
Scalable Computing: Practice and Experience

Volume 10, Number 1, pp. 25–34. http://www.scpe.org
ISSN 1895-1767

c© 2009 SCPE

IMPACT OF THE DYNAMIC MEMBERSHIP IN THE CONNECTIVITY GRAPH OF THE

WIRELESS AD HOC NETWORKS

ARTA DOCI∗, WILLIAM SPRINGER†, AND FATOS XHAFA‡

Abstract. Mobility Metrics of the connectivity graphs with fixed number of nodes have been presented in several research
studies over the last three years. More realistic mobility models that are derived from real user traces challenge the assumption of
the connectivity graph with fixed number of nodes, but they rather show that wireless nodes posses dynamic membership (nodes
join and leave the simulation dynamically based on some random variable). In this paper, we evaluate the mobility metrics of the
dynamic connectivity graph on both the nodes and the links. The contributions of this paper are two-fold. First, we introduce the
algorithm that computes the Maximum Node Degree. We show that the Maximum Node Degree, which characterizes the dynamic
membership property, impacts the connectivity mobility metrics of the Link and Path Durations of the dynamic connectivity
graphs. Second, we provide the lower and the upper bounds for these mobility metrics.

Key words: wireless ad hoc networks, mobility metrics, connectivity, simulation.

1. Introduction. Many studies have demonstrated that mobility has a significant impact on the perfor-
mance of ad hoc network protocols. Specifically, the authors of [5] provide a framework, which is helpful in
understanding how and what mobility metrics affect the protocol performance. For example, the mobility met-
rics that effect the performance are average shortest path hop count (AspHops) [11], average link durations [2]
and average path durations [13]. In addition, other path and link metrics have been proposed by the authors
of [7, 9, 15] and have been shown to effect performance. All these mobility metrics are derived from synthetic
mobility models, which face two main issues.

First, the connectivity graph of the synthetic mobility models, where the mobile nodes are the vertices
and the communication links are the edges, have been assumed to have static number of mobile nodes for the

simulation duration. The number of vertices |V | represent the order and the number of edges |E| represent the
size of the connectivity graph. In general, the running time of the algorithms are measured in terms of the
order and size of the graph, which is relatively easy to estimate when the number of nodes does not change, but
becomes a cumbersome task when the graph is dynamic on both the vertices and edges.

Second, the current implementations of the synthetic mobility models place the wireless nodes to start the
simulation at time 0 and remain in the simulation until the allotted simulation time is over. On the other hand,
real mobility models [16], which are extracted from real user traces, show that wireless nodes posses dynamic
membership, that is, they join and leave the simulation based on an exponentially distributed random variable.
Under dynamic membership of the nodes, the connectivity graph is dynamic on the number of vertices and

edges. When adding the new dimension of the dynamic membership to simulation mobility models, then the
mobility metrics need to be re evaluated under the new dimension. The focus of this paper is to assess the
mobility metrics of the dynamic connectivity graph.

Maximum Node Degree mobility metric, which represents the maximum number of neighbors for each
node (in graph theory terms it is the number of edges incident to it), can be used to account for the dynamic
membership of the wireless nodes. The contributions of this paper are:

1. Design and implement algorithms that compute the Maximum Node Degree, Average Links, and Av-
erage Path Durations mobility metrics for dynamic topology connectivity graphs.

2. Present the lower and upper bounds for the Maximum Node Degree, Link Durations, and Path Dura-
tions mobility metrics.

2. RealMobGen: A More Realistic Mobility Model. The main characteristics of a mobility model
are speed, pause distribution, and direction of movement. For example, the most used synthetic mobility model
is Random Walk Model (RWM) [3]. In RWM each node is assigned a randomly distributed initial location
(x0; y0). Then, each node randomly picks up a destination independent of their initial positions and moves
toward it with speed chosen uniformly on the interval (v0; v1). Nodes pause upon reaching each destination.
The process is repeated until the allotted simulation time is reached. There are several issues with RWM, which
are addressed in RealMobGen.

