
Scalable Computing: Practice and Experience
Volume 10, Number 1, pp. 35–47. http://www.scpe.org

ISSN 1895-1767
c© 2009 SCPE

AUTOMATIC PERFORMANCE MODEL TRANSFORMATION FROM

A HUMAN-INTUITIVE TO A MACHINE-EFFICIENT FORM

SABRI PLLANA, SIEGFRIED BENKNER∗, FATOS XHAFA†, AND LEONARD BAROLLI‡

Abstract. We address the issue of the development of performance models for programs that may be executed on large-scale
computing systems. The commonly used approaches apply non-standard notations for model specification and often require that
the software engineer has a thorough understanding of the underlying performance modeling technique. We propose to bridge the
gap between the performance modeling and software engineering by incorporating UML. In our approach we aim to permit the
graphical specification of performance model in a human-intuitive fashion on one hand, but on the other hand we aim for a machine-
efficient model evaluation. The user specifies graphically the performance model using UML. Thereafter, the transformation of the
performance model from the human-usable UML representation to the machine-efficient C++ representation is done automatically.
We describe our methodology and illustrate it with the automatic transformation of a sample performance model. Furthermore,
we demonstrate the usefulness of our approach by modeling and simulating a real-world material science program.

Key words: performance modeling, model transformation, UML, simulation.

1. Introduction. It is impractical and costly to use a large-scale computing system for performance tuning
during the program development. Furthermore, in the case of large-scale computing systems the program
developer commonly has access to only a part of the computing system resources and for only a limited time.
The model-based performance analyzes may be used to overcome these obstacles [17]. Based on the model, the
performance can be predicted and design decisions can be influenced without time-consuming modifications of
large portions of an implemented program. In the past the performance evaluation of computing systems was
a preoccupation of many computer scientists [8, 17]. However, most of approaches [1, 9, 6, 13, 21, 10, 7] for the
performance modeling of parallel and distributed programs are of limited use to support performance-oriented
software engineering because of the following reasons: (1) the use of a notation that is not based on widely
accepted standards, and (2) the requirement that the software engineer has a thorough understanding of the
underlying performance modeling technique.

In our approach we aim to bridge the gap between the performance modeling and the software engineering
by using the Unified Modeling Language (UML) [2]. We have developed an extension of UML for the domain
of performance-oriented parallel and distributed programs [18, 19]. Our UML extension provides a set of
UML building blocks that model some of the most important concepts of message passing and shared memory
programming paradigms, which can be used to develop models for large and complex parallel and distributed
programs. To provide tool support for our approach we have developed the Performance Prophet [16], which
is a performance modeling and prediction system. Performance Prophet provides a UML based graphical user
interface, which alleviates the problem of specification and modification of the performance model. In the
context of Performance Prophet we aim to permit the graphical specification of performance model in a human-
intuitive fashion on one hand, but on the other hand we aim for a machine-efficient model evaluation. The
user specifies graphically the performance model using UML. Afterwards, Performance Prophet automatically
transforms the performance model from UML to C++ and evaluates it by simulation.

In this paper we describe our methodology for automatic transformation of performance models from UML
to C++. We show how we may develop a UML-based performance model for a given program code, and there-
after we explain how the UML representation of the performance model is transformed to the corresponding
C++ representation. Furthermore, we present and explain our algorithm for the performance model transfor-
mation from UML to C++, which is implemented in the Performance Prophet. We illustrate our methodology
with the transformation of a sample performance model using the Performance Prophet. The usefulness of our
approach is demonstrated by modeling and simulating LAPW0, which is a real-world material science program
that comprises about 15,000 lines of code.

∗University of Vienna, Department of Scientific Computing, Nordbergstrasse 15/C/3, 1090 Vienna, Austria, ({pllana,
sigi}@par.univie.ac.at).

†Polytechnic University of Catalonia, Department of Languages and Informatics Systems, C/Jordi Girona 1-3, 08034 Barcelona,
Spain, (fatos@lsi.upc.edu).

‡Fukuoka Institute of Technology, Department of Information and Communication Engineering, 3-30-1 Wajiro-Higashi, Higashi-
ku, Fukuoka 811-0295, Japan, (barolli@fit.ac.jp).

