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t. The deep Web has many 
hallenges to be solved. Among them is s
hema mat
hing. In this paper, we builda 
on
eptual 
onne
tion between the s
hema mat
hing problem SMP and the fuzzy 
onstraint optimization problem FCOP. Inparti
ular, we propose the use of the fuzzy 
onstraint optimization problem as a framework to model and formalize the s
hemamat
hing problem. By formalizing the SMP as a FCOP, we gain many bene�ts. First, we 
ould express it as a 
ombinatorialoptimization problem with a set of soft 
onstraints whi
h are able to 
ope with un
ertainty in s
hema mat
hing. Se
ond, thea
tual algorithm solution be
omes independent of the 
on
rete graph model, allowing us to 
hange the model without a�e
ting thealgorithm by introdu
ing a new level of abstra
tion. Moreover, we 
ould dis
over 
omplex mat
hes easily. Finally, we 
ould makea trade-o� between s
hema mat
hing performan
e aspe
ts.Key words: s
hema mat
hing, 
onstraint programming, fuzzy 
onstraints, obje
tive fun
tion1. Introdu
tion. The deep Web (also known as Deepnet or the hidden Web) refers to the World WideWeb 
ontent that is not a part of the surfa
e Web. It is estimated that the deep Web is several orders ofmagnitude larger than the surfa
e Web [4℄. As the number of deep Web sour
es has been in
reasing as thee�orts needed to enable users to explore and integrate these sour
es be
ome essential. As a result softwaresystems have been developed to open the deep Web to users. S
hema mat
hing is the 
ore task of these systems.S
hema mat
hing is the task of identifying semanti
 
orresponden
es among elements of two or mores
hemas. It plays a 
entral role in many data appli
ation s
enarios [22, 17℄: in data integration, to identifyand 
hara
terize inter-s
hema relationships between multiple (heterogeneous) s
hemas; in data warehousing,to map data sour
es to a warehouse s
hema; in E-business, to help to map messages between di�erent XMLformats; in the Semanti
 Web, to establish semanti
 
orresponden
es between 
on
epts of di�erent web sitesontologies; and in data migration, to migrate lega
y data from multiple sour
es into a new one [10℄.Due to the 
omplexity of s
hema mat
hing, it was mostly performed manually by a human expert. However,manual re
on
iliation tends to be a slow and ine�
ient pro
ess espe
ially in large-s
ale and dynami
 environ-ments. Therefore, the need for automati
 s
hema mat
hing has be
ome essential. Consequently, many s
hemamat
hing systems have been developed for automating the pro
ess, su
h as Cupid [17℄, COMA/COMA++ [6, 1℄,LSD [8℄, Similarity Flooding [20℄, OntoBuilder [13℄, QOM [12℄, BTreeMat
h [11℄, S-Mat
h [14℄, and Spi
y [3℄.Manual semanti
 mat
hing over
omes mismat
hes whi
h exist in element names and also di�erentiates betweendi�eren
es of domains. Hen
e, we 
ould assume that manual mat
hing is a perfe
t pro
ess. On the other hand,automati
 mat
hing may 
arry with it a degree of un
ertainty, as it is based on synta
ti
, rather than semanti
,means. Furthermore, re
ently, there has been renewed interest in building database systems that handle un-
ertain data in a prin
ipled way [9℄. Hen
e a short rant about the relationship between databases that manageun
ertainty and data integration systems appears. Therefore, we should surf for a suitable model whi
h is ableto meet the above requirements.A �rst step in dis
overing an e�e
tive and e�
ient way to solve any di�
ult problem su
h as s
hemamat
hing is to 
onstru
t a 
omplete problem spe
i�
ation. A suitable and pre
ise de�nition of s
hema mat
hingis essential for investigating approa
hes to solve it. S
hema mat
hing has been extensively resear
hed, andmany mat
hing systems have been developed. Some of these systems are rule-based [6, 17, 20℄ and others arelearning-based [16, 7, 8℄. However, formal spe
i�
ations of problems being solved by these systems do not exist,or are partial. Little work is done towards s
hema mat
hing problem formulation e.g. in [25, 23℄.In the rule-based approa
hes, a graph is used to des
ribe the state of a modeled system at a given time,and graph rules are used to des
ribe the operations on the system's state. As a 
onsequen
e in pra
ti
e,using graph rules has a worst 
ase 
omplexity whi
h is exponential to the size of the graph. Of 
ourse, analgorithm of exponential time 
omplexity is una

eptable for serious system implementation. In general, toa
hieve a

eptable performan
e it is inevitable to 
onsequently exploit the spe
ial properties of both s
hemasto be mat
hed. Beside that, there is a striking 
ommonality in all rule-based approa
hes; they are all based onba
ktra
king paradigms. Knowing that the overwhelming majority of theoreti
al as well as empiri
al studieson the optimization of ba
ktra
king algorithms is based on the 
ontext of 
onstraint problem (CP), it is near
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hallehn and G. Saaketo hand to open this knowledge base for s
hema mat
hing algorithms by reformulating the s
hema mat
hingproblem as a CP [24, 18, 5℄.To summarize, we are in a need to a framework whi
h is able to fa
e the following 
hallenges:1. formalizing the s
hema mat
hing problem: Although many mat
hing systems have been developed tosolve the s
hema mat
hing problem, but no 
omplete work to address the formulation problem. S
hemamat
hing resear
h mostly fo
uses on how well s
hema mat
hing systems re
ognize 
orresponden
es. Onthe other hand, not enough resear
h has been done on formal basi
s of the s
hema mat
hing problem.2. trading-o� between s
hema mat
hing performan
e aspe
ts : The performan
e of a s
hema mat
hingsystem 
omprises two equally important fa
tors; namelymat
hing e�e
tiveness andmat
hing e�
ien
y.The e�e
tiveness is 
on
erned with the a