∗Colorado School of Mines, Colorado, USA (adoci@mines.edu).
†Colorado State University, Colorado, USA (wmspring@CS.ColoState.EDU).
‡Technical University of Catalonia, Barcelona, Spain (fatos@lsi.upc.edu).

25

26 A. Doci and W. Springer and F. Xhafa

RealMobGen is a hybrid model that is based on Dartmouth’s model of mobile network traces [10] and
USC’s WWP [6] survey collected from the students on campus. The model closely mimics the environments
where ad hoc networks will likely be deployed, since it borrows its characteristics from models derived from real
user traces. Another feature of RealMobGen, that is not existent in any other current mobility model, is the
classification of nodes as stationary (46% of the nodes) and mobile (54% of the nodes). The ratio of stationary
vs. mobile nodes was borrowed from the Dartmouth model.

The stationary nodes select a location based on a transition matrix that defines the probabilities for moving
from one point to another. Once a location is selected, a node is turned on for a time drawn from the exponential
distribution of start time for the stationary nodes. Stationary node stays at the selected location until the
allotted stationary end time. The mobile nodes, also, select a start location based on the transition matrix.
The mobile node enters the simulation at a time drawn from the mobile node start time. The node pauses at
the selected location until the allotted pause time from mobile pause time exponential distribution. After the
pause time is up, the mobile node selects the next location based on the transition matrix and moves there not
in a straight line but following data that supports movements along popular roads and turns. The mobile node
repeats the pattern ’pause-select next location - move there’ until allotted mobile simulation end time.

RealMobGen shows that wireless nodes tend to cluster around popular locations, i. e., cafeteria, gym,
classes, and library. We believe that RealMobGen is the first mobility model (we are not aware of any other
models) that implements the dynamic characteristic of wireless devices in NS 2, devices join and leave the
network at different times. RealMobGen addresses the drawbacks present in the RWM by implementing the
following new features:
Feature 1: Wireless Nodes are clustered around popular hotspots. For example, Figure 2.1 shows a snapshot

of RealMobGen with 100 nodes, which are clustered around 14 hotspots.
Feature 2: Wireless Nodes posses dynamic membership. For example, Figure 2.2 shows the dynamic mem-

bership of 60 nodes.
Feature 3: Nodes are classified on two flavors, namely stationary and mobile (stationary (46%)of the nodes

and mobile (54% of the nodes). The ratio of stationary vs. mobile nodes was borrowed from the
Dartmouth model.

Feature 4: Moving from one point to another is done via waypoints, instead of a straight line.

3. Connectivity graph and Mobility Metrics. In more realistic mobility models the connectivity
graph G = (V, E) is a dynamic graph on vertices that join and leave and edges that appear and disappear due
to mobility. In graph theory terms, when taking into account the dynamic membership of the nodes, there is
an edge between any two nodes (i, j), if the following two conditions are met:

1. Di,j ≤ R, where D is the euclidian distance between nodes (i, j) and R is the transmission range of the
wireless nodes.

2. Ii ∩ Ij 6= ∅, where I represents the active intervals of the nodes.
Thus, when interested on the mobility metrics, i. e., path and link durations, we are basically posing the

shortest path problem in the case of the dynamic topology and edges. Basically, this can be represented as
a graph with edges that are added and removed, as the vertices turn ‘on’ and ‘off’. While the method of
calculating the full graph is polynomial in the size of the input, it is quite inefficient as each movement of a node
can potentially cause n− 1 edge insertions and the same number of deletions. We can obtain better bounds by
restricting the algorithm to only processing the nodes, which are currently relevant.

In order to consider only the nodes that are relevant, first we process the dynamic membership information.
For example, consider two nodes i and j. Since all communication is instantaneous, any communication between
the nodes must occur while both nodes are turned on. If the communication is indirect, then every node that
participates in routing the messages must also be turned on during that period of time. While, we should note
that, this can be O(n) nodes in the worst case, in most cases this allows us to consider only a fraction of the
vertices of the full graph (See Section Maximum Node Degree Mobility Metric).

