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t. The in
rease of digital bandwidth and 
omputing power of personal 
omputers as well as the rise of the Web 2.0
ame along with a new web programming paradigm: Ri
h Internet Appli
ations. On the other hand, powerful server-side businessrules engines appeared over the last years and let enterprises des
ribe their business poli
ies de
laratively as business rules. Thispaper addresses the problem of how to 
ombine the business rules approa
h with the new programming paradigm of Ri
h InternetAppli
ations. We present a novel approa
h that reuses business rules for deriving de
larative presentation and visualization logi
.In this paper we introdu
e a rule-driven ar
hite
ture 
apable of exe
uting rules dire
tly on the 
lient by implementing the Retealgorithm. We propose to use de
larative rules as platform independent language des
ribing the appli
ation and presentation logi
.By means of AJAX we exemplarily show how to use 
lient-side exe
utable rules for adapting the user interfa
e of Ri
h InternetAppli
ations. We 
all our approa
h ARRIA: Adaptive Rea
tive Ri
h Internet Appli
ations. In order to show the usability of ourapproa
h we explain our approa
h based on an example taken from the �nan
ing se
tor.Key words: ri
h internet appli
ation, de
larative user interfa
e, rule engine, event 
ondition a
tion rules, AJAX1. Introdu
tion. Today's business world is 
hara
terized by globalization and rapidly 
hanging markets.Thus in re
ent years business pro
esses do not 
hange yearly but monthly, the produ
t life
y
le has shrunk frommonths to weeks in some industries and the pro
ess exe
ution time has de
reased from weeks to minutes as aresult of the te
hnologi
al progress over the last few years. On the other side, the life 
y
le of IT appli
ationsstayed 
onstant over time [23℄. Business rules already proved their potential of bridging the gap betweendynami
 business pro
esses and stati
 IT appli
ations. By de
laratively des
ribing the poli
ies and pra
ti
es ofan enterprise the business rules approa
h o�ers the �exibility needed by modern enterprises.At the same time with the dawn of the Web 2.0, a new te
hnology for web appli
ations appeared: AJAX [15℄.Be
ause of the Web 2.0 and AJAX, Ri
h Internet Appli
ations (RIAs) emerged from their shadow existen
ein the World Wide Web. AJAX, in 
ontrast to Adobe Flex (http://www.adobe.
om/produ
ts/flex), nowenables RIAs running in browsers without the need for any additional plug-in. Several Web 2.0 appli
ationsuse AJAX heavily in order to provide a desktop-like behavior to the user. Now the time seems right forRIAs, be
ause of the broad bandwidth of today's Internet 
onne
tions, as well as the availability of powerfuland 
heap personal 
omputers. Besides AJAX, other prominent members of the RIA enabling te
hnologiesare: Adobe Flex, Mi
rosoft Silverlight (http://www.mi
rosoft.
om/silverlight), OpenLaszlo (http://www.openlaszlo.org), to mention just a few.Given those two trends observable in today's IT lands
ape, traditional ways of programming web appli-
ations no longer meet the demands of modern Ri
h Internet appli
ations. So, the stri
t distin
tion betweende
larative business logi
 and hard 
oded presentation logi
 does no longer hold. As web 
itizens are a

ustomedto highly responsive Web 2.0 appli
ations like Gmail (http://mail.google.
om), web appli
ations based onbusiness rules also have to provide the same responsiveness in order to stay 
ompetitive.In this paper we propose a novel, de
larative ar
hite
ture for RIAs. We 
oined our proposed systemar
hite
ture ARRIA whi
h stands for Adaptive Rea
tive Ri
h Internet Appli
ation. In our ar
hite
ture allbusiness rules, a�e
ting the UI and not demanding intensive ba
k-end pro
essing, are transferred into a 
lient-readable format at design time. We 
all these rules in the following appli
ation rules. At run-time the appli
ationrules are exe
uted dire
tly on the 
lient by a 
lient-side rule engine. That enables a RIA to rea
t straightto user intera
tions. The event patterns triggering the rules are found by a 
omplex event pro
essing unit.After identifying appropriate events, the appli
ation rules, in the form of event 
ondition a
tion (ECA) rules,are exe
uted dire
tly on the 
lient. As a proof-of-
on
ept and in order to evaluate the idea of ARRIAs weprototypi
ally realized a rule-driven RIA using AJAX as 
lient-side te
hnology.The paper is stru
tured as follows: In Se
tion 2 we present an example in order to motivate our work. Thefollowing Se
tion 3 des
ribes the histori
al development of rule-driven systems. In Se
tion 4 we analyze thesemanti
 and synta
ti
 requirements for a 
lient-side exe
utable rule language. We present in Se
tion 5 ourJSON rules approa
h, an implementation of these requirements. Based on our motivating example we show in
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Se
tion 6 how to derive appli
ation rules from business rules. Additional, in this se
tion we show an exemplaryJSON rule for manipulating obje
ts. The ar
hite
ture of our ARRIA approa
h is detailed in Se
tion 7. Thesubsequent Se
tion 8 elaborates on the implementation details. Se
tion 9 gives an overview of related resear
hin the �led of rule-driven RIAs, and, �nally, the paper 
loses with Se
tion 10, 
on
lusions and prospe
ts forfuture work.2. Motivating example. For motivating our work we 
hose an example from the �nan
ing se
tor. Theexample illustrating our approa
h is an online appli
ation for a loan. The use 
ase is as follows: A personwants to apply for a loan from a bank. S/he visits the web portal of that bank in order to �ll in the onlineloan appli
ation. Figure 2.1 shows the form. The web site o�ers four input possibilities: �rst, the name of theappli
ant; se
ond, the amount of the requested loan; third the in
ome of the appli
ant, and, �nally, the kind ofemployment. The two buttons below the form submit or 
an
el the loan appli
ation.The IT department of the bank de
ided to implement the online loan appli
ation as RIA in order to takeadvantage of the advan
ed visualization te
hniques. The RIA shall give immediate feedba
k to the borrowersignaling the probability of a