35

36 Sabri Pllana et al.

The rest of this paper is organized as follows. Section 2 describes how we customized the UML for per-
formance modeling and outlines the architecture of the Performance Prophet. Our performance model trans-
formation methodology is presented in Section 3. Section 4 exemplifies the model transformation using the
Performance Prophet. The usefulness of our approach is demonstrated in Section 5 by modeling and simulating
a real-world material science program. Finally, Section 6 concludes the paper and briefly describes the future
work.

2. Preliminaries. In this section we describe our approach for customization of the UML for performance
modeling of parallel and distributed programs and give an overview of the architecture of Performance Prophet.

2.1. UML-Based Performance Modeling. UML [2, 14] is a graphical language that is primarily used
for visualizing, specifying, and documenting the software-intensive systems. In order to make possible the
modeling of different types of systems, UML modeling elements are defined in UML specification in an abstract
manner without conceptual connection with a particular domain. For instance, the UML specification defines
the modeling element Action as follows: “an action is the fundamental unit of behavior specification” [14].
Such an abstract definition allows us to use an action to model various kinds of behavior such as addition of
two numbers in a computer system, or acceleration of a vehicular system. However, too generic semantics of
UML modeling elements may present an obstacle for using UML in a specific domain. For this reason, UML
specification defines the mechanisms for specializing semantics of modeling elements for a particular domain.
UML extension mechanisms include stereotypes, tagged values, and constraints.

The UML may be extended by defining new modeling elements, stereotypes, based on existing elements,
base classes (i. e. metaclasses). A stereotype is defined as a subclass of an existing UML metaclass, with
the associated tagged values (i. e. metaattributes) and constraints. Stereotypes are notated by the stereotype
name enclosed in guillemets <<StereotypeName>>, or by a specific graphic icon. Stereotypes may improve the
readability of models by distinguishing modeling elements of the same shape with different stereotype names.

id : Integer
type : String

time : Double

«stereotype»
action+

«metaclass»
Action

(a) Definition

SampleAction
«action+» {id = 1,

type = SAMPLE,

time = 10}

(b) Usage

Fig. 2.1. Definition and usage of the stereotype <<action+>>.

Figure 2.1(a) depicts the definition of stereotype <<action+>> based on the UML metaclass Action. The
list of tag definitions includes id, type, and time. Tag id can be used to uniquely identify the modeling element
<<action+>>; tag type specifies the type of <<action+>>, and tag time the time spent to complete <<action+>>.
We are using <<action+>> (see example in Figure 2.1(b)) to model various types of single-entry single-exit code
regions. Commonly we use tags to describe performance relevant information, such as the estimated or the
measured execution time (see the tag time in Figure 2.1(b)). The set of tag definitions is not limited to those
shown in Figure 2.1(a), but it can be arbitrarily extended to meet the modeling objective. In this manner we
have extended the UML for performance modeling of parallel and distributed programs [18, 19].

2.2. Performance Prophet. Performance Prophet [16] is a performance modeling and prediction sys-
tem for parallel and distributed computing systems. The architecture of Performance Prophet is depicted in
Figure 2.2. The main components of Performance Prophet are Teuta and Performance Estimator. Teuta is a
platform independent tool for graphical modeling of parallel and distributed programs. The role of Performance
Estimator, in the context of Performance Prophet, is to estimate the performance of a program on a computing
machine.

Teuta comprises the following parts: Model Checker, Model Traverser, Graphical User Interface (GUI), and
the components for Performance Visualization (see Figure 2.2). The GUI of Teuta is used for the development
of performance model based on the UML [14]. The Model Checker is used to verify whether the model conforms

Automatic Performance Model Transformation 37

Teuta

Animator Charts TF

PMP

(C++)

Models

(XML)

Performance Visualization

Model

Traverser

Model

Checker

Menu

Drawing

Space

Toolbars

Model
Tree

Code
Editor

Element

Properties

Graphical User Interface

SP
MCF

(XML)

CF

(XML)

Constructs

(XML)

Performance Estimator

Simulation

Manager

Workload

Elements

Machine

Elements

System Elements

CSIM

Simulation Engine

Fig. 2.2. The architecture of Performance Prophet. Abbreviations: Model Checking File (MCF), Configuration File (CF),
Performance Model of Program (PMP), System Parameters (SP), Trace File (TF).

to the UML specification. The Model Traverser is used for generation of different model representations (XML
and C++). The Performance Visualization components are used for visualization of the performance results.