3.1. Dynamic Membership Graph is an Interval Graph. Given a set of n intervals (which represent
the number of wireless nodes) I = I1, I2, . . . , In, the corresponding interval graph G = (V, E) has the set of
vertexes V = v1, v2, . . . , vn and there is an edge E linking nodes (vi, vj) if and only if Ii∩Ij 6= ∅ (See Figure 3.1).
We will use the interval graphs to calculate the MaximumNodeDegree.

4. Maximum Node Degree Mobility Metric. In order to define the upper bounds of the number of
nodes that are neighbors, we formulate the problem as a coloring problem, where the goal of the algorithm is

Impact of the Dynamic Membership in the Connectivity Graph 27

Fig. 2.1. 100 Nodes cluster around 14 Hotspots.

to color each interval with the minimal number of colors in such a way that no two overlapping intervals are
colored with the same color. The minimal number of colors represents the upper bound of the Maximum Node
Degree1 In Figure 4.1, we graph the dynamic membership information, as an interval graph, which is parsed
from the output of RealMobGen with 40 wireless nodes.

In this section we present the algorithm for the Maximum Node Degree. The algorithm reads each interval
and sorts them by the beginning interval times (See Figure 4.1).

The MaximumNodeDegree is derived by the GreedlyMaximumNodeDegree Algorithm (See Algorithm 2).
The input to the algorithm is the dynamic membership of the nodes, which is a series of intervals that are
determined by their beginning and ending time of active nodes. Our goal is to find all the overlapping active
time intervals. The number of overlapping intervals gives us the upper bound of the number of neighbors for
each node. We set the problem as a coloring problem. The goal is to color each interval with the minimal
number of colors in such a way that no two overlapping intervals are colored with the same color.

1The algorithm in this section is similar to independent work in the context of channel routing problem [14].

28 A. Doci and W. Springer and F. Xhafa

Fig. 2.2. Dynamic Membership of 60 Nodes.

Fig. 3.1. A set of four intervals and the corresponding interval graph.

First, the algorithm reads all the intervals and sorts them by their beginning times. After it assigns to the
first interval the Color 1, the algorithm looks at the second interval, in order to figure out whether it overlaps
with any other intervals. If it overlaps, then it calculates what colors have already been used and assigns the
next available color to the interval. On the other hand, if the answer is “no”, then the algorithm assigns the
color of the overlapping interval.

Algorithm 2 : GreedyMaximumNodeDegree.

Input: Active Intervals(”TimeOn”, ”TimeOff”); (N) Intervals
1: sortedIntervals ← sortByTimeOn (Active Intervals).
2: Greedily IntervalColoring (sortedIntervals).
3: loopCounter← 1
4: colorCounter ← 1
5: ColorIntervals(sortedIntervals[loopCounter])← Colour[colorCounter].
6: repeat

7: loopCounter ← loopCounter + 1
8: nextInterval ← sortedIntervals [loopCounter].
9: if nextInterval OVERLAPS previousIntervals then

10: colorCounter ← colorCounter + 1
11: ColorIntervals(sortedIntervals[loopCounter])← (Colour[colorCounter])
12: else

13: ColorIntervals(sortedIntervals [colorCounterOfOverlapping])← (Colour[colorCounterOfOverlapping])
14: end if

15: until loopCounter ≤ N
Output: Active Intervals: (′′T imeOn′′,′′ T imeOff ′′), Interval Color

We illustrate the algorithm by running it in the same example of the 40 nodes used in the previous sections.
For example, in Table 4.1 we show the partial output of the algorithm. The table illustrates that the first
seven intervals overlap, thus the color of the intervals is incremental. On the other hand, the eighth interval

Impact of the Dynamic Membership in the Connectivity Graph 29

Fig. 4.1. Dynamic Membership Graph on 40 nodes: Sorted by beginning interval times.

Table 4.1

The partial output of the Algorithm GreedyMaximumNodeDegree.