eptan
e. Therefore, a tra�
 light was additionally introdu
ed on the web page.The lights indi
ate the status of the appli
ation for a loan. A red light signals a low or zero probability thatthe loan will be granted. Yellow means that a 
lerk has to de
ide whether or not the loan appli
ation will bea

epted. Finally a green light indi
ates that, based on the input data, the loan will be granted in all probability.The tra�
 light shall 
hange as the user �lls in the online form without expli
itly asking the server. That leadsto a desktop-like behavior of the web appli
ation.

Fig. 2.1. Motivating example taken from the �nan
e se
torThe business logi
 of the appli
ation for a loan is well understood and written down as business rules, sin
ethey are subje
t to frequent 
hanges. The RIA, and, espe
ially, the manipulation of the tra�
 light, 
an reuseand 
an be built upon these business rules. The rules shown in Example 1 de
laratively represent the businesslogi
 behind a loan appli
ation. For the sake of simpli
ity we abstra
t from the amount of the loan. The rulesare written in the IF/THEN syntax be
ause of its simpli
ity and its 
ommonness of use.Example 1 Business Rules.IF C.in
ome {\textgreater}= 1000 AND NOT C.selfEmployed THENL.state = ''a

epted''IF C.in
ome {\textgreater}= 1000 AND C.selfEmployed THENL.state = ''to be 
he
ked''IF C.in
ome {\textless} 1000 THEN L.state = ''reje
ted''Figure 2.1 b) depi
ts the UML 
lass diagram of the business obje
ts (BOs). BOs are obje
ts that en
apsulatereal world data and business behavior asso
iated with the entities that they represent [20℄. They are also 
alledobje
ts in a domain model. A domain model represents the set of domain obje
ts and their relationships.The two BOs engaged in our example are Customer and LoanAppli
ation. They are 
onne
ted by the relation
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h links one 
ustomer to one or many loan appli
ations. The attributes of the 
ustomer 
lassstore 
ustomer spe
i�
 attributes like name, in
ome and employment status, whereas the attributes of the loan
lass hold loan spe
i�
 data like the amount or the approval status of the appli
ation. A loan appli
ation 
anhave the following statuses: a

epted, to be 
he
ked or reje
ted.The business rules depi
ted in Figure 2.1 a) de�ne the business logi
 of when to grand a loan appli
ation.C is a pla
eholder for Customer obje
ts and L for LoanAppli
ation obje
ts. The �rst rule states that if theborrower's in
ome is grater then or equal to 1000 Euro and s/he is not self employed the loan will be grantedin all probability. The se
ond business rule states that if the in
ome is greater then or equal to 1000 and s/heis self employed a 
lerk has to judge manually whether the loan will be granted or not. If the in
ome is lessthen 1000 the loan will not be granted at all. In our example, all business rules are atomi
. That means theyare independent of ea
h other and pairwise disjun
t.3. The evaluation of rule-driven web appli
ations. Lega
y rule-driven web appli
ations are basedon the web page paradigm as depi
ted in the left graphi
 in Figure 3.1. The web page paradigm states thatevery web page in a series of pages is downloaded separately. User data are 
olle
ted in forms on the 
lientand are sent to the server by user request. On the server side a produ
tion engine pro
esses the input dataand exe
utes a
tions manipulating business obje
ts. Based on the modi�ed business obje
ts a new web page is
reated and sent ba
k to the 
lient. Business rules in the ba
k-end de
laratively des
ribe the business logi
 ofthe web appli
ation.
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Fig. 3.1. Evolution of rule-driven web appli
ationsRi
h Internet Appli
ations (RIAs) break the web page paradigm by introdu
ing ri
h 
lient-side fun
tionalityand asyn
hronous 
ommuni
ation fa
ilities. The middlemost graphi
 in Figure 3.1 depi
ts the evolution of RIAsfrom 
ommon rule-driven web appli
ations. Up to date browsers provide a ri
h 
lient engine 
apable of exe
utingdynami
 presentation logi
s. Together with the business logi
, the produ
tion system stays on the server sidebut 
an be requested asyn
hronously. That is, business rules 
an be evaluated without being expli
itly triggeredby a user request.Turning RIAs based on server-side rules into 
lient-side rule-driven RIAs, that bene�t from the best of thetwo worlds, is not trivial. Swit
hing from the request/response 
ommuni
ation of web appli
ations relying onthe web page paradigm to the asyn
hronous 
ommuni
ation of RIAs goes only half way. Although asyn
hronous
ommuni
ation with the web server allows a RIA to reload only altered data rather then the page as a whole,as well as to pre-load 
hunks of data that might be good 
andidates for displaying next, the desired desktop-likeresponsive behavior is not a
hieved. This is be
ause business rules and espe
ially business rules 
on
erned withthe presentation layer are still evaluated on the server-side. Every user intera
tion, from pressing a button to
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hovering the mouse over an artifa
t on the web site, must be pro
essed on the server in order to let businessrules �re appropriate a
tions as rea
tion to a user input. Also the advantage of the de
larative 
hara
ter of rulesis getting lost by only applying the rule paradigm to business logi
 and not to presentation logi
. Presentationlogi
 is also a good 
andidate for de
larative modeling be
ause it remains un
hanged even for di�erent platforms.4. Requirements for a Client-Side Appli
ation Rule Language. For managing the proposed 
lient-side rule engine, an appropriate rule language is an indispensable prerequisite. The language must 
onsiderrequirements spe
i�
 to Ri
h Internet Appli
ations.The semanti
s of our ECA rule language is 
onstituted by the semanti
s of the events, 
onditions anda
tions by themselves. The semanti
s of ea
h 
onstituent 
an be separately de�ned, for example by redu
tionto their respe
tive underlying languages. But there is more to it than that. On top of the 
omposed semanti
sthe overall semanti
s of the language as a whole must be 
lari�ed: the relationships between events, 
onditionsand a
tions.The so-
alled 
oupling modes from early resear
h on ECA rules in the HiPAC proje
t [12℄ (p.129-143) pointout several relationships between events and 
onditions. However, in all 
ases a 
ondition is evaluated afteran event has o