Element MCF indicates the XML file, which is used for the model checking. The XML files that are used
for the configuration of Teuta are indicated with the element CF.

The Performance Estimator estimates the performance of a parallel and distributed program on a target
computer architecture. As input for the Performance Estimator serve the program model and architectural
parameters that are specified in Teuta. The Performance Estimator generates automatically the machine model
based on the specified architectural parameters. The program model is integrated with the machine model to
create the model of the whole computer system. The Performance Estimator evaluates the integrated model of
computing system and generates the corresponding performance results.

The communication between Teuta and the Performance Estimator is done via elements PMP, SP and TF.
Element PMP indicates the C++ representation of the program’s performance model. PMP is generated by
Teuta and serves as input information for the Performance Estimator. Element SP indicates a set of system
parameters. The parameters of system include the number of computational nodes, the number of processors
per node, the number of processes, and the number of threads. The Performance Estimator uses SP for building
the model of system, whose performance is estimated. Element TF represents the trace file, which is generated
by the Performance Estimator as a result of the performance evaluation. Teuta uses TF for the visualization of
performance results.

3. Methodology. In this section we describe conceptually the transition: (1) from the program code
to the UML based performance model, and (2) from the UML representation to the C++ representation of
performance model. Thereafter, we present our algorithm that takes as input the UML representation, and
automatically generates the C++ representation of the performance model.

Commonly, scientific programs are written in imperative languages such as Fortran or C. This type of
programs is executed on parallel and distributed computing systems, which may consist of multiple nodes (each
node may have multiple processors), in order to solve large problems or to reduce the time to solution for a single
problem [4]. The MPI [22, 12] is usually used to express the inter-node parallelism, whereas OpenMP [3, 15]
is used to express the intra-node parallelism. We have identified that UML activity diagrams are suitable for
modeling scientific imperative programs [19]. Therefore, we usually model a scientific program with one or more
activity diagrams. Activity diagrams may be annotated with performance-relevant information. For instance,
cost functions that model the execution time of program actions may be associated with ActionNodes of the
activity diagram.

During the process of performance modeling are considered only the code blocks that strongly influence
the overall performance of program. We may identify, for an existing program, code blocks that determine the
overall program performance by using a profiling tool.

Figure 3.1(a) shows a code block of a Fortran program. This code block is known as kernel 6 of the
Livermore Fortran kernels [11]. Since the performance of a scientific program is strongly influenced by loops,
it is important to consider loops during the development of performance model. Figure 3.1(b) shows the UML
model of kernel 6, which is a fragment of an activity diagram. But, this detailed UML representation of the

38 Sabri Pllana et al.

. . .

. . .

. . .

. . .

. . .

. . .

DO L = 1, M

 DO i = 2, N

 DO k = 1, i-1

 W(i) = W(i) + B(i,k) * W(i-k)

 END DO

 END DO

END DO

Kernel 6

(a)

W

[L = 1,M]

[i = 2,N]

[k = 1,i-1]

(b)

Kernel6
«action+»

T
K6

 = F
K6

(...)

(c)

Fig. 3.1. From the program code to the UML based performance model.

kernel 6 is not necessary, since we are interested on the rough performance estimation. Therefore, we model the
performance of the kernel 6, that is depicted in Figure 3.1(a), with the action Kernel6, which is an instance of
the stereotype action+ (see Figure 3.1(c)). The associated cost function FK6(. . .) models the execution time
TK6 of kernel 6.

The UML based representation of performance model of the kernel 6, that is depicted in Figure 3.1(c), is
simple and intuitive. We have developed this graphical representation to streamline the specification process
of performance models. However, while the UML representation is suitable as human-usable notation for
performance model specification, it is not adequate for an efficient model evaluation. Therefore, we need to
transform the UML representation to a form that is suitable for evaluation.

Kernel6
«action+»

(a)

ActionPlus

properties

execute()

(b)

ActionPlus kernel6(...);

kernel6.execute(...,FK6(...));

(c)

Fig. 3.2. From the UML representation to the C++ representation of performance model.