Time node turns “ON” Time node turns “OFF” Assigned Interval Color

1.28239834 874.2507994 1
9.112384965 35.76696803 2
12.33443828 206.6781021 3
13.96709987 116.2303641 4
15.42727166 212.4065595 5
22.61315476 686.9883725 6
28.87034892 349.2144535 7
39.14919133 269.6973103 2

defined by (39.14919133, 269.6973103) does not overlap with the second one (9.112384965, 35.76696803), thus
gets assigned the same color (Color 2).

The algorithm GreedyMaximumNodeDegree falls in the greedy class of the algorithms, since it takes the
best immediate, or local, solution while finding a global one. The global solution represents the upper bound of
the node neighbors degree, while the average of the local optimum(s) and the global one provides us with the
average node neighbors degree. It can be shown that the algorithm is optimal (following a well known result
from greedy scheduling algorithms [14]).

So far, we have provided the algorithm for the upper bounds of the Maximum Node Degree mobility metric.
Now, we will derive the lower bounds for the metric. The input to the algorithm for the lower bounds is the
Active Intervals: (′′T imeOn′′,′′ T imeOff ′′) and the Interval Color. For each color from the Interval Color,
we compute the pairwise Euclidian distance of the nodes that belong to that color. If the distance is greater
than the transmission range, then the nodes are not neighbors. Else, the nodes are neighbors, thus we increment
the MaximumNodeDegree counter for this pair of nodes. The algorithm is summarized below:

INPUT Active Intervals: (′′T imeOn′′,′′ T imeOff ′′), Interval Color
For each Color from the Interval Color do

• Compute the pairwise Euclidian distance of the nodes that belong to that color.
• If Di,j ≤ R, increment the MaximumNodeDegree counter for this pair of nodes.
• Else, process to the next pair of nodes.

We should mention that in NS 2, in order to maintain the lower bounds over the entire simulation time the
snapshot of the network should be taken every 0.5s and compute the metric for each snapshot. The average of
the metric should be computed in the and over the entire simulation time and used as the lower bound of the
average maximum node degree.

5. Link and Path Durations Mobility Metrics. We make use of dynamic programming to compute
the mobility metrics of link and path durations. In order to compute these metrics, we make optimal solutions
sequentially during the simulation, thus ensuring a global solution in the continuous time. In this section again

30 A. Doci and W. Springer and F. Xhafa

we use the fact that ad hoc network simulations evolve with time; thus, to compute the upper and lower bounds
of link and path durations over the entire simulation time we take a snapshot of the network every 0.5s and
compute the metrics for each snapshot. Then, we average the results of all the individual snapshots and present
the average Maximum Node Degree over the entire simulation. For example, if the simulation time is 900s,
then the first step is to divide the simulation time in small time intervals (for illustration purposes we selected
to divide it into 0.5s time intervals) and take the snapshot of the network for each time interval, which results
into 900s

0.5s
= 1800snapshots.

First, we present the algorithm that provides the lower bounds for the path duration metric. So far, the
research on this area considers the graph static on the number of nodes. Therefore, the run time of the shortest
path(s) on N nodes for each snapshot is O(V 3) (over the simulation for the 900s simulation time it will be
1800 ∗O(V 3) (where |V | = N).

In this section we improve the algorithm complexity to O((V ∗)2logV ∗ + V ∗E∗) for each snapshot (V ∗ rep-
resents the active nodes only and E∗ represents the active edges for each snapshot, thus both are dynamic).
The algorithm takes as input the dynamic membership of the nodes, which is represented by Active Inter-
vals(“TimeOn”, “TimeOff”). On each snapshot we include only the nodes that are active at that time, thus
allowing us to perform the algorithm only for those nodes adjacent to the previously selected nodes [8]. In this
paper we implemented Johnson’s sequential single-source shortest paths algorithm (As shown in Algorithm 3).

Algorithm 3 : JohnsonSingleSourceShortestPaths.