ura
y and the 
orre
tness of the mat
h result while thee�
ien
y is 
on
erned with the system resour
es su
h as the response time of the mat
h system. Re
ents
hema mat
hing systems report 
onsiderable e�e
tiveness [6℄, however, the e�
ien
y aspe
ts remain amissing area and represent an open 
hallenge for the s
hema mat
hing 
ommunity. Improving s
hemamat
hing e�
ien
y results in de
reasing mat
hing e�e
tiveness, so a trade-o� between the two aspe
tsshould be 
onsidered.3. dealing with un
ertainty of s
hema mat
hing: S
hema mat
hing systems should be able to handleun
ertainty arises during the mat
hing pro
ess from di�erent sour
es. Re
ently, there has been renewedinterest in building database systems that handle un
ertain data and its lineage in a prin
ipled way, soa short rant about the relationship between databases that manage un
ertainty and lineage and dataintegration systems appears. In addition to, in order to fully automate the mat
hing pro
ess, we makeuse of extra
tor tools whi
h extra
t di�erent data models and represent them as a 
ommon model. Theextra
tion pro
ess brings errors and un
ertainties to the mat
hing pro
essIn this paper, we build a 
on
eptual 
onne
tion between the s
hema mat
hing problem (SMP) and the fuzzy
onstraint optimization problem (FCOP). On one hand, we 
onsider s
hema mat
hing as a new appli
ation offuzzy 
onstraints; on the other hand, we propose the use of the fuzzy 
onstraint satisfa
tion problem as a newapproa
h for s
hema mat
hing. In parti
ular, in this paper, we propose the use of the FCOP to formulate theSMP. However, our approa
h should be generi
, i. e. have the ability to 
ope with di�erent data models and beused for di�erent appli
ation domains. Therefore, we �rst transform s
hemas to be mat
hed into a 
ommon datamodel 
alled rooted labeled graphs. Then we reformulate the graph mat
hing problem as a 
onstraint problem.There are many bene�ts behind this formulation. First, we gain dire
t a

ess to the ri
h resear
h �ndings in theCP area; instead of inventing new algorithms for graph mat
hing from s
rat
h. Se
ond, the a
tual algorithmsolution be
omes independent of the 
on
rete graph model, allowing us to 
hange the model without a�e
tingthe algorithm by introdu
ing a new level of abstra
tion. Third, formalizing the SMP as a FCOP fa
ilitateshandling un
ertainty in the s
hema mat
hing pro
ess. Finally, we 
ould simply deal with simple and 
omplexmappings.The paper is organized as follows: Se
tion 2 introdu
es ne
essary preliminaries. Our framework to unifys
hema mat
hing is presented in Se
tion 3 in order to illustrate the s
ope of this paper. Se
tion 4 shows howto formulate the s
hema mat
hing problem as a 
onstraint problem. Se
tion 5 des
ribes the related work. The
on
luding remarks and ongoing future work are presented in Se
tion 6.2. Preliminaries. This paper is based mainly on two existing bodies of resear
h, namely graph theory [2℄and 
onstraint programming [24, 18, 5℄. To keep this paper self-
ontained, we brie�y present in this se
tion thebasi
 
on
epts of them.2.1. Graph Model. A s
hema is the des
ription of the stru
ture and the 
ontent of a model and 
onsistsof a set of related elements su
h as tables, 
olumns, 
lasses, or XML elements and attributes. There aremany kinds of data models, su
h as relational model, obje
t-oriented model, ER model, XML s
hema, et
. Bys
hema stru
ture and s
hema 
ontent, we mean its s
hema-based properties and its instan
e-based properties,respe
tively. In this subse
tion we present formally rooted (multi-)labeled dire
ted graphs used to represents
hemas to be mat
hed as the internal 
ommon model.A rooted labeled graph is a dire
ted graph su
h that nodes and edges are asso
iated with labels, and inwhi
h one node is labeled in a spe
ial way to distinguish it from the graph's other nodes. This spe
ial node is
alled the root of the graph. Without loss of generality, we shall assume that every node and edge is asso
iatedwith at least one label: if some nodes (resp. edges) have no label, one 
an add an extra anonymous label thatis asso
iated with every node (resp. edge). More formally, we 
an de�ne the labeled graph as follows:
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hing Formulation 305Definition 2.1. A Rooted Labeled Graph G is a 6-tuple G = (NG, EG, LabG, sr
, tar, l) where:
• NG = {nroot, n2, . . . , nn} is a �nite set of nodes, ea
h of them is uniquely identi�ed by an obje
t identi�er(OID), where nroot is the graph root.
• EG = {(ni, nj)|ni, nj ∈ NG} is a �nite set of edges, ea
h edge represents the relationship between twonodes.
• LabG ={ LabNG, LabEG } is a �nite set of node labels LabNG , and a �nite set of edge labels LabEG.These labels are strings for des
ribing the properties (features) of nodes and edges.
• sr
 and tar: EG 7→ NG are two mappings (sour
e and target), assigning a sour
e and a target node toea
h edge (i. e. if e = (ni, nj) then src(e) = ni and tar(e) = nj).
• l : NG ∪ EG 7→ LabG is a mapping label assigning a label from the given LabG to ea
h node and ea
hedge.
• |NG| = n is the graph size.Now that we have de�ned a 
on
rete graph model, in the following subse
tion we present basi
s of 
onstraintprogramming.2.2. Constraint Programming. Many problems in 
omputer s
ien
e, most notably in Arti�
ial Intelli-gen
e, 
an be interpreted as spe
ial 
ases of 
onstraint problems. Semanti
 s
hema mat
hing is also an intel-ligen
e pro
ess whi
h aims at mimi
king the behavior of humans in �nding semanti
 
