --- x D, — {0,1}.

The number r of variables a constraint is defined upon is called arity of the constraint. The simplest type is
the unary constraint, which restricts the value of a single variable. Of special interest are the constraints of arity
two, called binary constraints. A constraint that is defined on more than two variables is called a global constraint.

Solving a CSP is finding assignments of values from the respective domains to the variables so that all
constraints are satisfied.

DEFINITION 2.4. (Solution of a CSP) An assignment A is a solution of a CSP if it satisfies all the constraints
of the problem, where the assignment A denotes an assignment of each variable x; with the corresponding value
a; such that x; € X and a; € D;.

Example 1. (Map Coloring) We want to color the regions of a map, shown in Fig. 2.1, in a way that no
two adjacent regions have the same color. The actual problem is that only a certain limited number of colors is
available. Let’s we have four regions and only three colors. We now formulate this problem as CSP = (X, D, C)
where:

o X = {x1, 2,23, x4} represents the four regions,

e D = {D;,Ds,D3, Dy} represents the domains of the variables such that Dy = Dy = D3 = Dy =
{red, green, blue}, and

¢ C = {Cu1,02) C(a1.03)> Cla1,24), Cla2,24), Ca3,24) } Tepresents the set of constraints must be satisfied
such that C(4; .5y = {(vi,vj) € Di x Djlvi # vj}.

As shown in Example 1, there are a number of solutions to the specified CSP. Any one of them is considered
a solution to the problem. However, in the schema matching field, we do not only search for any solution but
also the best one. The quality of solution is usually measured by an application dependent function called the
objective function. The goal is to find such a solution that satisfies all the constraints and minimize or maximize
the objective function. Such problems are referred to as constraint optimization problems (COP).

306 A. Algergawy, E. Schallehn and G. Saake

x1
X2

x3
x4

Fia. 2.1. Map coloring example

DEFINITION 2.5. A Constraint Optimization Problem @ is defined by couple Q@ —(P,g) such that P is a
CSP and g : Dy X --- X D,, — [0,1] is an objective function that maps each solution tuple into a value.

Example 2. (Traveling Salesman) The traveling salesman problem is to find the shortest closed path by
which city out of a set of n cities is visited once and only once.

While powerful, both CSP and COP present some limitations. In particular, all constraints are considered
mandatory. In many real-world problems, such as the schema matching problem, there are constraints that could
be violated in solutions without causing such solutions to be unacceptable. If these constraints are treated as
mandatory, this often causes problems to be unsolved. If these constraints are ignored, solutions of bad quality
are found. This is a motivation to extend the CSP scheme and make use of soft constraints. A way to circumvent
inconsistent constraints problems is to make them fuzzy [15]. The idea is to associate fuzzy values with the
elements of the constraints, and combine them in a reasonable way.

A constrain, as defined before, is usually defined as a pair consisting of a set of variables and a relation
on these variables. This definition gives us the availability to model different types of uncertainty in schema
matching. In [9], authors identify different sources for uncertainty in data integration. Uncertainty in semantic
mappings between data sources can be modeled by exploiting fuzzy relations while other sources of uncertainty
can be modeled by making the variable set a fuzzy set. In this paper, we take the first one into account while
the other sources are left for our ongoing work.

DEFINITION 2.6. (Fuzzy Constraint) A Fuzzy Constraint C,, on a set of variables S = {x1,22,...,2,}
is a pair C,, = (S, R,), where the fuzzy relation R, defined by pg : HM-GUM(C) D; — [0,1] where pg is the
membership function indicating to what extent a tuple v satisfies C,,.

e ur(v) =1 means v totally satisfies C,,,
e 1r(v) =0 means v totally violates Cy,, while
e 0 < pur(v) <1 means v partially satisfies C,,.

DEFINITION 2.7. A Fuzzy Constraint C,, on a set of variables S = {z1,x2,... 2} is a pair C, = (S, R,),
where the fuzzy relation R,, defined by ur : HIiEUGT(C) D; — [0,1] where ur is the membership function
indicating to what extent a tuple v satisfies C,,.

e 1r(v) =1 means v totaly satisfies C,,,
e 1r(v) =0 means v totaly violates C,,, while
e 0 < pur(v) <1 means v partially satisfies C,,.