urred. No mode is de�ned requiring 
onditions to be ful�lled during the entire o

urren
e ofan event. More re
ent works, e.g. in [3℄, suggest a revised semanti
s for ECA rules. It is stated there thatthe 
omplete 
ondition of a rule has to be satis�ed during the whole dete
tion time of the 
omposite event,i. e. from the beginning of the o

urren
e of the �rst 
onstituent event up to the end of the o

urren
e of itslast 
onstituent event. This understanding of ECA rules 
onforms to the notion of interval-based semanti
sestablished for 
omplex events. Interval-based semanti
s views an event as having a duration, instead of viewingit as an instant at dete
tion time. The duration lasts from the start of the �rst 
onstituent event to the end ofthe last 
onstituent event. Therefore, an a

ompanying 
ondition should span the entire interval of the eventduration. The downsides of not using interval-based semanti
s are pointed out by Galton and Augusto [14℄and Berstel [3℄ for 
onditions. For events this in
ludes unexpe
ted results from transitivity of multiple sequen
eoperators, and for 
onditions it in
ludes possible mat
hes with events, violating temporal axioms like mat
hingsystem 
ontext in the future.Furthermore, the language must expose all user-adjustable features of the event dete
tion, the 
onditionmat
hing and the di�erent kinds of a
tions. A good 
omplex event dete
tor relies on three things: An easy touse rule language, a ri
h set of event dete
tion operators and an e�
ient algorithm to evaluate these operators.Furthermore, the event dete
tion algorithm has to be an a
tive instead of a passive query-based one. We wantto stress this a little bit more. Events happen asyn
hronously and are generally not predi
able by nature.Therefore, we insist on a forward-
haining algorithm that pushes a
tively new events in an appropriate datastru
ture that proa
tively dete
ts 
omplex events. We are 
onvin
ed that su
h a solution outperforms query-based pull strategies for instan
e proposed by Pas
hke et al [25℄.Conditions are formulae over the state of an appli
ation. When a given formula is ful�lled, the system is in astate where the rule author wants some a
tion to be exe
uted. Traditional rule systems only exe
ute 
onditiona
tion rules. The systems are 
alled produ
tion systems. Two examples are OPS5 [4℄ and CLIPS [10℄. Toevaluate most types of ECA rules, a separate 
ondition mat
her is required in addition to the event dete
tion.This 
an best be observed from the fa
t that 
ondition a
tion rules la
k the triggering event spe
i�
ation,therefore another way must be provided to �nd and run any appli
able rule. Furthermore, any appli
able ruleshould be found at the time when its 
ondition is fully satis�ed. This means that 
hanges to the state ofthe appli
ation should immediately be re�e
ted in the a
tivation of rules. No query-driven semanti
s shouldbe used for rule a
tivation be
ause it would restri
t the 
apa
ity to a
t to only 
ertain intervals at whi
hqueries are issued. Instead of a query-driven (top-down) approa
h, a data-driven approa
h must be employed.A data-driven approa
h ful�ls 
onditional predi
ates in a bottom-up way, also 
alled forward-
haining. Theadvantage of forward-
haining evaluation is that for ea
h 
hange of state a�e
ting a 
ondition, the partial mat
his saved until it 
an be further 
ompleted to form a 
omplete mat
h in the end. Complete mat
hes are reportedimmediately when they 
ome into existen
e.There are several requirements for the a
tion part of rules. First of all the rule engine should allow forthe highest possible �exibility, this means that arbitrary JavaS
ript a
tions must be allowed. Apart from theimperative approa
h using JavaS
ript, a de
larative approa
h should be supported as it is o�ered by traditionalprodu
tion systems like OPS5 or CLIPS. In these systems the a
tions 
an alter the system state by only spe
i-fying modi�
ations to obje
ts. Su
h modi�
ations in
lude adding and deleting obje
ts, as well as modi�
ation
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ts. As a third type of rule a
tion it might be useful to expli
itly feed a new event ba
k intothe system. Other rules would be able to rea
t to su
h an event, just like an event from any of the other eventsour
es.Also the non-fun
tional requirement of user-friendliness targets several aspe
ts. First of all the languageshould be extensible. This in
ludes permitting the future use of JavaS
ript features whi
h are not known today.Also, this in
ludes the possibility of adding further operators for the event and 
ondition part. In addition toextensibility, some measures of reusability should be provided. For example, 
omplex event expressions whi
hare repeated in several rules should be made reusable at design-time. The user should have the possibility of
reating a set of named event expressions. These prede�ned expressions 
an be in
orporated into further eventexpressions of di�erent rules. Methods of reuse should also be provided for 
ondition expressions and possiblya
tions. For the latter it might be possible to o�er a library of prede�ned a
tions. User interfa
e patterns [26℄might help in �nding a meaningful sele
tion of su
h a
tions to be provided for the rule author. User-friendlinessshould also 
over the run-time of the rule framework. One important requirement arises when a rule authorwants to add and remove rules while the rule engine is running. Both the event dete
tion and the 
onditionmat
hing algorithms must be able to alter their data stru
tures in a 
oherent manner when rules are added ordeleted from dete
tion.Lastly, on a