orresponden
es betweens
hemas' elements. Therefore, 
onstraint programming is a suitable s
heme to represent the s
hema mat
hingproblem.Constraint programming is a generi
 framework for de
larative des
ription and e�e
tive solving for large,parti
ularly 
ombinatorial, problems. Not only it is based on a strong theoreti
al foundation but also it isattra
ting widespread 
ommer
ial interest as well, in parti
ular, in areas of modeling heterogeneous optimizationand satisfa
tion problems. We, here, 
on
entrate only on 
onstraint satisfa
tion problems (CSPs) and presentde�nitions for CSPs, 
onstraints, and solutions for the CSPs.Definition 2.2. A Constraint Satisfa
tion Problem P is de�ned by a 3-tuple P=(X,D,C) where,
• X = {x1, x2, . . . , xn} is a �nite set of variables.
• D = {D1, D2, . . . , Dn} is a 
olle
tion of �nite domains. Ea
h domain Di is the set 
ontaining thepossible values for the 
orresponding variable xi ∈ X.
• C = {C1, C2, . . . , Cm} is a set of 
onstraints on the variables of X.Definition 2.3. A Constraint Cs on a set of variables S = {x1, x2, . . . xr} is a pair Cs = (S, Rs), whereRs is a subset on the produ
t of these variables' domains: Rs ⊆ D1 × · · · × Dr → {0, 1}.The number r of variables a 
onstraint is de�ned upon is 
alled arity of the 
onstraint. The simplest type isthe unary 
onstraint, whi
h restri
ts the value of a single variable. Of spe
ial interest are the 
onstraints of aritytwo, 
alled binary 
onstraints. A 
onstraint that is de�ned on more than two variables is 
alled a global 
onstraint.Solving a CSP is �nding assignments of values from the respe
tive domains to the variables so that all
onstraints are satis�ed.Definition 2.4. (Solution of a CSP) An assignment Λ is a solution of a CSP if it satis�es all the 
onstraintsof the problem, where the assignment Λ denotes an assignment of ea
h variable xi with the 
orresponding value

ai su
h that xi ∈ X and ai ∈ Di.Example 1. (Map Coloring) We want to 
olor the regions of a map, shown in Fig. 2.1, in a way that notwo adja
ent regions have the same 
olor. The a
tual problem is that only a 
ertain limited number of 
olors isavailable. Let's we have four regions and only three 
olors. We now formulate this problem as CSP = (X, D, C)where:
• X = {x1, x2, x3, x4} represents the four regions,
• D = {D1, D2, D3, D4} represents the domains of the variables su
h that D1 = D2 = D3 = D4 =
{red, green, blue}, and

• C = {C(x1,x2), C(x1,x3), C(x1,x4), C(x2,x4), C(x3,x4)} represents the set of 
onstraints must be satis�edsu
h that C(xi,xj) = {(vi, vj) ∈ Di × Dj|vi 6= vj}.As shown in Example 1, there are a number of solutions to the spe
i�ed CSP. Any one of them is 
onsidereda solution to the problem. However, in the s
hema mat
hing �eld, we do not only sear
h for any solution butalso the best one. The quality of solution is usually measured by an appli
ation dependent fun
tion 
alled theobje
tive fun
tion. The goal is to �nd su
h a solution that satis�es all the 
onstraints and minimize or maximizethe obje
tive fun
tion. Su
h problems are referred to as 
onstraint optimization problems (COP).
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Fig. 2.1. Map 
oloring exampleDefinition 2.5. A Constraint Optimization Problem Q is de�ned by 
ouple Q =(P,g) su
h that P is aCSP and g : D1 × · · · × Dn → [0, 1] is an obje
tive fun
tion that maps ea
h solution tuple into a value.Example 2. (Traveling Salesman) The traveling salesman problem is to �nd the shortest 
losed path bywhi
h 
ity out of a set of n 
ities is visited on
e and only on
e.While powerful, both CSP and COP present some limitations. In parti
ular, all 
onstraints are 
onsideredmandatory. In many real-world problems, su
h as the s
hema mat
hing problem, there are 
onstraints that 
ouldbe violated in solutions without 
ausing su
h solutions to be una

eptable. If these 
onstraints are treated asmandatory, this often 
auses problems to be unsolved. If these 
onstraints are ignored, solutions of bad qualityare found. This is a motivation to extend the CSP s
heme and make use of soft 
onstraints. A way to 
ir
umventin
onsistent 
onstraints problems is to make them fuzzy [15℄. The idea is to asso
iate fuzzy values with theelements of the 
onstraints, and 
ombine them in a reasonable way.A 
onstrain, as de�ned before, is usually de�ned as a pair 
onsisting of a set of variables and a relationon these variables. This de�nition gives us the availability to model di�erent types of un
ertainty in s
hemamat
hing. In [9℄, authors identify di�erent sour
es for un
ertainty in data integration. Un
ertainty in semanti
mappings between data sour
es 
an be modeled by exploiting fuzzy relations while other sour
es of un
ertainty
an be modeled by making the variable set a fuzzy set. In this paper, we take the �rst one into a

ount whilethe other sour
es are left for our ongoing work.Definition 2.6. (Fuzzy Constraint) A Fuzzy Constraint Cµ on a set of variables S = {x1, x2, . . . , xr}is a pair Cµ = (S, Rµ), where the fuzzy relation Rµ, de�ned by µR :

∏
xi∈var(C) Di 7→ [0, 1] where µR is themembership fun
tion indi
ating to what extent a tuple v satis�es Cµ.