Input: Active Vertices;Active Edges;s
1: PriorityQueue=ActiveVertices
2: for all vǫActiveV ertices do

3: l[v]⇐∞
4: end for

5: l[s]⇐ 0
6: while PriorityQueue 6= 0 do

7: u⇐ findminimum(PriorityQueue)
8: for each vǫAdjacent[u] do

9: if (vǫPriorityQueue) and (l[u] + w(u, v) < l[v])) then

10: l[v]⇐ l[u] + w(u, v)
11: end if

12: end for

13: end while

Output: ShortestPathsMatrix

Let’s illustrate the output of the algorithm through an example. Let’s assume that we are given the
undirected graph and its weights (See Figure 5.1).

We run the algorithm JohnsonSingleSourceShortestPaths, which outputs the matrix

ShortestPathsMatrix =

















0 53 53 45 21 82
53 0 51 66 32 40
53 51 0 15 32 29
45 66 15 0 36 38
21 32 32 36 0 61
82 40 29 38 61 0

















.

In the implementation phase we designed matrix multiplication as addition, while the addition as a mini-
mization operators. In addition, the product of adjacency matric with itself returns shortest pair of length 2
for any pair of nodes. Thus, to get the n shortest paths we compute by doubling powers of the Adjacency,
Adjacency2, Adjacency4,. . . Adjacencyn. Furthermore, we have added the parallel implementation of Johnson’s
Algorithm, which extracts simultaneously p nodes from the priority queue. Each of the nodes will update the
neighbors costs, as well as, augment to the shortest path. The improvement with the parallel algorithm is
|V ∗|

p
∗ log |V ∗|

p
on p processors for each snapshot.

The Link Durations is computed by the algorithm LinkDurations (See Algorithm 4).

Impact of the Dynamic Membership in the Connectivity Graph 31

 51

 45 15

 21

 32

 32

 36

 99

 40

 29

 38

Node 1

Node 2

Node 3

Node 4

Node 5Node 6

Fig. 5.1. Illustrate all-pair shortest path algorithm.

Algorithm 4 : LinkDurations.

Input: Active Vertices;Active Edges;
1: for all vǫActiveV ertices do

2: for each vǫAdjacent[u] do

3: if (voverlapsu) and (D(u, v) < R)) then

4: link[u, v]⇐ OverlapT ime[u, v]
5: end if

6: end for

7: end for

Output: LinkDurationsMatrix

So far in this section, we have provided the lower bounds for the Link and Path durations mobility
metric. In order to get the upper bounds of the maximum node degree the algorithm takes as input the
GreedyMaximumNodeDegree algorithm’s output. For each overlapping interval we compute the amount of
the time they overlap. The overlapping time represents the link durations between the two wireless nodes. We
repeat the computation until there are no more overlapping intervals. For the path durations we compute all
the possible paths of the overlapping intervals and add the corresponding link durations. Lastly, we average all
the individual snapshot results and present the average Link and Path Durations over the entire simulation.

6. Case Study: Efficiency using Maximum Node Degree. In order to demonstrate how to use the
Maximum Node Degree mobility metric to improve algorithm efficiency we illustrate it by a case study that is
the incentive protocols in ad hoc networks.

6.1. Incentive Ad Hoc Protocols. Ad hoc networks are self-organizing and multi-hop networks with
no central authority. Thus, every aspect of the configuration and operation of an ad-hoc network is distributed.
Another characteristic is that nodes are power and energy constrained. Thus, each node running a distributed
protocol must make its own decisions (possibly relying on information from other nodes). Those decisions
maybe constrained by the rules or algorithms of a protocol, but ultimately each node would have some leeway
in setting parameters or changing the mode of operation. These nodes are autonomous agents, making decisions
about transmit power, packet forwarding, back off time, and so on.

In the presence of the selfish nodes, the goal of each wireless device is to maximize its welfare: WELFARE =
Profit−Costs, where profit is the payments received for forwarding traffic and the costs are the incurred energy
loss of the node by transmitting packets for other nodes and sending its own traffic; and the payments to others
that forwarded its own traffic. On the other hand the goal of the incentive protocol designer is to provide

32 A. Doci and W. Springer and F. Xhafa

Table 6.1

RealMobGen Simulation Parameters.