Figure 3.2 depicts an example of transition from the UML representation to the C++ representation of
performance model. For the illustration of this transformation process serves the model of kernel 6 that we
introduced in Figure 3.1. We use the stereotype action+ to represent a code block of a program. In Figure 3.2(a)
the action Kernel6, which is an instance of stereotype action+, represents the kernel 6. For the modeling element
action+ we have defined the corresponding class ActionPlus (see Figure 3.2(b)). In the context of Performance
Prophet, the class ActionPlus is implemented as a C++ class. The properties of modeling element action+

are mapped to properties of the class ActionPlus. The performance behavior of the modeling element action+
is defined in the method execute() of the class ActionPlus. Figure 3.2(c) depicts the textual representation of
the model of kernel 6. We may observe that the name of the instance of modeling element (in our example
Kernel6) is mapped to the name of the instance of class ActionPlus (in our example kernel6).

Figure 3.3 depicts our algorithm for the automatic model transformation from UML to C++ representation.
As input serves the UML model of a program. The algorithm generates C++ representation of the model.
The UML model, with its diagrams and modeling elements, forms a tree data structure. During the model
transformation process the tree is programmatically traversed, which makes possible to visit each modeling
element and read its properties (see Figure 3.4). Lines 1–8 of the algorithm determine the performance relevant
modeling elements of the UML model based on the element’s property stereotype name. For instance, modeling
elements with the stereotype name action+ are used to model the performance of sequential code blocks. In

Automatic Performance Model Transformation 39

Input: uml_mod_rep, UML based model representation

Output: c++_mod_rep, C++ based model representation

Method: A tree structure, which contains the model

with its diagrams and modeling elements, is

traversed during the model transformation process.

Performance relevant modeling elements of the UML

model are identified based on the stereotype name

for instance, <<action+>>).

 1: // Identify and select performance modeling

 elements

 2: FORALL(is diagram of uml_mod_rep) DO

 3: FORALL(is element of diagram) DO

 4: IF(element is performance modeling element)

 5: add element to perf_elements;

 6: ENDIF

 7: ENDFOR

 8: ENDFOR

 9: // Globals

10: FORALL(variable of uml_mod_rep is global) DO

11: add variable to c++_mod_rep;

12: ENDFOR

13: // Cost functions

14: FORALL(is element of perf_elements) DO

15: IF(element has function)

16: add function to c++_mod_rep;

17: ENDIF

18: ENDFOR

19: // Program

20: // Locals

21: FORALL(variable of uml_mod_rep is local) DO

22: add variable to c++_mod_rep;

23: ENDFOR

24: // Declare performance modeling elements

25: FORALL(is element of perf_elements) DO

26: identify the type of element;

27: add element declaration to c++_mod_rep;

28: ENDFOR

29: // Define performance modeling elements and

 their control flow

30: FORALL(is diagram of uml_mod_rep) DO

31: FORALL(is element of diagram) DO

32: identify the type of element;

33: add the corresponding c++ representation to

 c++_mod_rep;

34: ENDFOR

35: ENDFOR

Fig. 3.3. The algorithm for model transformation from UML to C++.

the C++ model representation are included the global variables, cost functions, and the model structure (that
is performance modeling elements and their flow). Lines 9–12 of the algorithm are responsible for generation of
C++ representation of the global variables. Lines 13–18 generate C++ representation of the cost functions (for
instance, double FA1(){ ...};). The model structure is defined in the lines 19–35. If there are local variables
defined in the UML model, then their C++ representation is generated in the lines 20–23. Lines 24–28 declare
the performance modeling elements (for instance, ActionPlus A1(...);). In the lines 25–35 it is defined
the execution flow of modeling elements. The algorithm generates the C++ code that for each performance
modeling element invokes its execute() method (for instance, A1.execute(uid, pid, tid, FA1());). The
execution order of performance modeling elements is in accordance with the specified flow in the UML model.

Figure 3.4 shows the UML communication diagram of the model traversing procedure, which provides
the possibility to walk programmatically through the model, to visit each modeling element, and to access its
properties. We use the model traversing for the generation of various model representations. Model traversing
involves three entities: the Traverser, the Navigator and the ContentHandler. During the model traversing

40 Sabri Pllana et al.

procedure, first, the Traverser sends the navigation command to the Navigator. Then, the Traverser obtains
the current element ce from the Navigator. Finally, the Traverser asks the ContentHandler to visit the element
ce and generate the corresponding code.