• µR(v) = 1 means v totally satis�es Cµ,
• µR(v) = 0 means v totally violates Cµ, while
• 0 < µR(v) < 1 means v partially satis�es Cµ.Definition 2.7. A Fuzzy Constraint Cµ on a set of variables S = {x1, x2, . . . xr} is a pair Cµ = (S, Rµ),where the fuzzy relation Rµ, de�ned by µR :

∏
xi∈var(C) Di → [0, 1] where µR is the membership fun
tionindi
ating to what extent a tuple v satis�es Cµ.

• µR(v) = 1 means v totaly satis�es Cµ,
• µR(v) = 0 means v totaly violates Cµ, while
• 0 < µR(v) < 1 means v partially satis�es Cµ.Definition 2.8. A Fuzzy Constraint Optimization Problem Qµ is a 4-tuple Qµ= (X, D, Cµ, g) where Xis a list of variables, D is a list of domains of possible values for the variables, Cµ is a list of fuzzy 
onstraintsea
h of them referring to some of the given variables, and g is an obje
tive fun
tion to be optimized.In the following se
tion we shed the light on our s
hema mat
hing framework to determine the s
ope ofs
hema mat
hing understanding.3. A uni�ed s
hema mat
hing framework. Ea
h of the existing s
hema mat
hing systems deals withthe s
hema mat
hing problem from its point of view. As a result the need to a generi
 framework that uni�esthe solution of this intri
ate problem independent on the domain of s
hemas to be mat
hed and independent onthe model representations be
omes essential. To this end, we suggest the following general phases to address thes
hema mat
hing problem. Figure 2 shows these phases with the main s
ope of this paper. The four di�erentphases are:
• importing s
hemas to be mat
hed; TransMat Phase,
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Fig. 3.1. Mat
hing Pro
ess Phases
• identifying elements to be mat
hed; Pr-mat
hing Phase,
• applying the mat
hing algorithms; Mat
hing Phase, and
• exporting the mat
h result; MapTrans Phase.In the following subse
tion we introdu
e a framework for de�ning di�erent data models and how to transformthem into s
hema graphs. This part follows the same pro
edure found in [25℄ to show that di�erent data models
ould be represented by s
hema graphs.3.1. S
hema Graph. Tomake the mat
hing pro
ess a more generi
 pro
ess, s
hemas to be mat
hed shouldbe represented internally by a 
ommon representation. This uniform representation redu
es the 
omplexity ofthe mat
hing pro
ess by not having to 
ope with di�erent representations. By developing su
h import tools,s
hema mat
h implementation 
an be applied to s
hemas of any data model su
h as SQL, XML, UML, and et
.Therefore, the �rst step in our approa
h is to transform s
hemas to be mat
hed into a 
ommon model in orderto apply mat
hing algorithms. We make use of rooted labeled graphs as the internal model. We 
all this phaseTransMat ; Transformation for Mat
hing pro
ess.In general, to represent s
hemas and data instan
es, starting from the root, the s
hema is partitioned intorelations and further down into attributes and instan
es. In parti
ular, to represent relational s
hemas, XMLs
hemas, et
. as rooted labeled graphs, independently of the spe
i�
 sour
e format, we bene�t from the rulesfound in [25, 21℄. These rules are rewritten as follows:
• Every prepared mat
hing obje
t in a s
hema su
h as the s
hema, relations, elements, attributes et
.is represented by a node, su
h that the s
hema itself is represented by the root node. Let s
hema S
onsist of m elements (elem), then

∀ elem ∈ S ∃ ni ∈ NG ∧ S 7→ nroot, s.t. 1 ≤ i ≤ m

• The features of the prepared mat
hing obje
t are represented by node labels LabNG. Let features(featS) be the property set of an element (elem), then
∀ feat ∈ featS ∃ Lab ∈ LabNG

• The relationship between two prepared mat
hing obje
ts is represented by an edge. Let the relationshipsbetween s
hema elements be (relS), then
∀ rel ∈ relS ∃ e(ni, nj) ∈ EG s. t. src(e) = ni ∈ NG ∧ tar(e) = nj ∈ NG

• The properties of the relationship between prepared obje
ts are represented by edge labels LabEG. Letfeatures rfeatS be the property set of a relationship rel, then,
∀ rfeat ∈ rfeatS ∃ Lab ∈ LabEG
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(a) Two relational s
hemas (b) S
hema graphsFig. 3.2. Two Relational S
hemas & their S
hema Graphs (without labels)
(a) Two XML s
hemas (b) S
hema graphsFig. 3.3. Two XML s
hemas & their s
hema graphs (without labelsThe following two examples illustrate that how these rules 
an be applied to di�erent data models in orderto make our approa
h a more generi
 approa
h.Example 3. (Relational Database S
hemas) Consider s
hemas S and T depi
ted in Fig. 3.2(a) (from [20℄).The elements of S and T are tables and attributes. Applying the above rules, the two s
hemas S
hema S andS
hema T are represented by SG1 and SG2 respe
tively, su
h that SG1 = (NGS , EGS ,LabGS , sr
S , tarS , lS),where