Parameter Value

Simulation Duration 900 s
Simulation Area 900× 1200 m
Number of Hotspots 14
Number of Nodes (nn) nn ∈ (40, 60, 90)

incentives to the wireless nodes to relay traffic, such that nodes will have no incentives to deviate from the
protocol, since doing so will not bring them a higher welfare.

In the presence of selfish nodes most of the proposed protocols are based on the well known Vickrey-Clarke-
Groves (VCG) mechanism. Below we describe one such protocol based on VCG. Vickery auction is most familiar
because it is the foundation of eBay’s auction design. In the Vickrey auction the high bidder wins, but pays
the second-highest bid. This is why the Vickrey auction is called a second-price auction: the price is not the
highest bid, but the second-highest bid. Desirable properties of auction protocols are given in [12], which include
Strategy-Proofness, Pareto Efficiency, Individual Rationality, and Budget-Balance.

In [1, 4, 17] the authors propose incentive protocols that ensure that the participating wireless nodes will
have no reason to deviate from the protocol, since doing so will not bring them a higher welfare. For example,
in [1] the authors propose the Ad-Hoc VCG protocol, which is a reactive routing protocol that achieves the
design objectives of truthfulness. Reactive protocols seek to set up routes on-demand, thus topology information
is only transmitted by nodes on-demand. In this protocol vertexes represent the nodes and weighted directed
edges represent the payments an emitting node has to receive. Nodes are awarded payments for forwarding a
message, thus cover the cost for forwarding a unit-size packet: Payment = ci ∗ P emit, where ci is the cost-of
energy of $/Watt and P emit is emission signal strength in watt.

Payment = DeclaredCost + (LCPwiththenode − LCPwithoutthenode). (6.1)

The protocol can be thought as it is run on two phases. Firstly, route discovery, where nodes communicate to
destination P emit and ci. Then, the destination computes Lowest Cost Path (LCP). Secondly, data transmission,
packets are forwarded along the shortest path route and payments are made to the intermediate nodes.

The algorithm complexity for the proposed protocols [1, 17] is O(N3), for each time snap of the network
during simulation time. In [4] the authors try to reduce the complexity to O(M2 ∗ d), where d is the diameter
and M is some upper bound for the node degree. However, the value of M was not computed. We computed M
by using the GreedyMaximumNodeDegree Algorithm. Next, we present the efficiency introduced by taking
into account the value of M, which is the maximum node degree.

6.2. Efficiency. We propose the metric Efficiency , as a metric to evaluate the gains in the algorithm
complexity of incentive protocols.

In this section, we run the GreedlyDynamicMembership with several scenarios. The scenarios are gener-
ated using RealMobGen mobility model. The inputs to the RealMobGen are the simulation duration set to 900
seconds; simulation area of 900 × 1200 meters; number of hotspots set to 14, while the number of nodes was
varied 40, 60, 100 (the parameters are summarized in Table 6.1).

For each set of nodes, we run the simulation 10 times and present the results in Table 6.2. We define a new
metric, namely Efficiency, that calculates the improvement of real mobility metric algorithms over the synthetic
ones, i. e., in terms of relevant comparisons (See Eq.(6.2)).

Efficiency =

(
P

T
MaxNodeDegree

T

N

)

∗ 100. (6.2)

Impact of the Dynamic Membership in the Connectivity Graph 33

For example, from the table we have the Efficiency for 40, 60, 100 number of nodes to be respectively
54.75, 54.33, 52.30, which demonstrates that we need to compare only half of the nodes, instead of the full graph
when computing the mobility metrics (N2).

Table 6.2

Number of necessary comparisons on 40, 60, 100 nodes.