DEFINITION 2.8. A Fuzzy Constraint Optimization Problem @Q,, is a 4-tuple Q.= (X, D, Cu, g) where X
is a list of variables, D is a list of domains of possible values for the variables, C,, is a list of fuzzy constraints
each of them referring to some of the given variables, and g is an objective function to be optimized.

In the following section we shed the light on our schema matching framework to determine the scope of
schema matching understanding.

3. A unified schema matching framework. Each of the existing schema matching systems deals with
the schema matching problem from its point of view. As a result the need to a generic framework that unifies
the solution of this intricate problem independent on the domain of schemas to be matched and independent on
the model representations becomes essential. To this end, we suggest the following general phases to address the
schema matching problem. Figure 2 shows these phases with the main scope of this paper. The four different
phases are:

e importing schemas to be matched; TransMat Phase,

Fuzzy Constraint-Based Schema Matching Formulation 307

Schema S1

To the
\ Mapping| Application
— elementd domain
TransMat Pre-Match Matching »! MapTrans >
Phase Phase Phase Phase
o4
Schema S2
Scope of the paper
-
ST —put SG1L_p FCOP 0=(X.D.C.g)
TransMat Formulate | —p»
Phase
S2 —Pp» ——P>-
SG2

Fic. 3.1. Matching Process Phases

e identifying elements to be matched; Pr-matching Phase,
e applying the matching algorithms; Matching Phase, and
e exporting the match result; Map Trans Phase.
In the following subsection we introduce a framework for defining different data models and how to transform
them into schema graphs. This part follows the same procedure found in [25] to show that different data models
could be represented by schema graphs.

3.1. Schema Graph. To make the matching process a more generic process, schemas to be matched should
be represented internally by a common representation. This uniform representation reduces the complexity of
the matching process by not having to cope with different representations. By developing such import tools,
schema match implementation can be applied to schemas of any data model such as SQL, XML, UML, and etc.
Therefore, the first step in our approach is to transform schemas to be matched into a common model in order
to apply matching algorithms. We make use of rooted labeled graphs as the internal model. We call this phase
TransMat; Transformation for Matching process.

In general, to represent schemas and data instances, starting from the root, the schema is partitioned into
relations and further down into attributes and instances. In particular, to represent relational schemas, XML
schemas, etc. as rooted labeled graphs, independently of the specific source format, we benefit from the rules
found in [25, 21]. These rules are rewritten as follows:

e Every prepared matching object in a schema such as the schema, relations, elements, attributes etc.
is represented by a node, such that the schema itself is represented by the root node. Let schema S
consist of m elements (elem), then

VelemeSdn € Ng NS Nypoot, St. 1 <i<m

e The features of the prepared matching object are represented by node labels Labyg. Let features

(featS) be the property set of an element (elem), then
Y feat € featS 3 Lab € Labyg

e The relationship between two prepared matching objects is represented by an edge. Let the relationships

between schema elements be (relS), then
V rel € relS 3 e(n;, n;) € Eg s. t. sre(e) =n; € Ng A tar(e) =nj € Ng

e The properties of the relationship between prepared objects are represented by edge labels Labgg. Let

features r featS be the property set of a relationship rel, then,
V rfeat € rfeatS 3 Lab € Labpg

308 A. Algergawy, E. Schallehn and G. Saake

Create Table Personnel (Create Table Employee (

Pno int primary key, EmpNo int primary Key,

Pname string, EmpName varchar(20),

Dept string, DeptNo int REFERENCES Department,

Born date Salary int,

) BirthDate date
)

Schema S (n2s)
Create Table Department (<
DeptNo int primary key, X
DeptName varchar(30) ‘ @ H
) ©® @O 0 000 O
Schema 7'
Schema Graph SG1 Schema Graph SG2
(a) Two relational schemas (b) Schema graphs

Fic. 3.2. Two Relational Schemas & their Schema Graphs (without labels)