ount of browser-friendliness there are also some non-fun
tional requirements for a rule lan-guage. As far as the possible a

eptan
e of a new rule language goes, it 
an be very important that the language
losely �ts the environment in whi
h it is to be used. To a

omplish this, the language should be lightweight,easy to deploy in a RIA and AJAX environment and should honor JavaS
ript programming pra
ti
es, wherepossible.Lu
kham writes in his book [22℄ on event pro
essing, that an event language must be expressive enough,must be notationally simple, semanti
ally pre
ise and must have an e�
ient pattern mat
her. He says thisabout event languages, but the pre
eding analysis has shown that Lu
kham's requirements hold true for the
ondition part, just as they do for the event part.5. JSON Rules. We implemented the above analyzed requirements in a rule language named JSON rules.It is a language for de�ning 
lient-side exe
utable rea
tion rules. Rea
tion rules are triples of events, 
onditionsand a
tions. From a user's point of view the rule language is the interfa
e to programming and adaptingARRIAs. For the rule language the JavaS
ript-friendly JavaS
ript Obje
t Notation (JSON) format is 
hosen.JSON is published as a Request for Comments (RFC) [9℄. Like XML it provides a stru
tured representation ofdata with deep nesting. Unlike XML it is readily usable in JavaS
ript be
ause JSON syntax is the subset ofJavaS
ript otherwise used to denote obje
ts literals and array literals in the programming language. Although,JSON is JavaS
ript there is a thin parsing layer involved to provide se
urity from introdu
ing exe
utable 
ode.Other than that, JSON uses a very lean syntax 
ompared to XML. Tags do not need to be named if, forexample, they are just used to provide stru
ture like nesting. JSON 
an be used to maintain nested data;therefore, our rule language 
an be formulated in JSON as an abstra
t syntax tree. A similar approa
h is takenby many modern XML-based languages, like RuleML and its ECA rule standard, Rea
tion RuleML [25℄. Usingan abstra
t syntax tree to transport the language relieves the 
lient-side appli
ation of parsing any expressions.Instead the nesting of expressions 
an be easily determined by des
ending the supplied tree. Also, no aspe
tsof 
on
rete syntax must be retained when abstra
t syntax is used.The 
omplete grammar of our de
larative 
lient-side JSON ECA rule language is designed in (extended)Ba
kus-Naur Form (BNF). We designed and tested the rule language grammar with the parser generator toolANTLR (ANother Tool for Language Re
ognition, http://www.antlr.org/). The grammar des
ribes a so-
alled rule �le. The rule �le is the granularity at whi
h rules are transported, e.g. downloaded into the ruleframework. A rule �le may 
ontain more than one ECA rule in a rule set. Meta data for the rule set arealso part of the rule �le and a library of reusable event expressions. The language is a spe
ialization of JSON.The syntax of JSON 
an des
ribe strings, numbers, the Boolean literals true and false as well as obje
ts andarrays. Obje
ts are en
losed in 
urly bra
es. They 
ontain a 
omma separated list of attributes. An attributeis a string followed by a 
olon and the value. The value might in turn be any JSON expression. Arrays areen
losed in square bra
kets, 
ontaining a 
omma separated list of expressions. The proposed language restri
tstree-expressions from JSON in way that only 
ertain obje
ts with 
ertain attributes may be used and nested.The language is therefore a subset of JSON. An example JSON rule is given in the next 
hapter.
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6. Deriving appli
ation rules from business rules. The starting point for every RIA is the businesslogi
. The business logi
 de
laratively en
oded into business rules 
oarsely de�nes the presentation logi
 of theuser interfa
e for RIAs. But business rules are usually high-level and are not related to any user interfa
e issues.On the other hand, appli
ation rules presenting the presentation logi
 have to 
ontrol, on a �ne grained level,
omplex user interfa
es. Therefore, the �rst step in 
reating appli
ation rule sets is the analysis of the businessrules and their related business obje
ts. Based on this analysis, the user interfa
e and the presentation logi
 inthe form of de
larative appli
ation rules 
an be designed.The appli
ation rule in Example 2 is dire
tly derived from the �rst business rule of the Example 1. Itmanipulates all JavaS
ript LoanAppli
ation obje
ts asso
iated with a dedi
ated Customer obje
t, whenever anyproperty of the Customer obje
t has 
hanged. A web designer merely has to listen to PropertyChangedEventsof the LoanAppli
ation obje
t referen
ed by the $LoanApp variable and, if an event has been �red, to adjustthe tra�
 light a

