
Scalable Computing: Practice and Experience

Volume 10, Number 1, pp. 115–130. http://www.scpe.org
ISSN 1895-1767

c© 2009 SCPE

THE EDGE NODE FILE SYSTEM: A DISTRIBUTED FILE SYSTEM FOR HIGH

PERFORMANCE COMPUTING

KOVENDHAN PONNAVAIKKO∗
AND JANAKIRAM D∗

Abstract. The concept of using Internet edge nodes for High Performance Computing (HPC) applications has gained ac-
ceptance in recent times. Many of these HPC applications also have large I/O requirements. Consequently, an edge node file
system that efficiently manages the large number of files involved can assist in improving application performance significantly. In
this paper, we discuss the design of a Distributed File System (DFS) specialized for HPC applications that exploits the storage,
computation and communication capabilities of Internet edge nodes and empowers users with the autonomy to flex file management
strategies to suit their needs.

Key words: distributed file systems, high performance computing, peer-to-peer systems, scalability

1. Introduction. Data requirements of High Performance Computing (HPC) applications have been con-
tinuously growing over the past few years and are expected to grow even more rapidly in the years to come [23].
There has also been a significant increase in the number of participants, i. e., data producers and consumers,
and in their geographical spread. Experimental setups, deployments of sensors, simulators, etc. generate large
amounts of data which researchers world over may have use for. I/O libraries that provide necessary abstrac-
tions to HPC application programmers require appropriate interfaces and mechanisms for handling the storage,
access and transfer of such data. Efficiently sharing large numbers of files among a substantial number of widely
distributed users and groups is another related requirement. These requirements create a need for a large scale
Distributed File System (DFS) on the Internet edge nodes.

The importance of file management in HPC applications is exemplified by the High Energy Physics (HEP)
Data Grid [19]. The project shows the need for collectively using the storage and computing capabilities of
widely distributed resources1 for a specific purpose (in this case, performing next generation HEP experiments).
For the HEP Data Grids, there is a need to maintain file catalogs and information services to discover files,
locate them (by mapping logical file names to physical addresses) and to provide access. Other examples include
Biomedical Informatics Research Network (BIRN) [2], drug discovery on desktop Grids [11], etc.

Traditionally, the set of storage nodes in individual DFS installations comprises of stable and well connected
server quality nodes belonging to a few institutional LANs (such as in universities and companies). Advances
in hardware technology have made it possible for a much larger set of edge nodes to contribute significantly to
the performance of large scale distributed systems. In addition to all the nodes connected to institutional LANs
(not just server quality nodes), Internet edge nodes include desktops, laptops, etc. that connect to the Internet
using cable, DSL, Wi-Fi, cellular networks, etc. (Fig. 1.1). Our earlier works Vishwa [34] and Virat [40] address
issues involved in using edge nodes for providing processor and memory sharing services respectively. In this
work, we propose to exploit the resources of Internet edge nodes to build a scalable distributed file system.
The presence of a large number of nodes helps in improving I/O scalability, while also boosting the amount of
available computational and storage resources. We will, henceforth, refer to our file system as the Edge Node
File System (ENFS).

ENFS uses proximity based clustering of edge nodes for the efficient management of resources and balancing
of load (storage, computational, query, etc.). A system-wide structured Peer-to-Peer (P2P) network, comprising
of a few capable and reliable nodes from each cluster, assists in the efficient discovery and usage of resources
across the entire system. Such a two layered platform helps the system to scale to a large number of nodes and
also maintain high levels of performance.

Requirements of different HPC applications, in terms of the characteristics and locations of storage sites
on which files are stored, vary widely. Access/sharing semantics and consistency needs of users and groups also
differ to a great degree. It is, therefore, imperative to consider user-centric preferences while performing file
management tasks such as data storage, access and migration. Instead of carrying out such tasks in a rigid
manner, in our system, we empower users/applications with the autonomy to flex the system’s file management
strategies to suit their needs and, hence, improve application performance. For instance, we demonstrate a

∗Distributed and Object Systems Lab, Department of Computer Science and Engineering, Indian Institute of Technology Madras,
Chennai, India

1The terms resource and node will be used interchangeably in this paper.

115

116 Kovendhan Ponnavaikko and Janakiram D

Gateways

Companies/Organizations

Autonomous Systems

Autonomous Systems

Internet Backbone

Edge Nodes

University Labs
Desktops/Laptops

using cable/DSL/WiFi

Fig. 1.1. Internet Edge Nodes

mechanism that allows a user to continue performing computations on a dataset, while it is being modified by
another user.

Important design considerations in the context of a DFS for HPC using edge nodes are discussed in section 2.
Section 3 presents the details of our system architecture and the working of ENFS. Section 4 deals with the
various aspects of file management in ENFS. Performance studies are discussed in section 5. In section 6, we
discuss the features of a few related systems which are relevant to our work. Conclusions and possible future
work are presented in section 7.