<Schema name="8" xmIns="urn:schemas- <Schema name="T" xmIns="urn:schemas-
microsoft-com:xml-data "> microsoft-com:xml-data ">
<ElementType name="AccountOwner"> <ElementType name="Customer">
<element type="Name"/> <element type="FName"/>
<element type="Address"/> <element type="LName"/> @ @
<element type="Birthdate"/> <element type="CAddress"/>
</ElementType> </ElementType>
<ElementType name="Address"> <ElementType name="CAddress">
<element type="street"/> <element type="street"/> @ @
<element type="city"/> <element type="city"/> (25) @
<element type="state"/> <element type="province"/>
<element type="ZIP"/> <element type="code"/>
</ElementType> </ElementType> @ ‘ D, @ @
</Schema> </Schema> @ @ . @ @ @ @ @ @
Schema Graph SG1 Schema Graph SG2
(a) Two XML schemas (b) Schema graphs

Fia. 3.3. Two XML schemas & their schema graphs (without labels

The following two examples illustrate that how these rules can be applied to different data models in order
to make our approach a more generic approach.

Example 3. (Relational Database Schemas) Consider schemas S and T depicted in Fig. 3.2(a) (from [20]).
The elements of S and T are tables and attributes. Applying the above rules, the two schemas Schema S and
Schema T are represented by SG1 and SG2 respectively, such that SGI = (Ngs, Egs, Labgs, srcs, tars, ls),
where

Ngs = {n1s,n2s,m35,M4s,M55,M65}, Eas = {e1-2,€2-3,€2-4,€2-5,€2-6},
Labgs = Labns U Labgs = {name, type, data type} U {part-of, associate},

sreg, tars, ls are mappings such that sreg(e1—2) = nig, tars(ea—3) = nss and lg(e;—2) = part-of. Figure 3.2(b)
shows only the nodes and edges of the schema graphs (SG2 can be defined similarly).

In this example, we exploit different features of matching objects such as name, datatype, and type. These
features are represented as nodes’ labels. These features shall be the input parameters to the next phase.
For example, the name of a matching object in SG1 will be used to measure linguistic similarity between it
and another matching object from SG2, its datatype is to measure datatype compatibility, and its type is
used to determine semantic relationships. However, our approach is flexible in the sense that it is able to
exploit more features as needed. Moreover, in this example, we exploit one structural feature “part-of” to
represent structural relationships between nodes at different levels. Other structural features e.g. associa-
tion relationship, that is a structural relationship specifying both nodes are conceptually at the same level,
is represented between keys. One association relationship is represented in Fig. 3.2(b) between the nodes
ngr and ngr to specify a key/foreign key relation. Visually, association edges are represented as dashed
lines.

Example 4. (XML Schemas) This example that we discuss illustrates how our unified schema matching
framework copes with different choices of the models to be matched. Now consider two XML schemas in
Fig. 3.3(a) (from [25]). The schemas are specified using the XML language deployed on the website biztalk.org
designed for electronic documents used in e-business. The schema, graphs (without labels) of these schemas are
shown in Fig. 3.3(b). The labels of nodes and edges are the same as Example 3.

Examples 3 and 4 illustrate that using Trans-Mat phase aims at matching different schema models. The
matching algorithm (Matching Phase) does not have to deal with a large number of different models. The
matching algorithm only deals with the internal representation. So far, recent schema matching systems directly
determine semantic correspondences between two schemas elements as a graph matching problem. In this paper,

Fuzzy Constraint-Based Schema Matching Formulation 309

we extend the internal representation, schema graphs, and reformulate the graph matching problem as a fuzzy
constraint optimization problem.

4. Schema Matching as a FCOP.

4.1. Schema Matching as Graph Matching. Schemas to be matched are transformed into rooted
labeled graphs and, hence, the schema matching problem is converted into graph matching. There are two
types of graph matching: graph isomorphism and graph homomorphism. In general, a match of one graph into
another is given by a graph morphism, which is a mapping of one graph’s object sets into the other’s, with some
restrictions to preserve the graph’s structure and its typing information.