:Navigator:Traverser

:ContentHandler

1: navigationCommand()

3: visitElement(ce)

2: ce := getCurrentElement()

Fig. 3.4. The UML communication diagram of the Performance Prophet model traverser.

The Navigator, the Traverser, and the ContentHandler are independent of each other in the sense that they
only communicate via well-defined interfaces (see Figure 3.4). Therefore, each implementation of one of these
components can be combined with any implementation of the other two components. Performance Prophet
provides the necessary interfaces and base classes and default implementations of the Navigator, Traverser
and ContentHandler. Commonly, the extension of Performance Prophet for the generation of a specific model
representation involves only a specific implementation of the ContentHandler interface.

In the following section we illustrate our methodology with an example using the Performance Prophet.

4. Example. Figure 4.1 depicts the process of UML based specification of a sample performance model
for a hypothetical program. The user specifies the type of performance modeling elements and their flow.
Furthermore, the user may associate a code fragment and a cost function to each performance modeling element.
Each performance modeling element corresponds to a code block of a hypothetical program, whose performance
is modeled. The example in Figure 4.1(a) illustrates the hierarchical modeling capabilities of Performance
Prophet. On the left hand side of Figure 4.1(a) is depicted the main activity diagram, which comprises a set of
instances of stereotypes action+ and activity+. After the execution of action A1 is completed, based on the
value of variable GV, it is decided whether to execute the activity SA or the action A2. While an action is not
further decomposed into other elements, an activity contains a set of elements. The content of an activity is
described with an activity diagram. The content of activity SA, which is an instance of stereotype activity+, is
depicted in the undocked diagram SA in Figure 4.1(a). Activity SA comprises performance modeling elements
SA1 and SA2.

It is possible to associate global and local variables to the model. The name and the type of global and
local variables may be specified as properties of the model. On the right-down corner of Figure 4.1(a), in the
list of properties of sample model, we may observe that variables GV and P are specified as global variables of
the model. We are aware that this sample model could be expressed without the use of global variables, but
nevertheless we opted for this solution for illustration purposes.

Figure 4.1(b) depicts an example of the code association to a performance modeling element. This feature
can be used to complement C++ representation of the performance model. In this example we have associated
a code fragment to the performance modeling element A1, which assigns values to global variables GV and P.

Figure 4.1(c) depicts an example of the association of a cost function to a performance modeling element.
A cost function models the execution time of the code block that is represented by the performance modeling
element. A cost function may use local or global variables as parameters. Moreover, a cost function may be
composed using other functions that are defined in the performance model. In this example we have associated
a simple parameterized cost function to the performance modeling element A1.

Figure 4.2 depicts the C++ representation of the sample model, which is automatically generated by the
Performance Prophet based on the UML representation. The model transformation from UML to C++ repre-
sentation is based on the algorithm that we presented in Figure 3.3.

Figure 4.2(a) depicts an excerpt of the C++ model representation that includes two code sections: (1) global
variables, and (2) cost functions. Lines 24–25 declare the global variables GV and P. In our sample model the
variable GV is used to make the decision whether to execute activity SA or action A2 (see Figure 4.1(a)). The
variable P is used as a parameter of cost functions. We may observe that, in this example, for each performance

Automatic Performance Model Transformation 41

(a) The performance modeling elements and their flow

(b) Code fragment association (c) Cost function association

Fig. 4.1. The UML based specification of a sample model.

modeling element {A1, A2, A4, SA1, SA2} it is defined a cost function {FA1, FA2, FA4, FSA1, FSA2} (code
lines 31–54). As parameters of cost functions may be used the properties of system components (such as number
of processors, or the ID of process). For instance, the cost function FSA2 takes pid as a parameter, which is
the process ID. Please note that the cost functions presented here serve the purpose of illustration of various
forms of expressing cost functions, and that these cost functions are not derived from a real-world program.