ordingly. On the other hand, it would also be possible to 
hange the tra�
 light dire
tlywithin the rule body by inje
ting JavaS
ript 
ode dire
tly into the rule's a
tion part. The printout depi
ted inExample 2 shows the entire rule set in our 
ase 
onsisting of a single appli
ation rule. In line 01 the name of therule set is de�ned. From line 02 to 16 a 
ondition a
tion rule is de�ned. Line 02 states the rule name and line 03the des
ription of the rule. From line 04 to 13 the 
ondition is formulated. The 
ondition 
onsists of two parts,the �rst relates to the 
ustomer (line 04�08) and the se
ond to the loan appli
ation (line 09�13). Line 12 joinsall obje
ts of Customer meeting the 
onstraints de�ned in the lines 06�08 with all obje
ts of LoanAppli
ationthat are not already a

epted. In our example the RIA 
ontains only one obje
t of Customer and one obje
t ofLoanAppli
ation. When all 
onstraints are satis�ed the a
tion in line 14 is �red.In line 13 the example JSON rule 
ontains an extra 
onstraint �eld 
he
king whether state is unequal to�a

epted�. This 
onstraint ensures that the rule is not invoked several times by the exe
ution algorithm. Onea
h 
hange to the rule system runs all rules whi
h have a mat
hed 
ondition. Therefore, a rule �res severaltimes as long as its 
ondition still mat
hes the obje
ts. Sin
e our example rule would always set the loanappli
ation to a

epted regardless of whether this has been done before, the rule would loop endlessly. Thesolution is to alter the rule in a way so that its 
ondition is invalidated after the rule is run for the �rst time.Be
ause the rule modi�es an attribute whi
h is not part of the 
ondition, we 
orre
t this by adding the extra
onstraint to the rule. The stronger 
ondition ensures that the rule does not mat
h obje
ts whi
h were mat
hedbefore.Example 2 JSON Appli
ation Rule.01 {"meta": {"ruleSet": ``Loan Appli
ation Example"},02 ``rules": [{"meta": {"rule": ``GrantLoans",03 ``des
ription": ``Grant loan!"},04 ``
ondition": [{"
lass": ``Customer",05 ``fields": [06 {"field": ``in
ome", ``
omparator": ``>=", ``literal": 1000},07 {"field": ``selfEmployed", ``
omparator": ``==", ``literal": false},08 {"field": ``appliesFor", ``vardef": ``$LoanAppID"}℄},09 {"
lass": ``LoanAppli
ation",10 ``vardef": ``$LoanApp",11 ``fields": [12 {"field": ``id", ``
omparator": ``==", ``variable": ``$LoanAppID"},13 {"field": ``state", ``
omparator": ``!=", ``literal": ``a

epted"}℄}℄,14 ``a
tion": [{"type": ``MODIFY",15 ``name": ``$LoanApp",16 ``modify": ``this.state = 'a

epted';"}℄}℄}7. Ar
hite
ture. First we highlight the design of the CEP engine followed by the design of the rule engine.For the design of an e�
ient 
omplex event dete
tor several alternative algorithms were proposed in the past.They di�er in their dete
tion approa
h, using either automata [18℄, Petri-nets [17℄ or a graph-based approa
h [8℄.They also di�er in their e�e
ts on the semanti
s of events they dete
t, and di�er in general versatility.SnoopIB [1℄ is 
hosen from the available approa
hes as a basis for the event dete
tion in this thesis. Alongwith that, Snoop's operators are adopted with some extensions and with a

ording extensions of the dete
tionalgorithm. A reason for 
hoosing Snoop over the other dete
tion methods is that the graph-based approa
h of
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ation Rules in Ria 335SNOOP allows the dete
tion of overlapping 
omplex events. This rules out automaton-based event dete
tion as
omplex events of a given 
omplex type may o

ur simultaneously. This means several 
omplex in
idents of thesame type happen at the same time, in an overlapping fashion. Automaton-based algorithms are not 
apableof dete
ting more than one instan
e of the same 
omplex event at the same time. This is an inherent drawba
kof how automata are used for event dete
tion. As elaborated in Gehani at all [18, 19℄ automata are 
onstru
tedfrom regular expressions spe
ifying event patterns. Transitions model a

epted events in a given state. Aninitial state is 
reated with transitions for initiator events, the initial 
onstituent events. The transitions leadto further states, and so on, up to one or more a

epting states, where the 
omplex event is dete
ted. The
omplex event is then de�ned as the sequen
e of transitions whi
h were taken from an initiator to a terminatorevent. When an automaton must a

ept overlapping 
omplex events, the following happens. A suitable initiator
hanges the state of the automaton away from the initial state by using one of the transitions. The automatonwill then be in a state whi
h a

epts 
onstituent events to 
ontinue 
ompletion of the �rst 
omplex event.There might be no transitions a