2. ENFS: Design Considerations. Several features of a distributed file system must be analyzed care-
fully in order to design one with specific requirements [12]. We will discuss some of the important features in
this section in the context of designing a large scale distributed file system that operates in a highly dynamic
environment and is specialized for high performance computing applications.

2.1. System Organization. System organization refers to the assignment of specific roles to different
system resources and defining how they interact with each other. Distributed file system organization varies
from completely centralized [38] to completely P2P [24]. In a completely centralized setup, data and metadata
associated with all the files are maintained at a server and clients query the server for all forms of file access.
In such an approach, the centralized server severely affects the system’s scalability. Making a set of nodes
collectively function as data and metadata servers for a much larger number of clients helps in improving
scalability to some extent [21]. Pure P2P file systems exist [24], in which every peer makes its own file placement
decisions and uses P2P routing techniques to discover files. While such P2P systems scale well, the overheads
involved in discovering and accessing files are high as well. Maintaining data and metadata consistency is also
expensive in pure P2P systems.

2.1.1. Decoupling Data and Metadata. A recent approach to file system organization has been to
decouple file data and metadata [17][44][39][3]. In these systems, only metadata is maintained by a set of
servers. File contents are stored on a much larger set of nodes. The total amount of bandwidth that is available
to clients to read and write data scales more or less linearly with the number of storage sites available. Such
an organization results in a more scalable system.

2.1.2. Metadata Partitioning. A large percentage of file system operations are those on file metadata
[36]. Thus, metadata access must be done as efficiently as possible. When a set of nodes function as metadata
servers for the entire system, metadata partitioning mechanisms must be used to balance load among the servers.
In [44], dynamic subtree partitioning [46] is used to partition the directory space among servers. In addition
to namespace management, tasks such as monitoring the status of storage nodes, user/group management, etc.
must also be uniformly distributed among a set of nodes.

2.1.3. Data Distribution. It is also necessary to distribute file contents among the storage nodes as
evenly as possible to avoid bottlenecks in the system. Systems can either use a probabilistic method or a

The Edge Node File System: A Distributed File System for High Performance Computing 117

deterministic method to distribute data [12]. In the probabilistic method, hashing functions such as Secure
Hash Algorithm [15] or Message Digest 5 [35] can be used to determine the sites at which files must be stored
[24][29]. Since file placement is randomized, such systems will have little or no control over file locations and
over other characteristics of storage sites. In the deterministic method, nodes use whatever knowledge they have
of the system to place data. Systems with centralized servers that have global knowledge can easily balance
storage load. However, such systems do not scale.

2.1.4. Fault Tolerance. While the abundance of edge nodes helps in improving system performance,
higher levels of dynamism in resource characteristics and availability amplify the need for efficient monitoring
and fault tolerance mechanisms. Replication of data is a widely used mechanism to tolerate system component
failures. A file system employing edge nodes must be adept in replicating data on appropriate resources. Failure
detection and migration of data must also be suitably handled. When multiple copies exist, file systems are also
responsible for the consistent maintenance of data. Sections 3 and 4 discuss how ENFS addresses the above
mentioned issues.

2.2. File Management. The primary function of a file system is to manage the placement and access of
files. Due to large data set sizes, recent HPC approaches attempt to schedule computations on resources which
contain the required data [32][43], thus reducing the amount of data movement. Therefore, placement of files
at appropriate storage sites can significantly improve the performance of applications using the files.

2.2.1. File Placement. High performance computing applications are diverse in terms of hardware and
software requirements. Applications perform best when the data that they operate on are stored in resources
that suit their purpose best. Some of the characteristics that differentiate applications from each other are
computational intensity [28], I/O throughputs [30], inter-task communications, memory requirements, etc. For
example, in [4], the authors study the scientific applications GYRO (fusion simulation) [16] and POP (climate
modeling) [22]. Various characteristics of the two applications are compared and the authors attempt to identify
system architectures that will be most suitable for the execution of the two applications. Using similar appli-
cation profiling techniques or based on the intuitive understanding of application characteristics, users may be
able to specify preferences for the kind of resources on which to store their files.

Users may also be able to specify location preferences for the sites at which their files need to be stored.
Based on expected access patterns, users may want files to be stored at or in the proximity of certain nodes or
clusters. Certain files may most of the times be used by applications along with a few other files. Such files
are best placed in the proximity of the associated files in order to reduce the amount of data transfer during
application execution.

2.2.2. File Access. Moreover, access semantics preferred by different applications can vary widely. In
a system where mutable data is shared among a large number of users2, the mechanisms used to manage
concurrent access to files can have a huge bearing on the performance of applications requiring those files. A
rigid set of policies may not be suitable in such a system. Based on users’ access requirements and the current
state of file access, the DFS must be able to apply different kinds of access semantics so as to improve overall
system performance. Section 4 discusses how file management issues are addressed in ENFS.