Figure 4.2(b) depicts the declaration of performance modeling elements and their execution flow. Lines
64–68 declare the performance modeling elements {A1, A2, A4, SA1, SA2}. We may observe that the C++
code that represents activity SA (lines 79–82) is nested within the C++ code of the main activity (lines 71–
89). Lines 72–75 represent the code that is associated with the element A1 (the code association is depicted in
Figure 4.1(b)). A performance modeling element is executed by invoking its execute() method. The execution of
a performance modeling element models the performance behavior of a code block during the program execution.
Each performance modeling element corresponds to a code block of the program, whose performance is modeled.
For instance, the line 76 in Figure 4.2(b) executes the performance modeling element A1. We may observe that
one of the parameters of method execute() is the name of the cost function FA1 that is associated with the

42 Sabri Pllana et al.

(a) Global variables and cost functions

(b) Execution flow of performance modeling elements

Fig. 4.2. The C++ representation of the sample model.

element A1. The branch control flow of the UML model representation (see Figure 4.1(a)) is mapped to the
if-else-if statement in C++ model representation (lines 77–87).

The C++ representation that is presented in Figure 4.2 is used as input for the Performance Estimator.

Automatic Performance Model Transformation 43

5. Case Study. In this section we demonstrate the usefulness of our approach by modeling and simu-
lating a real-world material science program. For our case study we use LAPW0, which is a part of WIEN2k
package [20]. WIEN2k is a program package for calculation of the electronic structure of solids based on the
density-functional theory. It is worth to mention that the 1998 Nobel Prize in Chemistry was awarded to Walter
Kohn for his development of the density-functional theory. LAPW0 calculates the effective potential within a
unit cell of a crystal. The code of LAPW0 program is written in Fortran 90 and MPI [5]. LAPW0 comprises
about 15,000 lines of code.

A1

A2

A4

A5

A7

A8

A10

A11

A0 A3 A6 A9

Process 0 Process 1 Process 2 Process 3

Fig. 5.1. An instance of LAPW0 domain decomposition. Number of atoms (NAT) is 12; number of atoms per process (PNAT)
is 3.

LAPW0 is executed in SPMD fashion (all processors execute the same program) on a multiprocessor
computing system. A domain decomposition approach is used for parallelization of LAPW0 (see Figure 5.1).
The unit of material, for which LAPW0 calculates the effective potential, comprises a certain number of atoms
(NAT). Atoms are evenly distributed to the available processes. This means that each process is responsible
for calculation of the effective potential for a subset of atoms. For NP available processes, each process obtains
PNAT = NAT/NP atoms. LAPW0 uses an algorithm that aims to distribute a similar (if not the same)
number of atoms to each process for any given positive integer values of the number of atoms and the number
of processes.

. . .

Node 1

(SGI 1450)

4 x Pentium III

Xeon 700MHz,

2GB ECC RAM

Node 2

(SGI 1450)

4 x Pentium III

Xeon 700MHz,

2GB ECC RAM

Node 16

(SGI 1450)

4 x Pentium III

Xeon 700MHz,

2GB ECC RAM

Myrinet

Fast Ethernet

Fig. 5.2. Experimentation platform. Gescher cluster has 16 SMP nodes. Each node has four processors.

Figure 5.2 depicts the architecture of Gescher cluster, which is located at Institute of Scientific Computing,
University of Vienna. Gescher is a 16 node SMP cluster. All nodes of Gescher are of type SGI 1450. Each node
of the cluster has four Pentium III Xeon 700MHz processors , and 2GB ECC RAM. The nodes of Gescher are
interconnected via a 100Mbit/s Fast Ethernet network and a Myrinet network. For our experiments we have
used the Fast Ethernet network. Gescher serves as our platform for performance measurement experiments of
LAPW0.

In what follows in this section we develop and evaluate the model of LAPW0 with Performance Prophet.
We validate the model of LAPW0 by comparing simulation results with measurement results.

Figure 5.3 illustrates the procedure for the development of performance model of LAPW0 with Performance
Prophet. Due to space limitations, in Figure 5.3 it is depicted just a fragment of the UML model of LAPW0. We
developed the model of LAPW0 by using the modeling elements that are available in the toolbar of Performance
Prophet. Basically, Performance Prophet permits to associate to each modeling element a cost function. A
cost function models the execution time of the code block that is represented by the performance modeling
element. Figure 5.3 depicts the association of cost function CalcMPM to action Calculate Multipolmoments.

44 Sabri Pllana et al.

Fig. 5.3. Performance modeling of LAPW0.

This cost function was generated based on measurement data by using regression. Regression is a technique for
fitting a curve through a set of data values using some goodness-of-fit criterion.