DEFINITION 4.1. A Graph Morphism ¢ : SG1 — SG2 between two schema graphs

SG1 = (Ngs, Egs, Labgs, srcs, tars,ls) and SG2 = (Ngr, Eqr, Labgr, srer, tary, lr)

is a pair of mappings ¢ = (én,¢r) such that ¢n : Ngs — Ngr (dn is a node mapping function) and
o : Egs — Egr (9E is an edge mapping function) and the following restrictions apply:
1. Vn € Ngs 3 ls(n) = lr(¢n(n))
2. Ve € Egs 3 ls(e) = lr(9E(e))
3. Ve € Egs 3 a path p' € Ngr X Egr such that p' = ¢p(e) and ¢n(sres(e)) = srer(pr(e)) A
on(tars(e)) = tarr(Pr(e)).

The first two conditions preserve both nodes and edges labeling information, while the third condition
preserves graph’s structure. Graph matching is an isomorphic matching problem when |Nggs| = |Ngr| otherwise
it is homomorphic. Obviously, the schema matching problem is a homomorphic problem.

Example 5. For the two relational schemas depicted in Fig.3.2(a) and its associated schema graphs shown
in Fig.3.2(b), the schema matching problem between schema S and schema T is converted into a homomorphic
graph matching problem between SG1 and SG2.

Graph matching is considered to be one of the most complex problems in computer science. Its complexity
is due to two major problems. The first problem is the computational complexity of graph matching. The
time required by backtracking in search tree algorithms may in the worst case become exponential in the size
of the graph. Graph homomorphism has been proven to be NP-complete problem [19]. The second problem
is the fact that all of the algorithms for graph matching mentioned so far can only be applied to two graphs
at a time. Therefore, if there are more than two schemas that must be matched, then the conventional graph
matching algorithms must be applied to each pair sequentially. For applications dealing with large databases,
this may be prohibitive. Hence, choosing graph matching as platform to solve the schema matching problem
may be effective process but inefficient. Therefore, we propose transforming graph homomorphism into a
FCOP.

Now that we have defined a graph model and its homomorphism, let us consider how to construct a FCOP
out of a given graph matching problem.

4.2. Graph Matching as a FCOP. In the schema matching problem, we are trying to find a mapping
between the elements of two schemas. Multiple conditions should be applied to make these mappings valid
solutions to the matching problem, and some objective functions are to be optimized to select the best mappings
among matching result. The analogy to constraint problem is quite obvious: here we make a mapping between
two sets, namely between a set of variables and a set of domains, where some conditions should be satisfied.
So basically, what we have to do to obtain an equivalent constraint problem CP for a given schema matching
problem (knowing that schemas to be matched are transformed into schema graphs) are:

1. take objects of one schema graph to be matched as the CP’s set of variables,

2. take objects of other schema graphs to be matched as the variables’” domain,

3. find a proper translation of the conditions that apply to schema matching into a set of fuzzy constraints,
and

4. form objective functions to be optimized.

We have defined the schema matching problem as a graph matching homomorphism ¢. We now proceed
by formalizing the problem ¢ as a FCOP problem Q, = (X,D,C,,g). To construct a FCOP out of this
problem, we follow the above rules. Through these rules, we take the two relational database schemas shown
in Fig. 3.2(a) and its associated schema graphs shown in Fig. 3.2(b) as an example, taking into account that
[Nas(= 6)| < |Nar(= 10)| as follows:

310 A. Algergawy, E. Schallehn and G. Saake

e The set of variables X is given by X = Ngs|J Egs where the variables from Ngg are called node
variables X and from FEgg are called edge variables Xpg
X=XyvUZXEg
= {xnla Tn2,Tn3, Tnd, Tns, xnﬁ} U{xel—Qa Le2—3,Le2—4, Le2—5, ‘T€2—6}
e The set of domain D is given by D = Ngr|J Egr, where the domains from Ngr are called node
domains Dy and from Egr are called edge domains D,
= {Dn1, D2, Dn3, Dya, Dys, Dypg} \{De1—2, De2—3, Dea—4, Dea—5, Dea—¢} where Dy1 = Dyp = Dy =
Dypy = Dys = Dpg =
{n17,nar, n3r, nar, N5, NeT, N7T, N8T, N9, N10T } (i €. the node domain contains all the second schema
graph nodes) and Del—2 = D62_3 = Deg_4 = D62_5 = Deg_ﬁ =
{e1—or,€1-37,€2-47, ..., D1—2-4T, ... } (i. e. the edge domain contains all the available edges and paths
in the second schema graph) (the edge e;_2 reads the edge extends between the two nodes nq and nq
such that €12 = e(nl,ng)).
Using this formalization enables us to deal with holistic matching. This can be achieved by taking the objects
of one schema as the variable set, while the objects of other schemas as the variable’s domain. Let we have n
schemas which are transformed into schema graphs SG1,5G2,...,SGn then X = Xy |JXg, Dn =Y., 5 Dni,
Dp = Z?:Q Dg;. Another benefit behind this approach is that our approach is able to discover complex matches
of types 1:n and n:1 very easily. This can be achieved by allowing a value may have multiple values from its
corresponding domain and a value may be assigned to multiple variables.
In the following subsections, we demonstrate how to construct both constraints and objective functions in
order to obtain a complete problem definition.