NGS = {n1S, n2S , n3S , n4S , n5S , n6S}, EGS = {e1−2, e2−3, e2−4, e2−5, e2−6},LabGS = LabNS ∪ LabES = {name, type, data type} ∪ {part-of, asso
iate},sr
S, tarS, lS are mappings su
h that sr
S(e1−2) = n1S , tarS(e2−3) = n3S and lS(e1−2) = part-of. Figure 3.2(b)shows only the nodes and edges of the s
hema graphs (SG2 
an be de�ned similarly).In this example, we exploit di�erent features of mat
hing obje
ts su
h as name, datatype, and type. Thesefeatures are represented as nodes' labels. These features shall be the input parameters to the next phase.For example, the name of a mat
hing obje
t in SG1 will be used to measure linguisti
 similarity between itand another mat
hing obje
t from SG2, its datatype is to measure datatype 
ompatibility, and its type isused to determine semanti
 relationships. However, our approa
h is �exible in the sense that it is able toexploit more features as needed. Moreover, in this example, we exploit one stru
tural feature �part-of� torepresent stru
tural relationships between nodes at di�erent levels. Other stru
tural features e.g. asso
ia-tion relationship, that is a stru
tural relationship spe
ifying both nodes are 
on
eptually at the same level,is represented between keys. One asso
iation relationship is represented in Fig. 3.2(b) between the nodes
n6T and n9T to spe
ify a key/foreign key relation. Visually, asso
iation edges are represented as dashedlines.Example 4. (XML S
hemas) This example that we dis
uss illustrates how our uni�ed s
hema mat
hingframework 
opes with di�erent 
hoi
es of the models to be mat
hed. Now 
onsider two XML s
hemas inFig. 3.3(a) (from [25℄). The s
hemas are spe
i�ed using the XML language deployed on the website biztalk.orgdesigned for ele
troni
 do
uments used in e-business. The s
hema graphs (without labels) of these s
hemas areshown in Fig. 3.3(b). The labels of nodes and edges are the same as Example 3.Examples 3 and 4 illustrate that using Trans-Mat phase aims at mat
hing di�erent s
hema models. Themat
hing algorithm (Mat
hing Phase) does not have to deal with a large number of di�erent models. Themat
hing algorithm only deals with the internal representation. So far, re
ent s
hema mat
hing systems dire
tlydetermine semanti
 
orresponden
es between two s
hemas elements as a graph mat
hing problem. In this paper,
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hema graphs, and reformulate the graph mat
hing problem as a fuzzy
onstraint optimization problem.4. S
hema Mat
hing as a FCOP.4.1. S
hema Mat
hing as Graph Mat
hing. S
hemas to be mat
hed are transformed into rootedlabeled graphs and, hen
e, the s
hema mat
hing problem is 
onverted into graph mat
hing. There are twotypes of graph mat
hing: graph isomorphism and graph homomorphism. In general, a mat
h of one graph intoanother is given by a graph morphism, whi
h is a mapping of one graph's obje
t sets into the other's, with somerestri
tions to preserve the graph's stru
ture and its typing information.Definition 4.1. A Graph Morphism φ : SG1 → SG2 between two s
hema graphs
SG1 = (NGS , EGS, LabGS, srcS , tarS , lS) and SG2 = (NGT , EGT , LabGT , srcT , tarT , lT )is a pair of mappings φ = (φN , φE) su
h that φN : NGS → NGT (φN is a node mapping fun
tion) and

φE : EGS → EGT (φE is an edge mapping fun
tion) and the following restri
tions apply:1. ∀n ∈ NGS ∃ lS(n) = lT (φN (n))2. ∀e ∈ EGS ∃ lS(e) = lT (φE(e))3. ∀e ∈ EGS ∃ a path p′ ∈ NGT × EGT su
h that p′ = φE(e) and φN (srcS(e)) = srcT (φE(e)) ∧
φN (tarS(e)) = tarT (φE(e)).The �rst two 
onditions preserve both nodes and edges labeling information, while the third 
onditionpreserves graph's stru
ture. Graph mat
hing is an isomorphi
 mat
hing problem when |NGS| = |NGT | otherwiseit is homomorphi
. Obviously, the s
hema mat
hing problem is a homomorphi
 problem.Example 5. For the two relational s
hemas depi
ted in Fig.3.2(a) and its asso
iated s
hema graphs shownin Fig.3.2(b), the s
hema mat
hing problem between s
hema S and s
hema T is 
onverted into a homomorphi
graph mat
hing problem between SG1 and SG2.Graph mat
hing is 
onsidered to be one of the most 
omplex problems in 
omputer s
ien
e. Its 
omplexityis due to two major problems. The �rst problem is the 
omputational 
omplexity of graph mat
hing. Thetime required by ba
ktra
king in sear
h tree algorithms may in the worst 
ase be
ome exponential in the sizeof the graph. Graph homomorphism has been proven to be NP-
omplete problem [19℄. The se
ond problemis the fa
t that all of the algorithms for graph mat
hing mentioned so far 
an only be applied to two graphsat a time. Therefore, if there are more than two s
hemas that must be mat
hed, then the 
onventional graphmat
hing algorithms must be applied to ea
h pair sequentially. For appli
ations dealing with large databases,this may be prohibitive. Hen
e, 
hoosing graph mat
hing as platform to solve the s
hema mat
hing problemmay be e�e
tive pro
ess but ine�
ient. Therefore, we propose transforming graph homomorphism into aFCOP.Now that we have de�ned a graph model and its homomorphism, let us 
onsider how to 
onstru
t a FCOPout of a given graph mat
hing problem.4.2. Graph Mat
hing as a FCOP. In the s
hema mat
hing problem, we are trying to �nd a mappingbetween the elements of two s
hemas. Multiple 
onditions should be applied to make these mappings validsolutions to the mat
hing problem, and some obje
tive fun
tions are to be optimized to sele
t the best mappingsamong mat
hing result. The analogy to 
onstraint problem is quite obvious: here we make a mapping betweentwo sets, namely between a set of variables and a set of domains, where some 
onditions should be satis�ed.So basi
ally, what we have to do to obtain an equivalent 
onstraint problem CP for a given s
hema mat
hingproblem (knowing that s
hemas to be mat
hed are transformed into s
hema graphs) are:1. take obje
ts of one s
hema graph to be mat
hed as the CP's set of variables,2. take obje
ts of other s
hema graphs to be mat
hed as the variables' domain,3. �nd a proper translation of the 
onditions that apply to s
hema mat
hing into a set of fuzzy 
onstraints,and4. form obje
tive fun
tions to be optimized.We have de�ned the s
hema mat
hing problem as a graph mat
hing homomorphism φ. We now pro
eedby formalizing the problem φ as a FCOP problem Qµ = (X, D, Cµ, g). To 
onstru
t a FCOP out of thisproblem, we follow the above rules. Through these rules, we take the two relational database s
hemas shownin Fig. 3.2(a) and its asso
iated s
hema graphs shown in Fig. 3.2(b) as an example, taking into a