2.3. Security and Privacy. Several file systems adopt cryptographic techniques to encrypt their data
before storing [24][3]. Doing so ensures privacy since users can now access file contents only if they have appro-
priate keys. In a few systems, content hashes are stored along with the metadata in order to verify the integrity
of retrieved files. There are several security issues associated with large scale distributed systems. Standard
practices such as the usage of Kerberos authentication protocols for the servers and clients to authenticate each
other and establish secure sessions, using Access Control Lists (ACLs) to restrict the usage of files by different
users, etc. are popularly used. While we have not specifically addressed any of these privacy/security issues,
we have ensured that the above mentioned techniques can be easily incorporated into ENFS.

3. Architecture of the Edge Node File System. Over the last few years, decoupling metadata oper-
ations from read/write operations on files has been established as a strategy that can significantly improve a
system’s scalability and performance. For extremely large distributed systems (Internet scale) handling billions
or trillions of files, a huge number of Metadata Servers (MDS) will be required to handle the load without

2Depending on the context, in certain places, the term user may actually refer to the user’s application.

118 Kovendhan Ponnavaikko and Janakiram D

(Distributed Hash Table)

Structured P2P Overlay

S
i

S
i
’sRouting

Table Entry

Node

Cluster

Supernode

Fig. 3.1. Two Layered Platform

effecting any performance degradation. In contrast to many existing systems, in ENFS, we allow non-dedicated
edge nodes to assume the responsibilities of a MDS. Such an approach creates a large pool of servers from which
the required number can be chosen. Appropriate measures are put in place to handle the consequent issues of
failures and load variations.

Metadata (such as file system namespace) has to be partitioned among the MDSs to ensure balanced query
loads. Static partitioning of the directory hierarchy is useful in the sense that nodes can easily identify responsible
MDSs. However, changes in demand for different portions of the namespace can result in unbalanced loads.
Partitioning based on hashing file names (such as in [5]) can help in keeping the load much more balanced.
However, such an approach cannot retain hierarchical locality of the files. Moreover, O(logN) hops may be
required to locate the responsible MDS, where N is the number of MDSs in the system. In [46], the issues of
changing workloads and retention of locality are attempted to be solved using a dynamically adapting subtree
based partitioning strategy. In such a hierarchy traversal system, locating files far down in the hierarchy may
require several hops between MDSs. The time taken by a node to identify the MDS responsible for a particular
file/directory has considerable bearing on the system performance. In ENFS, we employ a hybrid of hierarchical
and hashing based strategies and attempt to minimize MDS location and access times.

3.1. Two Layered System Model. Based on proximity, nodes are grouped into large non-overlapping
clusters (order of 103 nodes per cluster) by system administrators (Fig. 3.1). New clusters can be formed at any
time and nodes can be added to and removed from clusters at any time. A lot of work has been done on network
distance measurement [13], topology discovery [18][6] and proximity based node clustering [48][27]. Moreover,
statistical data about the number of files, file sizes and generation rates, the number of participating nodes and
their characteristics, the number of users and their file access patterns, etc. can be used to determine optimal
cluster sizes. In this paper, we do not address issues related to autonomous cluster formation and maintenance
for the sake of simplicity.

A few reliable and capable edge nodes from each cluster are chosen to be the metadata servers for that cluster.
In addition to maintaining file metadata, information about the nodes within the cluster are also maintained at
these servers. We will call these servers Supernodes. Supernodes share the load of gathering information about
cluster resources, managing users and groups, placing data, maintaining file metadata, scheduling computations,
responding to queries, etc. Supernodes from all the clusters form a single system-wide structured P2P overlay
network or Distributed Hash Table (DHT) [41][37]. The overlay enables nodes of a cluster to discover supernodes
(of other clusters) which are responsible for specific portions of the file namespace. The structured overlay also
helps in the efficient discovery of resources with specific characteristics in the entire system.

3.2. Load Balancing. In order to enable efficient distribution of load among supernodes in accordance to
their capabilities, a technique similar to the usage of virtual servers in Chord [33] is adopted. In Chord, every

The Edge Node File System: A Distributed File System for High Performance Computing 119

1. Prepare: includes a unique proposal number

2. Promise: may include an alternate value for the proposal
along with the proposal value

3. Accept: specifies the value that has been finalized

1. Prepare

3. Accept

2. Promise

Proposer

SupernodesS1 S2 S3 Sk

Fig. 3.2. Paxos Algorithm: Messages and Arguments

node in the overlay represents not one but a bunch of identifiers from the identifier space. When the query
load on a particular node increases, the responsibility for a few of the virtual identifiers is transferred from the
heavily loaded node to a lightly loaded node. In ENFS, we distribute a large virtual identifier space among the
supernodes belonging to a cluster, based on their capabilities. When the load on a supernode increases, the
responsibility for a portion of the virtual identifier space can be transferred from the heavily loaded supernode
to a lightly loaded one. We use the Paxos algorithm [25] (discussed later in this section) to unambiguously
rearrange load.