epting initiators for further 
omplex events, until the automaton is reset after
ompletely dete
ting the �rst. Although there might be other transitions labeled with the initiator event type,these events will be in
orporated in the �rst 
omplex event as intermediate 
onstituents. Other 
omplex eventsare only started at the initial state. In summary this means that overlapping 
omplex events are ignored,be
ause on
e an automaton is in the pro
ess of dete
ting a 
omplex event, it is usually not in its initial stateanymore, to start dete
ting a se
ond 
omplex event at the same time. Algorithms based on Petri nets andon graphs do not share this de�
ien
y. An important drawba
k of the Petri net-based approa
h, however, isthat Petri nets do not support user-de�ned sele
tion of tokens when a transition is �red. This means it 
annotbe predetermined by the user, whi
h 
onstituent events, e.g. tokens, are used when 
reating a 
omplex event.Therefore, SAMOS [17℄ does not provide 
on�gurable event sele
tion poli
ies in its Petri net-based approa
h.Coloured Petri nets are introdu
ed in Jensen [21℄. They allow tokens to be individually distinguished at thetransitions might a

omplish event sele
tion based on individual attributes. However, SAMOS uses 
oloursonly to model event parameters and to propagate these parameters through the Petri net. This 
on
ludes themajor reasons for 
hoosing the graph-based approa
h over automata or Petri nets. Automata 
annot dete
t
on
urrent 
omplex events and Petri nets do not o�er a 
lear strategy for event sele
tion.The 
hoi
e of dete
tion semanti
s is the next important de
ision whi
h has to be made on behalf of theevent dete
tion. The dete
tion semanti
s are 
on
erned with whether 
omplex events are represented by aninterval or only by a point in time. The pre
eding analysis for this work showed that a dete
tion-based (pointin time) semanti
s delivers unexpe
ted results for 
ertain operators, e.g. the sequen
e operator. Snoop revisedits semanti
s towards an interval-based view of events, 
alled SnoopIB [1℄. The same holds for other eventdete
tion system like Rea
tion RuleML [25℄.A

ording to the requirements we de
ided to use Rete [13℄ as forward-
haining dis
rimination network forthe evaluation of the 
onditions parts of a rule. The Rete algorithm has several similarities with the previouslydes
ribes dete
tion graph for events. Both are forward-
haining pattern mat
hing algorithms and both must beable to add and remove nodes at runtime, et
. However, there are some important di�eren
es. Firstly, it mustbe noted that they serve di�erent purposes. In terms of semanti
s of rules [5℄, the event graph is 
on
ernedwith transient, temporal data, i. e. events. The Rete network, on the other hand, is 
on
erned with persistentdata, representing the system state, i. e. business obje
ts. The two types of data are to be separated in orderto avoid making unne
essary events persistent, and thereby imposing a storage burden on an appli
ation.Figure 7.1 depi
ts the 
lient-side 
omponents of the run-time ar
hite
ture. The server-side 
omponentsare skipped for the sake of simpli
ity. The software 
omponents of the run-time ar
hite
ture 
arry out theappli
ation logi
 en
oded in the de
larative appli
ation rules. The appli
ation rules are transferred to the 
lienttogether with the 
ontent data in response to the �rst initial user request. In the �rst prepro
essing step theCEP Unit responsible for dete
ting 
omplex events is initialized and, in a se
ond step, the appropriate eventhandlers are set. As 
omplex events are not issued dire
tly by user interfa
e widgets the CEP Unit has toregister for ea
h atomi
 event 
ontained in 
omplex events.When the user intera
ts with the portal, he/she �lls in forms, navigates through the site, and goes ba
k,sear
hes for terms and so on. All those intera
tions trigger events like mouse movements in the appropriate
ontrols. The CEP Unit handles all atomi
 events to whi
h it has subs
ribed in advan
e (step three) by itsSnoopIB implementation. Based on the dire
tives of the event dete
tion algebra, it tries to identify 
omplexpatterns from the event stream. After dete
ting a 
omplex event, the asso
iated rules are evaluated by the
lient-side rule engine. This is step four in Figure 7.1 In step �ve the 
ondition parts of the rules are evaluated,



336 K. S
hmidt, R. Stühmer and L. Stojanovi
if there are any, using the Rete algorithm. If the event and 
ondition part of rule is mat
hed during theevaluation phase, it is �red immediately.The exe
ution of a rule 
an have manifold a
tions whi
h are marked as 6a to 
. In step 6a a rule manipulatesthe status of the appli
ation. The status of the appli
ation is maintained in working memory. In a nutshell,the working memory 
onsists of an arbitrary amount of lo
al obje
t variables. Further a 
hange to the workingmemory 
an trigger additional rules that are not expli
itly bound to any 
omplex event pattern. These rulesare 
onventional produ
tion or 
ondition a
tion rules (CA rules). A rule 
an also manipulate the user interfa
edire
tly as depi
ted in step 6b. By this means, appli
ation rules 
an respond to user intera
tions immediatelywithout an expli
it server request. These rules are the guarantors of a responsive user interfa
e. Any userinterfa
e manipulation 
an issue additional atomi
 events that might be re
ognized by the CEP Unit as partsof 
omplex events. New rules 
an be triggered. So the rule exe
ution in step 6b 
an trigger additional rulesover the event dete
tion me
hanism. The last possible a
tion of a rule exe
ution is depi
ted in step 6
: Theinvo
ation of the Asyn
hronous Communi
ation Controller (ACC). The ACC is responsible for loading new rulesets, for pre-fet
hing 
ontent data as well as for syn
hronizing with the BO's on the server-side. As a dire
tbyprodu
t of pre-fet
hing data and syn
hronizing with the server, the ACC 
an alter the user interfa
e.