Fig. 5.4. An excerpt of C++ representation of performance model of LAPW0.

Figure 5.4 depicts an excerpt of C++ representation of performance model of LAPW0 that is generated
by Performance Prophet based on the specified UML model. We may observe that C++ representation of
performance model includes 302 lines of code. This C++ representation is used as input for the Performance
Estimator of Performance Prophet.

We validated the performance model of LAPW0 by comparing simulation results with measurement results
for two problem sizes and four system configurations. The problem size is determined by the parameter NAT ,
which indicates the number of atoms in a unit of the material. We have validated the performance model of

Automatic Performance Model Transformation 45

Table 5.1
Simulation and measurement results for LAPW0. In NxPy, x denotes the number of nodes N , and y denotes the total

number of processes P . Ts is simulated time, Tm is measured time, and Te evaluation time. All times are expressed in seconds [s].

NAT = 32
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 280 264 0.01 26,400 6
N2P8 170 166 0.02 8,300 2
N4P16 126 131 0.04 3,275 3
N8P32 98 113 0.08 1,413 13

NAT = 64
System Ts [s] Tm [s] Te [s] Tm/Te Error [%]
N1P4 543 501 0.01 50,100 8
N2P8 314 264 0.02 14,700 7
N4P16 211 197 0.04 4,925 7
N8P32 184 164 0.09 1,822 12

LAPW0 for NAT = 32 and NAT = 64. The system configuration is determined by the number of nodes and
the number of processing units. We have validated the performance model of LAPW0 for the following system
configurations: one node and four processes (N1P4), two nodes and eight processes (N2P8), four nodes and
16 processes (N4P16), eight nodes and 32 processes (N8P32). Each node comprises four processors. On each
processor is mapped one process.

Table 5.1 depicts simulation and measurement results for LAPW0. The second column of table, which is
indicated with Ts, shows the performance prediction results for LAPW0 that we have obtained by simulation.
Measurement results of LAPW0 are presented in the third column, which is indicated with Tm. The column
that is indicated with Te presents the CPU time needed for evaluation of the performance model of LAPW0
by simulation. All simulations were executed on a Sun Blade 150 (UltraSPARC-IIe 650MHz) workstation. We
compare the time needed to execute the real LAPW0 program on our SMP cluster with the time needed to
evaluate the performance model on a Sun Blade 150 workstation in the column that is indicated with Tm/Ts.
We may observe that model-based performance evaluation of LAPW0 with Performance Prophet was several
thousand times faster than the corresponding measurement-based evaluation. The rightmost column of the
table shows the percentage error, which serves to quantify the prediction accuracy of Performance Prophet. We
have calculated the percentage error using the following expression,

Error[%] =
|Ts − Tm|

Tm

100,

where Ts is the simulated time and Tm is the measured time. We may observe that the prediction accuracy of
Performance Prophet for LAPW0 was between 2% and 13%. The average percentage error was 7%. Simulation
and measurement results for LAPW0 are graphically presented in Figure 5.5.

6. Conclusions. In this paper we have described our methodology for the development of performance
models of programs. Our approach supports the graphical specification of performance models in a human-
intuitive fashion on one hand, and on the other hand is amenable to the machine-efficient model evaluation. The
model transformation, from the graphical human-intuitive form (that is, UML representation), to the form that
can be efficiently evaluated by machine (that is, C++ representation), is performed automatically. We have
illustrated our methodology with the transformation of a sample performance model using the Performance
Prophet modeling system.

The usefulness of our approach has been demonstrated by modeling and simulating LAPW0, which is a
real-world material science program that comprises about 15,000 lines of code. In our case study, the model
evaluation with Performance Prophet on a single processor workstation was several thousand times faster
than the execution time of the real program on our SMP cluster. We validated the model of LAPW0 by
comparing the simulation results with measurement results for two problem sizes and four system configura-
tions.

In future we plan to extend our approach to enable the automatic generation of the program code based
on the UML model.

46 Sabri Pllana et al.

0

100

200

300

400

500

600

N1P4 N2P8 N4P16 N8P32

System

E
x

e
c

u
ti

o
n

 T
im

e
 [

s
e

c
.]