ount that

|NGS(= 6)| < |NGT (= 10)| as follows:
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• The set of variables X is given by X = NGS

⋃
EGS where the variables from NGS are 
alled nodevariables XN and from EGS are 
alled edge variables XE

X = XN

⋃
XE

= {xn1, xn2, xn3, xn4, xn5, xn6}
⋃
{xe1−2, xe2−3, xe2−4, xe2−5, xe2−6}

• The set of domain D is given by D = NGT

⋃
EGT , where the domains from NGT are 
alled nodedomains DN and from EGT are 
alled edge domains DE ,

= {Dn1, Dn2, Dn3, Dn4, Dn5, Dn6}
⋃
{De1−2, De2−3, De2−4, De2−5, De2−6} where Dn1 = Dn2 = Dn3 =

Dn4 = Dn5 = Dn6 =
{n1T , n2T , n3T , n4T , n5T , n6T , n7T , n8T , n9T , n10T } (i. e. the node domain 
ontains all the se
ond s
hemagraph nodes) and De1−2 = De2−3 = De2−4 = De2−5 = De2−6 =
{e1−2T , e1−3T , e2−4T , . . . , p1−2−4T , . . . } (i. e. the edge domain 
ontains all the available edges and pathsin the se
ond s
hema graph) (the edge e1−2 reads the edge extends between the two nodes n1 and n2su
h that e1−2 = e(n1, n2)).Using this formalization enables us to deal with holisti
 mat
hing. This 
an be a
hieved by taking the obje
tsof one s
hema as the variable set, while the obje
ts of other s
hemas as the variable's domain. Let we have ns
hemas whi
h are transformed into s
hema graphs SG1, SG2, . . . , SGn then X = XN

⋃
XE , DN =

∑n
i=2 DNi,

DE =
∑n

i=2 DEi. Another bene�t behind this approa
h is that our approa
h is able to dis
over 
omplex mat
hesof types 1:n and n:1 very easily. This 
an be a
hieved by allowing a value may have multiple values from its
orresponding domain and a value may be assigned to multiple variables.In the following subse
tions, we demonstrate how to 
onstru
t both 
onstraints and obje
tive fun
tions inorder to obtain a 
omplete problem de�nition.4.3. Constraint Constru
tion. The exploited 
onstraints should re�e
t the goals of s
hema mat
hing.S
hema mat
hing based only on s
hema element properties has been attempted. However, it does not provideany fa
ility to optimize mat
hing. Furthermore, additional 
onstraint information, su
h as semanti
 relationshipsand other domain 
onstraints, is not in
luded and s
hemas may not 
ompletely 
apture the semanti
s of datathey des
ribe. Therefore, in order to improve performan
e and 
orre
tness of mat
hing, additional informationshould be in
luded. In this paper, we are 
on
erned with both synta
ti
 and semanti
 mat
hing. Therefore, weshall 
lassify 
onstraints that should be in
orporated in the CP model into: synta
ti
 
onstraints and semanti

onstraints. In the following, we 
onsider only the 
onstraints 
onstru
tion while the fuzzy relations of fuzzy
onstraint are not 
onsider sin
e it depends on the appli
ation domain. For example, as shown below, domain
onstraints are 
risp 
onstraints, i. e. µC(v) = 1, while the stru
tural 
onstraints are soft 
onstraints withdi�erent degree of satisfa
tion.4.3.1. Synta
ti
 Constraints.1. Domain Constraints : It states that a node variable must be assign a value or a set of values from its
orresponding node domain, and an edge variable must be assigned a value from its 
orresponding edgedomain. That is ∀xni ∈ XN and xej ∈ XE∃ a unary 
onstraintCdom
µ(xni)

and Cdom
µ(xei)

ensuring domain
onsisten
y of the mat
h where,
Cdom

µ(xni)
= {di ∈ DNi},

Cdom
µ(xei)

= {di ∈ DEi}2. Stru
tural Constraints : There are many stru
tural relationships between s
hema graph nodes su
has:
• Edge Constraint : It states that if an edge exists between two variable nodes, then an edge (orpath) should exist between their 
orresponding images. That is ∀xei ∈ XE and its sour
e andtarget nodes are xns and xnt ∈ X∃ two binary 
onstraints Csrc

µ(xei,xns)
and Ctar

µ(xei,xnt)
representingthe stru
tural behavior of mat
hing, where:

Csrc
µ(xei,xns)

= {(di, dj) ∈ DE × DN |src(di) = dj}

Ctar
(xei,xnt)

= {(di, dj) ∈ DE × DN |tar(di) = dj}

• ∀ two variables nodes xni and xnj ∈ X∃ a set of binary 
onstraints des
ribing the hierar
hi
alrelationships between s
hema graph nodes as follows:
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parent

µ(xni,xnj)
representing the stru
tural behavior of parent relationship,where

C
parent

µ(xni,xnj)
= {(di, dj) ∈ DN × DN | ∃e(di, dj) s.t. src(e) = di}(b) Child Constraint Cchild