4.3. Constraint Construction. The exploited constraints should reflect the goals of schema matching.
Schema matching based only on schema element properties has been attempted. However, it does not provide
any facility to optimize matching. Furthermore, additional constraint information, such as semantic relationships
and other domain constraints, is not included and schemas may not completely capture the semantics of data
they describe. Therefore, in order to improve performance and correctness of matching, additional information
should be included. In this paper, we are concerned with both syntactic and semantic matching. Therefore, we
shall classify constraints that should be incorporated in the CP model into: syntactic constraints and semantic
constraints. In the following, we consider only the constraints construction while the fuzzy relations of fuzzy
constraint are not consider since it depends on the application domain. For example, as shown below, domain
constraints are crisp constraints, i. e. pc(v) = 1, while the structural constraints are soft constraints with
different degree of satisfaction.

4.3.1. Syntactic Constraints.

1. Domain Constraints: 1t states that a node variable must be assign a value or a set of values from its
corresponding node domain, and an edge variable must be assigned a value from its corresponding edge
domain. That is Va,; € Xy and z.; € Xp3 a unary constraintcz?;fﬂ) and Cﬁf;’;) ensuring domain
consistency of the match where,

Cz?g}”) = {dz c DNi};

caor = {d; € Dp;}
2. Structural Constraints: There are many structural relationships between schema graph nodes such
as:

e FEdge Constraint: It states that if an edge exists between two variable nodes, then an edge (or
path) should exist between their corresponding images. That is Vz.; € Xg and its source and
target nodes are x,; and z,; € X3 two binary constraints CZ?; ns) and Cﬁ%; one) representing

the structural behavior of matching, where:

Zz;ei,wns) = {(d“dj) S DE X DN|5TC(dZ) = dj}
Cég;,zm) = {(dl,dj) € Dg x DN|ta7“(di) = d]}

e V two variables nodes z,; and x,; € X3 a set of binary constraints describing the hierarchical
relationships between schema graph nodes as follows:

Fuzzy Constraint-Based Schema Matching Formulation 311

Cparent

(a) Parent Constraint v
/’L(Inzawn,])

where

representing the structural behavior of parent relationship,

crarent y = {(di,d;) € Dy x Dy | Je(di, dy) s.t. sre(e) = di}

#(Iniqzn]‘

(b) Child Constraint Cchid) representing the structural behavior of child relationship, where

H(@ni@n
oot =A{(di,d;) € Dy x Dy | 3e(d;, dj) s.t. tar(e) = d;}
(c) Sibling Constraint C;Z(bzln o) representing the structural behavior of sibling relationship,
where

/i?;lm,zm) = {(d;,d;) € Dy x Dy | 3d,, s.t. parent(d,,d;) A parent(d,,d;)}
4.3.2. Semantic Constraints. The first constraint type considers only the structural and hierarchical
relationships between schema graph nodes. In order to capture the other features of schema graph nodes such
as the semantic feature we make use of the following constraint.
1. Label Constraints: Vz,; € Xy and Vz.; € Xg3 a unary constraint Cj&l’m) and Cﬁ&bei) ensuring the
semantics of the predicates in the schema such that:

ched = {dj € DN|lsim(1S(zn:),1T(d;)) > t}

crit ={dj € DE|lsim(IS(xe:), 1T (d;)) > t}
where lsim is a linguistic similarity function determining the semantic similarity between nodes/edges labels
and t is a predefined threshold.