Fig. 7.1. Run-time ar
hite
ture8. Implementation of the run-time ar
hite
ture. We implemented our event dete
tion as well as ourrule engine in JavaS
ript using a slightly modi�ed SnoopIB and obje
t-based Rete algorithm. The event graphis a network of nodes whi
h represent event expressions. There are spe
ial nodes types for every event type.In
oming edges of a node originate in 
hild nodes whi
h represent sub-expressions. Simple event nodes haveno in
oming edges. Outgoing edges 
onne
t a node to its parent whi
h makes further use of dete
ted events.Dete
ted events are propagated upwards in the network, starting with simple events whi
h are fed into thegraph at the simple event nodes. The propagation ends at top nodes whi
h have no further parents. In thesenodes events are extra
ted from the graph and are handed on to some a
tion, whi
h in the pro
ess dis
ards theevent. Event nodes may have more than one parent. This o

urs when an event expression is used in severalpla
es of a pattern. The reused expression is then manifested only on
e in the event graph but outgoing edgesare linked to all nodes where the expression is reused. All parent nodes are informed equally of dete
ted events.We implemented the following event operators in our JSON rule language. The logi
al operators fromSnoop that we implemented are: Or, And, Any, as well as Not. Operators And and Or are binary operators in thesense that they involve two operands. The Any operator is a generalized form of the pre
eding ones. It a

eptsan arbitrary list of parameters and a parameter m, whi
h spe
i�es the number of events that must be dete
tedto mat
h the Any pattern.
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ation Rules in Ria 337Additional, we implemented Snoop's temporal operators: Seq, A, A*, P, P*, as well as Plus. The operatorSeq is the sequen
e of two events in time. Operators A and A* are ternary operators, dete
ting o

urren
es ofone event type when they happen within an interval formed by the two other event types. A* is a variant whi
h
olle
ts all events and o

urs only on
e at the end of the interval with all the 
olle
ted 
onstituents. P and P* areternary operators as well, they also a

ept two events starting and ending an interval, but the third parameteris a time expression after whi
h the events o

ur periodi
ally during the given interval. A fun
tion may bespe
i�ed to 
olle
t event parameters for ea
h periodi
 o

urren
e. P* is the 
umulative variant whi
h o

ursonly on
e, 
ontaining all 
olle
ted 
onstituents. P stands for periodi
 be
ause of its metronome 
hara
teristi
s. Astands for aperiodi
 be
ause the dete
ted 
onstituents o

ur at irregular times. The Plus operator a

epts anevent type and a time expression. The Plus event o

urs after the spe
i�ed event type has o

urred and thespe
i�ed time has passed.The operators mentioned so far are the 
omplete set from Snoop. Content-based 
he
ks are added tothem in order to ful�ll the requirement for �ltering by event parameters. Content-based 
he
ks do not providestru
ture as the previously des
ribed operators do. Content based 
he
ks �lter streams of events, resulting instreams whi
h 
ontain only events mat
hing a 
onstraint 
he
k. Su
h 
he
ks are 
on
erned with the parametersof events. The appropriate event operators are 
alled guard by David Lu
kham or mask by the authors of Ode.We use the term mask. The event mask is designed as an operator with one event input and a Boolean fun
tionto be applied to the input. The value returned from the fun
tion de
ides about whether the input is a

eptedor dis
arded. An in
oming event is a

epted if the fun
tion returns true. When spe
ifying a mask expression,the fun
tion itself may be sele
ted from a set of prede�ned mask types. Moreover, the event masks in this workare extensible in the way that the fun
tion may optionally be an arbitrary user-de�ned implementation.The Rete network is 
onstru
ted from the top downwards, 
ontrary to the event graph. This is be
auseworking memory elements (WMEs) enter the Rete network at a single, top node. As with the event graph, equalnodes must be shared. Equality is likewise determined by the fun
tion of a node 
ombined with its input, mean-ing its prede
essor nodes. Constru
ting the Rete network from the rule spe
i�
ation is done as follows. Ea
h
lass pattern is �rst 
onverted into a series of 
onse
utive alpha nodes. There are di�erent types of alpha nodesforming sub-
lasses of Node.Alpha, 
f. Figure 8.1. These alpha nodes for example perform 
he
ks on the 
lass ofan obje
t, the existen
e of an attribute of an obje
t, or 
omparisons with the values of attributes, et
. On addingit to the network, ea
h alpha node is linked to its prede
essor, 
he
king whether an equal node is already amongthe su

essor nodes and sharing it, if so. After the single obje
t 
he
ks are 
ompletely represented in the network,an alpha memory is added in the end to store the output. To 
reate the su

essive beta network, joins are gath-ered from the rule spe
i�
ation. Every free variable o

urring in more than one obje
t pattern is invoking a join.Joins are then ordered in pair wise joins by variable and by input memory. Beta nodes are then 
reated with thene
essary join predi
ates and atta
hed to the mat
hing alpha memories. A join predi
ate or Test is a JavaS
riptfun
tion. It is sele
ted from a hash map of prede�ned 
omparator fun
tions whi
h are sele
ted by the 
omparatorspe
i�
ation in ea
h rule. Comparator fun
tions in
lude wrappers for the built-in 
omparators from JavaS
riptlike <, >, <=, >=, ==, != and like ===, !== whi
h do not perform type 
oer
ions like their two-letter 
oun-terparts do. Also the JavaS
ript spe
ial operator typeof is available, whi
h allows 
he
ks for the types of obje
tsand primitives. Adding more fun
tions to the hash map here provides simple extensibility for the rule framework.The 
omparator fun
tions are two-parameter fun
tions with Boolean result be
ause they are used as join predi-
ates. The fun
tions are stored in the Test obje
ts in join nodes. A join node has a beta memory as one input andan alpha memory as another. The beta memory supplies tokens whi
h are lists of obje
ts satisfying pre
edingjoins. The alpha memory supplies plain obje
ts (in the form of WMEs) whi
h must mat
h the other obje
ts in thetoken a