µ(xni,xnj)
representing the stru
tural behavior of 
hild relationship, where

Cchild
µ(xni,xnj)

= {(di, dj) ∈ DN × DN | ∃e(di, dj) s.t. tar(e) = dj}(
) Sibling Constraint Csibl
µ(xni,xnj)

representing the stru
tural behavior of sibling relationship,where
Csibl

µ(xni,xnj)
= {(di, dj) ∈ DN × DN | ∃dn s.t. parent(dn, di) ∧ parent(dn, dj)}4.3.2. Semanti
 Constraints. The �rst 
onstraint type 
onsiders only the stru
tural and hierar
hi
alrelationships between s
hema graph nodes. In order to 
apture the other features of s
hema graph nodes su
has the semanti
 feature we make use of the following 
onstraint.1. Label Constraints: ∀xni ∈ XN and ∀xei ∈ XE∃ a unary 
onstraint CLab

µ(xni) and CLab
µ(xei) ensuring thesemanti
s of the predi
ates in the s
hema su
h that:

C
Lab
µ(xni)

= {dj ∈ DN |lsim(lS(xni), lT (dj)) ≥ t}

C
Lab
µ(xei)

= {dj ∈ DE|lsim(lS(xei), lT (dj)) ≥ t}where lsim is a linguisti
 similarity fun
tion determining the semanti
 similarity between nodes/edges labelsand t is a prede�ned threshold.The above synta
ti
 and semanti
 
onstraints are by no means the 
ontextual relationships between ele-ments. Other kinds of domain knowledge 
an also be represented through 
onstraints. Moreover, ea
h 
onstraintis asso
iated with a membership fun
tion µ(v) ∈ [0, 1] to indi
ate to what extent the 
onstraint should be sat-is�ed. If µ(v) = 0, this means v totally violates the 
onstraint and µ(v) = 1 means v totally satis�es it.Constraints restri
t the sear
h spa
e for the mat
hing problem so may bene�t the e�
ien
y of the sear
h pro-
ess. On the other hand, if too 
omplex, 
onstraints introdu
e additional 
omputational 
omplexity to theproblem solver.4.4. Obje
tive Fun
tion Constru
tion. The obje
tive fun
tion is the fun
tion asso
iated with an opti-mization pro
ess whi
h determines how good a solution is and depends on the obje
t parameters. The obje
tivefun
tion 
onstitutes the implementation of the problem to be solved. The input parameters are the obje
tparameters. The output is the obje
tive value representing the evaluation/quality of the individual. In thes
hema mat
hing problem, the obje
tive fun
tion simulates human reasoning on similarity between s
hemagraph obje
ts.In this framework, we should 
onsider two fun
tion 
omponents whi
h 
onstitute the obje
tive fun
tion.The �rst is 
alled 
ost fun
tion f
ost whi
h determines the 
ost of a set 
onstraint over variables. The se
ondis 
alled energy fun
tion fenergy whi
h maps every possible variable assignment to a 
ost. Then, the obje
tivefun
tion 
ould be expressed as follows:
g = mis|max(

∑set of 
onstraints f
ost +
∑set of assignment fenergy)5. Related Work. S
hema mat
hing is a fundamental pro
ess in many domains dealing with shared datasu
h as data integration, data warehouse, E-
ommer
e, semanti
 query pro
essing, and the web semanti
s.Mat
hing solutions were developed using di�erent kind of heuristi
s, but usually without prior formal de�nitionof the problem they are solving. Although many mat
hing systems, su
h as Cupid [17℄, COMA/COMA++ [6, 1℄,LSD [8℄, Similarity Flooding [20℄, OntoBuilder [13℄, QOM [12℄, BTreeMat
h [11℄, S-Mat
h [14℄, and Spi
y [3℄,have been developed and di�erent approa
hes have been proposed to solve the s
hema mat
hing problem, butno 
omplete work to address the formulation problem. S
hema mat
hing resear
h mostly fo
uses on how wells
hema mat
hing systems re
ognize 
orresponding s
hema elements. On the other hand, not enough resear
hhas been done on formal basi
s of the s
hema mat
hing problem.
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hallehn and G. SaakeMost of the existing work [22℄ de�ne mat
h as a fun
tion that takes two s
hemas (models) as input, maybe in the presen
e of auxiliary information sour
es su
h as user feedba
k and previous mappings, and produ
esa mapping as output. A s
hema 
onsists of a set of related elements su
h as tables, 
olumns, 
lasses, or XMLelements and attributes. A mapping is a set of mapping elements spe
ifying the mat
hing s
hema elementstogether. Ea
h mapping element is spe
i�ed by 4-tuple element 〈ID, S1
i , S2

j , R〉 where ID is an identi�er for themapping element that mat
hes between the element S1
i of the �rst s
hema and the element S2

j of the se
ond oneand R indi
ates the similarity value between 0 and 1. The value of 0 means strong dissimilarity while the valueof 1 means strong similarity. But, in general, a mapping element indi
ates that 
ertain element(s) of s
hema
S1 are related to 
ertain element(s) of s
hema S2. Ea
h mapping element 
an have an asso
iated mappingexpression whi
h spe
i�es how the two elements (or more) are related. S
hema mat
hing is 
onsidered onlywith identifying the mappings not determining the asso
iated expressions.In the work of A. Doan [7℄, they formalize the s
hema mat
hing problem as four di�erent problems:1. The basi
 1-1 Mat
hing ; given two s
hemas S and T (representations), for ea
h element s of S, �ndthe most semanti
ally similar element t of T, utilizing all available information. This problem is oftenreferred as a one-to-one mat
hing problem, be
ause it mat
hes ea
h element s with a single element.For example, the 〈ID1, S.Address, T.CAddress, 0.8〉 mapping element indi
ates that there a mappingbetween the element S.Address of s
hema S and the element T.CAddress of s
hema T with a degree ofsimilarity 0.8.2. Mat
hing for Data Integration; given sour
e s
hemas S1, S2,. . . ,Sn and mediated s
hema T, for ea
helement s of Si �nd the most similar element t of T.3. Complex Mat
hing ; let S and T be two data representations. Let O ={O1, O2,. . . ,Ok} be a set ofoperators that 
an be applied to the elements of T a