The above syntactic and semantic constraints are by no means the contextual relationships between ele-
ments. Other kinds of domain knowledge can also be represented through constraints. Moreover, each constraint
is associated with a membership function u(v) € [0, 1] to indicate to what extent the constraint should be sat-
isfied. If p(v) = 0, this means v totally violates the constraint and p(v) = 1 means v totally satisfies it.
Constraints restrict the search space for the matching problem so may benefit the efficiency of the search pro-
cess. On the other hand, if too complex, constraints introduce additional computational complexity to the
problem solver.

4.4. Objective Function Construction. The objective function is the function associated with an opti-
mization process which determines how good a solution is and depends on the object parameters. The objective
function constitutes the implementation of the problem to be solved. The input parameters are the object
parameters. The output is the objective value representing the evaluation/quality of the individual. In the
schema matching problem, the objective function simulates human reasoning on similarity between schema
graph objects.

In this framework, we should consider two function components which constitute the objective function.
The first is called cost function f.ngt which determines the cost of a set constraint over variables. The second
is called energy function fenergy which maps every possible variable assignment to a cost. Then, the objective
function could be expressed as follows:

g = mis| max(zset of constraints Jeost + Zset of assignment fenergy)

5. Related Work. Schema matching is a fundamental process in many domains dealing with shared data
such as data integration, data warehouse, E-commerce, semantic query processing, and the web semantics.
Matching solutions were developed using different kind of heuristics, but usually without prior formal definition
of the problem they are solving. Although many matching systems, such as Cupid [17], COMA/COMA++ [6, 1],
LSD [8], Similarity Flooding [20], OntoBuilder [13], QOM [12], BTreeMatch [11], S-Match [14], and Spicy [3],
have been developed and different approaches have been proposed to solve the schema matching problem, but
no complete work to address the formulation problem. Schema matching research mostly focuses on how well
schema matching systems recognize corresponding schema elements. On the other hand, not enough research
has been done on formal basics of the schema matching problem.

312 A. Algergawy, E. Schallehn and G. Saake

Most of the existing work [22] define match as a function that takes two schemas (models) as input, may
be in the presence of auxiliary information sources such as user feedback and previous mappings, and produces
a mapping as output. A schema consists of a set of related elements such as tables, columns, classes, or XML
elements and attributes. A mapping is a set of mapping elements specifying the matching schema elements
together. Each mapping element is specified by 4-tuple element (ID, S}, S?, R) where I D is an identifier for the
mapping element that matches between the element S} of the first schema and the element SJQ- of the second one
and R indicates the similarity value between 0 and 1. The value of 0 means strong dissimilarity while the value
of 1 means strong similarity. But, in general, a mapping element indicates that certain element(s) of schema
S1 are related to certain element(s) of schema S2. Each mapping element can have an associated mapping
expression which specifies how the two elements (or more) are related. Schema matching is considered only
with identifying the mappings not determining the associated expressions.

In the work of A. Doan [7], they formalize the schema matching problem as four different problems:

1. The basic 1-1 Matching; given two schemas S and T (representations), for each element s of S, find
the most semantically similar element t of T, utilizing all available information. This problem is often
referred as a one-to-one matching problem, because it matches each element s with a single element.
For example, the (ID1, S.Address, T.CAddress, 0.8) mapping element indicates that there a mapping
between the element S.Address of schema S and the element T.CAddress of schema T with a degree of
similarity 0.8.

2. Matching for Data Integration; given source schemas S1, S2,...,5n and mediated schema T, for each
element s of Si find the most similar element t of T.

3. Complex Matching; let S and T be two data representations. Let O ={01, 02,...,0k} be a set of
operators that can be applied to the elements of T according to a set of rules R to Figure 2: Matching
Function construct formulas. For each element s of S, find the most similar element t, where t can be
either an element of T or a formula from the elements of T, using O and R.

4. Matching for Tazonomies; given two taxonomies of concepts S and T, for each concept node s of S,
find the most similar concept node of T.

For each of these problems, Doan shows input information, solution output, and the evaluation of a solution
output. In general, the input to a problem can include any type of knowledge about the schemas to be matched
and their domains such as schema information, instance data, previous matchings, domain constraints, and user
feedback.