ording to the join predi
ates. After �nishing all joins in the beta memory, a produ
tion node is addedto the network. Su
h a node is a beta memory 
ontaining �nished tokens representing a 
omplete join. Ea
hsu
h token resembles a fully mat
hed pattern and therefore a rule a
tion is triggered from the produ
tion node.9. Related work. Rule-driven Ri
h Internet Appli
ations seems to be a new and novel approa
h, as we
ould not �nd related work on this topi
. Nevertheless, there exists already a reasonable amount of workaddressing subtopi
s of our approa
h. Carughi at al [6℄ des
ribe RIAs as rea
tive systems where the userinterfa
e produ
es events. They use 
omplex event pro
essing in 
onjun
tion with server push te
hnologies, butnot for triggering appli
ation logi
 formulated in de
larative appli
ation rules, that 
an be exe
uted dire
tly onthe 
lient. In their work 
omplex events trigger some kind of server-side logi
. They also do not address how
omplex events 
an be dete
ted on the 
lient-side.
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Fig. 8.1. Rete Network (Class Diagram). This diagram shows the 
lasses 
omprising the Rete network. The Rete 
lass
ontains an alpha node in the role of the Root Node. Also, the dummy beta memory is 
onne
ted to Rete. The rest of the networkis rea
hable through obje
ts of these two 
lasses. Tokens are implemented as a linked list, so token obje
ts are parenting tokenobje
ts.The prin
iples of 
omplex event pro
essing for rea
tive databases are well understood sin
e the mid-1990s.Chakravarthy et al [8℄ outline an expressive event spe
i�
ation language for rea
tive database systems. Theyalso provide algorithms for the dete
tion of 
omposite events and an ar
hite
ture for an event dete
tor alongwith its implementation. Our work in the �eld of 
omplex event pro
essing relies greatly on their work andthe work done by Chakravarthy and Mishra [8℄, Papamarkos et al [24℄ and Alferes and Tagni [2℄. Re
entlysome e�ort was undertaken to broaden RuleML (http://www.ruleml.org/) to a event spe
i�
ation language.As a result Rea
tion RuleML (http://ibis.in.tum.de/resear
h/Rea
tionRuleML/) [25℄ in
orporates ni
elydi�erent kinds of produ
tion, a
tion, rea
tion, 
omplex event pro
essing and event logi
 rules into the nativeRuleML syntax but fails to support OWL ontologies.In the web engineering paper of Garrigós et al, [16℄ AWAC is presented, a prototype CAWE tool for theautomati
 generation of adaptive web appli
ations based on the A-OOH methodology. The authors de�ne thePersonalization Rules Modeling Language (PRML) an ECA language tailored the personalization needs of webappli
ations. Our rule language follows a di�erent approa
h as it has to deal with 
omplex events on the 
lient-side. PRML does not support 
omplex event pro
essing and is not a general purpose ECA language supportingmore then personalization, in 
ontradi
tion to our JSON rules.The ECA-Web language suggested by Daniel at al [11℄ is an enhan
ed XML-based event 
ondition a
tionlanguage for the spe
i�
ation of a
tive rules, 
on
eived to manage adaptiveness in web appli
ations. Our JSON-Rules are di�erent to that approa
h as we, as stated in the name, relay on JSON as ex
hange and exe
ution
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ation Rules in Ria 339format. Moreover, we in
orporated an event algebra for spe
ifying 
omplex events based on Snoop. Besidesthat, the whole adaptation approa
h is quite di�erent as we support real-time adaptation dire
tly on the 
lient
ompared to the server-side adaptation and rule exe
ution approa
h of ECA-Web.10. Con
lusions and future work. In this paper we presented a novel approa
h of using de
larativeappli
ation rules as a new programming model for RIAs. We 
all this amalgam of event pro
essing, rule engineand RIA: ARRIA � Adaptive Rea
tive Ri
h Internet Appli
ation. By providing event dete
tion we enablethe web designer to de�ne the behavior of the web appli
ation based on the order the user issues intera
tionevents in time, that is based on order of his/her a
tions. The de
larative appli
ation logi
 
an be easily
hanged by rewriting the rules. The ECA rules 
an be exe
uted without additional 
oding by arbitrary targetsystems like AJAX, Silverlight or Flex. We developed a light-weight ECA rule language tailored to the needs ofRIAs. Furthermore, we implemented an enhan
ed event dete
tion engine based on the SnoopIB algorithm. Format
hing the 
onditions of ECA rules we de
ided to implement a light-weight version of the Rete algorithm.As a proof of 
on
ept we implemented our motivating example using JSON rules. The ARRIA framework
onsisting of event dete
tion and rule evaluation was implemented in JavaS
ript. As RIAs are not only AJAXappli
ations we 
urrently implement our framework in Silverlight. Moreover, we will evaluate the performan
e ofthe ARRIA framework and we will implement other use 
ases where our ar
hite
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