Simulation(64)

Measurement(64)

Simulation(32)

Measurement(32)
NAT=64

NAT=32

Fig. 5.5. Simulation and measurement results for LAPW0.

REFERENCES

[1] V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E. Houstis, J. Rice, R. Sakellariou, D. Sundaram-Stukel,
P. Teller, and M. Vernon, POEMS: End-to-End Performance Design of Large Parallel Adaptive Computational
Systems, IEEE Transactions on Software Engineering, 26 (2000), pp. 1027–1048.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Second Edition, Addison Wesley
Professional, 2005.

[3] L. Dagum and R. Menon, OpenMP: An Industry-Standard API for Shared-Memory Programming, IEEE Computational
Science and Engineering, 5 (1998), pp. 46–55.

[4] S. Graham, M. Snir, and C. Patterson, Getting Up to Speed: The Future of Supercomputing, The National Academies
Press, 2004.

[5] W. Gropp, E. Lusk, and A. Skjellum, Using MPI—2nd Edition: Portable Parallel Programming with the Message Passing
Interface (Scientific and Engineering Computation), MIT Press, 1999.

[6] D. Grove and P. Coddington, Performance Modeling and Evaluation of High-Performance Parallel and Distributed Sys-
tems, Performance Evaluation, 60 (2005), pp. 165–187.

[7] C. Hughes, V. Pai, P. Ranganathan, and S. Adve, RSIM: Simulating Shared-Memory Multiprocessors with ILP Processors,
IEEE Computer, 35 (2002), pp. 40–49.

[8] H. Karatza, Applied System Simulation: Methodologies and Applications, Springer, 2003, ch. Simulation of Parallel and
Distributed Systems Scheduling, Concepts, Issues and Approaches.

[9] D. Kerbyson, A. Hoisie, and H. Wasserman, Use of Predictive Performance Modeling During Large-Scale System Instal-
lation, Parallel Processing Letters, 15 (2005).

[10] D. Kvasnicka, H. Hlavacs, and C. Ueberhuber, Simulating Parallel Program Performance with CLUE, in International
Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), Orlando, Florida, USA,
July 2001, The Society for Modeling and Simulation International, pp. 140–149.

[11] F. H. McMahon, The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range, Tech. Report
UCRL-53745, Lawrence Livermore National Laboratory, Livermore, California, December 1986.

[12] Message Passing Interface Forum (MPIF). http://www.mpi-forum.org/

[13] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, and D. Wilcox, PACE—A Toolset for the Performance
Prediction of Parallel and Distributed Systems, International Journal of High Performance Computing Applications, 14
(2000), pp. 228–251.

[14] Object Management Group (OMG), UML 2.0 Superstructure Specification. http://www.omg.org August 2005.
[15] Open specifications for Multi Processing (OpenMP). http://www.openmp.org/

[16] S. Pllana, S. Benkner, F. Xhafa, and L. Barolli, Hybrid Performance Modeling and Prediction of Large-Scale Computing
Systems, in International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2008), Barcelona,
Spain, March 2008, IEEE Computer Society.

[17] S. Pllana, I. Brandic, and S. Benkner, A Survey of the State of the Art in Performance Modeling and Prediction of
Parallel and Distributed Computing Systems, International Journal of Computational Intelligence Research (IJCIR), 4
(2008).

[18] S. Pllana and T. Fahringer, On Customizing the UML for Modeling Performance-Oriented Applications, in UML 2002,
“Model Engineering, Concepts and Tools”, LNCS 2460, Dresden, Germany, Dresden, Germany, October 2002, Springer-
Verlag.

[19] , UML Based Modeling of Performance Oriented Parallel and Distributed Applications, in Proceedings of the 2002
Winter Simulation Conference, San Diego, California, USA, December 2002, IEEE.

Automatic Performance Model Transformation 47

[20] K. Schwarz, P. Blaha, and G. Madsen, Electronic structure calculations of solids using the WIEN2k package for material
sciences, Computer Physics Communications, 147 (2002), pp. 71–76.

[21] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha, A Framework for Performance
Modeling and Prediction, in The 2002 ACM/IEEE conference on Supercomputing, Baltimore, Maryland, USA, November
2002, ACM.

[22] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference, MIT Press, 1998.

Edited by: Fatos Xhafa, Leonard Barolli
Received: September 30, 2008
Accepted: December 15, 2008