ording to a set of rules R to Figure 2: Mat
hingFun
tion 
onstru
t formulas. For ea
h element s of S, �nd the most similar element t, where t 
an beeither an element of T or a formula from the elements of T, using O and R.4. Mat
hing for Taxonomies ; given two taxonomies of 
on
epts S and T, for ea
h 
on
ept node s of S,�nd the most similar 
on
ept node of T.For ea
h of these problems, Doan shows input information, solution output, and the evaluation of a solutionoutput. In general, the input to a problem 
an in
lude any type of knowledge about the s
hemas to be mat
hedand their domains su
h as s
hema information, instan
e data, previous mat
hings, domain 
onstraints, and userfeedba
k.Zhang and et. el. [25℄ formulate the s
hema mat
hing problem as a 
ombinatorial optimization problem.The authors 
ast the s
hema mat
hing problem into a multi-labeled graph mat
hing problem. The authorspropose a meta-meta model of s
hema: multi-labeled graph model, whi
h views s
hemas as �nite stru
turesover the spe
i�
 signatures. Based on this multi-labeled s
hema, they propose a multi-labeled graph model,whi
h is an instan
e of multi-label s
hema, to des
ribe various s
hemas, where ea
h node and edge 
an beasso
iated with a set of labels des
ribing its properties. Then they 
onstru
t a generi
 graph similarity mea-sure based on the 
ontrast model and propose an optimization fun
tion to 
ompare two multi-labeled graphs.Using the greedy algorithm, they design an optimization algorithm to solve the multi-labeled graph mat
hingproblem.Gal and et al. [13℄ propose a fuzzy framework to model the un
ertainty of the s
hema mat
hing pro
essout
ome. The framework aims at identifying and analyzing fa
tors that impa
t the e�e
tiveness of s
hemamat
hing algorithms by redu
ing the un
ertainty of existing algorithms. To spe
ify their belief in the mappingquality, the authors asso
iate a 
on�den
e measure with any mapping among attributes' sets. They use theframework to de�ne the monotoni
ity property as a desired property of the s
hema mat
hing problem, so one
an safely interpret a high 
on�den
e measure as a good semanti
 mapping.The re
ent work for [23℄ introdu
es a formal spe
i�
ation for the XML mat
hing problem. The authorsde�ne the ingredients of the XML s
hema mat
hing problem using 
onstraint logi
 programming. Mat
hingproblems 
an be de�ned through variables, variable domains, 
onstraints and an obje
tive fun
tion. Theydistinguish between the 
onstraint satisfa
tion problem and 
onstraint optimization problem and show that theoptimization problem is more suitable for the s
hema mat
hing problem. They make use of 
ombination of
lustering methods and the bran
h and bound algorithm to solve the s
hema mat
hing problem.In our formulation approa
h, we have some 
ommon and distin
t features with the other related work. The
ommon features in
lude transforming s
hemas to be mat
hed into s
hema graphs, i. e. rooted labeled graphs,and making use of the 
onstraint programming as a framework to extend the graph mat
hing problem into a
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onstraint optimization problem. However, our approa
h introdu
es distin
tly the use of fuzzy 
onstraint inorder to re�e
t the nature of the s
hema mat
hing problem. As well as the use of the fuzzy 
onstraint enablesus to model un
ertainty in the s
hema mat
hing pro
ess.6. Summary and Future Work. In this paper, we have investigated an intri
ate problem; the s
hemamat
hing problem. In parti
ular, we have introdu
ed a fuzzy 
onstraint-based framework to model the s
hemamat
hing problem. To this end, we build a 
on
eptual 
onne
tion between the s
hema mat
hing problem andfuzzy 
onstraint optimization problem. On one hand, we 
onsider s
hema mat
hing as a new appli
ation offuzzy 
onstraint optimization, and on the other hand we propose the use of fuzzy 
onstraint optimization as anew approa
h for s
hema mat
hing.Our proposed approa
h is a generi
 framework whi
h has the feature to deal with di�erent s
hema repre-sentations by transforming the s
hema mat
hing problem into graph mat
hing. Instead of solving the graphmat
hing problem whi
h has been proven to be an NP-
omplete problem, we reformulate it as a 
onstraintproblem. We have identi�ed two types of 
onstraints synta
ti
 and semanti
 to ensure mat
h semanti
s. Aswell as, we make use of the fuzzy 
onstraints in order to enable us modeling un
ertainty in the s
hema mat
hingpro
ess. We also shed light on how to 
onstru
t obje
tive fun
tions.The main bene�t of this approa
h is that we gain dire
t a

ess to the ri
h resear
h �ndings in the CP area;instead of inventing new algorithms for graph mat
hing from s
rat
h. Another important advantage is that thea
tual algorithm solution be
omes independent of the 
on
rete graph model, allowing us to 
hange the modelwithout a�e
ting the algorithm by introdu
ing a new level of abstra
tion.Understanding the s
hema mat
hing problem is 
onsidered the �rst step towards an e�e
tive and e�
ientsolution for the problem. In our ongoing work, we will exploit 
onstraint solver algorithms to rea
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