Zhang and et. el. [25] formulate the schema matching problem as a combinatorial optimization problem.
The authors cast the schema matching problem into a multi-labeled graph matching problem. The authors
propose a meta-meta model of schema: multi-labeled graph model, which views schemas as finite structures
over the specific signatures. Based on this multi-labeled schema, they propose a multi-labeled graph model,
which is an instance of multi-label schema, to describe various schemas, where each node and edge can be
associated with a set of labels describing its properties. Then they construct a generic graph similarity mea-
sure based on the contrast model and propose an optimization function to compare two multi-labeled graphs.
Using the greedy algorithm, they design an optimization algorithm to solve the multi-labeled graph matching
problem.

Gal and et al. [13] propose a fuzzy framework to model the uncertainty of the schema matching process
outcome. The framework aims at identifying and analyzing factors that impact the effectiveness of schema
matching algorithms by reducing the uncertainty of existing algorithms. To specify their belief in the mapping
quality, the authors associate a confidence measure with any mapping among attributes’ sets. They use the
framework to define the monotonicity property as a desired property of the schema matching problem, so one
can safely interpret a high confidence measure as a good semantic mapping.

The recent work for [23] introduces a formal specification for the XML matching problem. The authors
define the ingredients of the XML schema matching problem using constraint logic programming. Matching
problems can be defined through variables, variable domains, constraints and an objective function. They
distinguish between the constraint satisfaction problem and constraint optimization problem and show that the
optimization problem is more suitable for the schema matching problem. They make use of combination of
clustering methods and the branch and bound algorithm to solve the schema matching problem.

In our formulation approach, we have some common and distinct features with the other related work. The
common features include transforming schemas to be matched into schema graphs, i. e. rooted labeled graphs,
and making use of the constraint programming as a framework to extend the graph matching problem into a

Fuzzy Constraint-Based Schema Matching Formulation 313

constraint optimization problem. However, our approach introduces distinctly the use of fuzzy constraint in
order to reflect the nature of the schema matching problem. As well as the use of the fuzzy constraint enables
us to model uncertainty in the schema matching process.

6. Summary and Future Work. In this paper, we have investigated an intricate problem; the schema
matching problem. In particular, we have introduced a fuzzy constraint-based framework to model the schema
matching problem. To this end, we build a conceptual connection between the schema matching problem and
fuzzy constraint optimization problem. On one hand, we consider schema matching as a new application of
fuzzy constraint optimization, and on the other hand we propose the use of fuzzy constraint optimization as a
new approach for schema matching.

Our proposed approach is a generic framework which has the feature to deal with different schema repre-
sentations by transforming the schema matching problem into graph matching. Instead of solving the graph
matching problem which has been proven to be an NP-complete problem, we reformulate it as a constraint
problem. We have identified two types of constraints syntactic and semantic to ensure match semantics. As
well as, we make use of the fuzzy constraints in order to enable us modeling uncertainty in the schema matching
process. We also shed light on how to construct objective functions.

The main benefit of this approach is that we gain direct access to the rich research findings in the CP area;
instead of inventing new algorithms for graph matching from scratch. Another important advantage is that the
actual algorithm solution becomes independent of the concrete graph model, allowing us to change the model
without affecting the algorithm by introducing a new level of abstraction.

Understanding the schema matching problem is considered the first step towards an effective and efficient
solution for the problem. In our ongoing work, we will exploit constraint solver algorithms to reach our goal.

REFERENCES

[1] D. AumueLLER, H. H. Do, S. MassMANN, AND E. RAauM, Schema and ontology matching with COMA ++, in SIGMOD
Conference, 2005, pp. 906-908.

[2] R. BABAKRISHNAN AND K.RANGANATHAN, A textbook of graph theory, Spring Verlag, 1999.

[3] A. Bonrrati, G. MEcca, A. PAPPALARDO, AND S. RaunicH, The spicy project: A new approach to data matching, in
SEBD, Turkey, 2006.

[4] S. C. CHuang, B. He, C. L1, M. PaTEL, AND Z. ZHANG, Structured databases on the web: Observations and implications,
SIGMOD Record, 33 (2004), pp. 61-70.