MaxNodeDegree on 40 Nodes MaxNodeDegree on 60 Nodes MaxNodeDegree on 100 Nodes

24 33 50

21 27 55

16 28 49

25 35 55

21 32 53

25 34 55

20 37 48

23 32 51

21 29 54

23 39 53

Efficiency = 54.75% Efficiency = 54.33% Efficiency = 52.30%

7. Conclusions. In this paper we demonstrated that when introducing dynamic topology in wireless adhoc

networks, the current mobility metrics need to be re evaluated. We introduced Maximum Node Degree as a
mobility metrics, which can be used to improve algorithm efficiency in wireless adhoc networks. In addition,
we re-evaluate the link and path durations mobility metrics and provided their lower and upper bounds. The
usefulness of the Maximum Node Degree mobility metric for improving the efficiency is illustrated by a case
study of incentive protocols in ad hoc networks. We have defined a new metric, namely Efficiency, to characterize
the improvement of real mobility metric algorithms over the synthetic ones. The results are validated trough
simulations.

REFERENCES

[1] L. Anderegg and S. Eidenbenz, Ad hoc-vcg: a truthful and cost-efficient routing protocol for mobile ad hoc networks with

selfish agents, in MobiCom, Septmber 2003.
[2] J. Boleng, W. Navidi, and T. Camp, Metrics to enable adaptive protocols for mobile ad hoc networks, in International

Conference onWireless Networks, 2002, pp. 293-298.
[3] J. Broch, D. Maltz, D. Johnson, Y. Hu, and J. Jetcheva, Multihop wireless ad hoc network routing protocols, in MobiCom

1998: Proceedings of the Fourth Annual ACM International Conference on Mobile Computing and Networking, 1998,
p. 8597.

[4] S. Eidenbenz, G. Resta, and P. Santi, Commit: A sender-centric truthful and energy-efficient routing protocol for ad hoc

networks with selfish nodes, in IPDPS, April 2005.
[5] F.Bai, N. Sadagopan, and A. Helmy, Important: a framework to systematically analyze the impact of mobility on performance

of routing protocols for adhoc networks, in INFOCOM, 2003, pp. 825–835.
[6] W. J. Hsu, K. Merchant, H. W. Shu, C. H. Hsu, and A. Helmy, Weighted waypoint mobility model and its impact on ad

hoc networks, SIGMOBILE Mobile Computer Communications Review, 9 (2005), pp. 59–63.
[7] S. Jiang, An enhanced prediction-based link availability estimation for manets, IEEE Transactions on Communications, 52

(2004), pp. 183–186.
[8] D. B. Johnson, Efficient algorithms for shortest paths in sparse networks, J. ACM, 24 (1977), pp. 1–13.
[9] H. M. Jones, S. Xu, and K. Blackmore, Link ratio for ad hoc networks in a rayleigh fading channel, in WITSP, 2004,

pp. 252–255.
[10] M. Kim, D. Kotz, and S. Kim, Extracting a mobility model from real user traces, in INFORCOM: Proceedings of the 25th

Annual Joint Conference of the IEEE Computer and Communications Societies, 2006, pp. 1–13.
[11] S. Kurkowski, W. Navidi, and T. Camp, Constructing manet simulation scenarios that meet standards, in MASS, 2007,

p. To Appear.
[12] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic theory, Oxford University Press, (1995).
[13] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy, Paths: analysis of path duration statistics and their impact on

reactive manet routing protocols, in MobiHoc, 2003, pp. 245–256.
[14] M. Sarrafzadeh and C. K. Wong, An Introduction to VLSI Physical Design, McGraw-Hill Higher Education, 1996.
[15] W. Su, S. Lee, and M. Gerla, Mobility prediction and routing in ad hoc wireless networks, International Journal of Network

Management, 11 (2001), pp. 3–30.
[16] C. Walsh, A. Doci, and T. Camp, A call to arms: its time for real mobility models, vol. 12, no. 1, pp. 3436, 2008.

34 A. Doci and W. Springer and F. Xhafa

[17] S. Zhong, L. E. Li, Y. G. Liu, and Y. R. Yang, On designing incentive-compatible routing and forwarding protocols in

wireless ad-hoc networks: an integrated approach using game theoretical and cryptographic techniques, in MobiCom, 2005,
pp. 117–131.

Edited by: Fatos Xhafa, Leonard Barolli
Received: September 30, 2008
Accepted: December 15, 2008