[5] R. DECHTER, Constraint Processing, Morgan Kaufmann, 2003.

[6] H. H. Do anp E. Raum, COMA- a system for flexible combination of schema matching approaches, in VLDB 2002, 2002,
pp. 610-621.

[7] A. Doan, Learning to map between structured representations of datag, in Ph.D Thesis, Washington University, 2002.

[8] A. Doan, P. DoMmiNGOs, AND A. HALEVY, Reconciling schemas of disparate data sources: A machine-learning approach,
SIGMOD, (2001), pp. 509-520.

[9] X. Dong, A. HaLEvY, aNnD C. Yu, Data integration with uncertainty, in VLDB’07, 2007, pp. 687-698.

[10] C. DrumMmM, M. ScumitT, H.-H. Do, AND E. RaHM, Quickmig - automatic schema matching for data migration projects,

in Proc. ACM CIKMO07, Portugal, 2007.
[11] F. DucHATEAU, Z. BELLAHSENE, AND M. ROCHE, An indering structure for automatic schema matching, in SMDB Work-
shop, Turkey, 2007.
. EHRIG AND S. STAAB, QOM- quick ontology mapping, in International Semantic Web Conference, 2004, pp. 683-697.
Gar, A. Tavor, A. TROMBETTA, AND D. MoNTESI, A framework for modeling and evaluating automatic semantic
reconciliation, VLDB Journal, 14 (2005), pp. 50-67.
[14] F. GruncHiGLiA, M. YATSKEVICH, AND P. SHvAIKO, Semantic matching: Algorithms and implementation, Journal on Data
Semantics, IX (2007).

[15] H. W. GUESGEN AND A. PHILPOTT, Heuristics for fuzzy constraint satisfaction, in ANNES 95, 1995, pp. 132-135.

[16] W. L1 anp C. CuLirTON, Semint: A tool for identifying attribute correspondences in heterogeneous databases using neural
networks, Data and Knowledge Engineering, 33 (2000), pp. 49-84.

[17] J. MapuAvAN, P. A. BERNSTEIN, AND E. Ranwm, Generic schema matching with cupid, in VLDB 2001, Roma, Italy, 2001,
pp. 49-58.

[18] K. MarrioTT AND P. STUCKEY, Programming with Constraints: An Introduction, MIT Press, 1998.

[19] S. MEDAsAaNI, R. KRISHNAPURAM, AND Y. CHo1, Graph matching by relazation of fuzzy assignments, IEEE Trans. on Fuzzy
Systems, 9 (2001), pp. 173-182.

[20] S. MELNik, H. GARCia-MoLiNa, aND E. Ranwm, Similarity flooding: A versatile graph matching algorithm and its application
to schema matching, in ICDE’02, 2002.

[21] L. PaLopoLi, D. Rossact, G. TERRACINA, AND D. UrsiNO, A graph-based approach for extracting terminological properties
from information sources with heterogeneous formats, Knowledge and Information Systems, 8 (2005), pp. 462-497.

[22] E. Raam anp P. A. BERNSTEIN, A survey of approaches to automatic schema matching, VLDB Journal, 10 (2001), pp. 334—
350.

=
)
> g

314 A. Algergawy, E. Schallehn and G. Saake

[23] M. SmiLisanic, M. vaNn KEULEN, AND W. JONKER, Formalizing the tml schema matching problem as a constraint optimiza-
tion problem, in DEXA, K. V. Andersen, J. K. Debenham, and R. Wagner, eds., vol. 3588 of Lecture Notes in Computer
Science, Springer, 2005, pp. 333-342.

[24] E. Tsang, Foundations of Constraint Satisfaction, Acadimic Press, 1993.

[25] Z. Zuana, H. CuE, P. SH1, Y. Sun, anxp J. Gu, Formulation schema matching problem for combinatorial optimization
problem, IBIS, 1 (2006), pp. 33—60.

Edited by: Dominik Flejter, Tomasz Kaczmarek, Marek Kowalkiewicz
Received: February 3rd, 2008

Accepted: March 19th, 2008

Ezxtended version received: June 17th, 2008