The mapping between the virtual identifier space and the physical address of supernodes is made known to
the entire system using the structured layer. A file containing the association is stored in the structured layer
with the cluster identifier as the key. We will refer to this file as the supernodes map. Supernodes, primarily,
manage entities such as nodes, users, groups and files belonging to their cluster. These entities determine the
virtual identifier with which they must associate themselves by performing a standard operation on their unique
identifiers (IP address, file path, etc.). For instance, let the maximum value of the supernode virtual identifier
be Vmax. The virtual identifier corresponding to an entity with identifier I can be

(SHA(I)/SHAmax) ∗ Vmax

where SHA(I) is the digest obtained by applying the SHA hash function on the identifier and SHAmax is the
maximum possible value of the 160-bit digest. Entities can then use the supernodes map file to determine the
physical address of the supernode responsible for that virtual identifier. For an entity with I as its identifier,
the responsible supernode is denoted by SI . When a node wants to make a query about I or when I wants to
perform some file system operation, SI is contacted.

The load at a supernode refers to the amount of computational power spent on performing different file
system operations, including responding to client queries. Each supernode specifies a value for the maximum
allowed CPU utilization percentage (measured over a time interval) for file system operations. Since file access
frequencies and the amount of computational power required for different file system operations vary, loads on
the supernodes keep changing. Whenever the actual load exceeds the limit imposed, a supernode is said to
be overloaded. Supernodes periodically send their load information to the other supernodes in the cluster. In
addition to the sharing of load information, the message also helps in letting other supernodes know about
the source’s liveness. When a supernode Si detects the failure of another supernode Sj , it informs the other
supernodes in the cluster about the failure3. Si also initiates the process of replacing Sj with a new supernode.
A supernode that is overloaded can propose an adjustment of the virtual identifier space to transfer some of its
load to lightly loaded supernodes. When all supernodes in a cluster are heavily loaded, an additional supernode
can be added to the existing set. On the other hand, when all the supernodes in a cluster are lightly loaded, one
of the supernodes can be removed. A minimum number of supernodes, kr (discussed in section 3.3), however,
must always be available within a cluster.

As mentioned earlier, the Paxos algorithm (Fig. 3.2) is used by supernodes to reach an agreement on the
addition/removal of a supernode and on the adjustment of the virtual identifier space. In the first phase of
the Paxos algorithm, the proposer sends a prepare message to the acceptors and the acceptors may or may not
respond with promise messages. In the second phase, if the proposer receives promise messages from a majority

3While Si denotes the ith supernode in the supernodes map file, SI denotes the supernode associated with entity I.

120 Kovendhan Ponnavaikko and Janakiram D

S2S1

SN�1SN

Skr�1
Skr+2

Fig. 3.3. Supernode Metadata Replication

of the acceptors, it sends an accept message with the decided value to the acceptors. If enough promise messages
are not received, the proposal fails. Using Paxos helps in achieving consensus among a set of supernodes which
are prone to failures. Changes in the set of supernodes and in the mapping of virtual identifiers to supernodes
are immediately propagated to the supernodes map file in the structured layer. The file includes a version
number which is incremented after every change. The changes are also publicized to all the nodes within the
cluster.

3.3. Fault Tolerance. In order to handle failures, the metadata stored in a supernode is replicated in a
constant number (kr) of other supernodes. The number kr must be selected in such a way that the simultaneous
failure of kr/2 supernodes within a cluster is highly improbable. A supernode, Sn, that updates some metadata
has to multicast the changes to all its replicas, so that the replicas are always in a state similar to that of Sn.
Let there be N supernodes in a cluster and let {S1, S2, . . . , SN} be the order in which the supernodes are
listed in the supernodes map file. Then, supernode Si replicates its metadata in the nodes

{Sk, k = (i + j − 1) mod N | 1 ≤ j ≤ kr}.
We will refer to this set of supernodes as Si’s replica set. In figure 3.3, all the supernodes pointed at by
the arrows originating from supernode Si constitute its replica set. When a querying resource detects that a
supernode is not reachable, it queries the next-in-line supernode in the failed supernode’s replica set. Whenever
the responsibility for a virtual identifier is transferred from Si to Sj, appropriate metadata transfer must happen.
The metadata of all the resources that map to that virtual identifier must be transferred from Si to Sj and to
Sj ’s replica set.

Every node, when it becomes a supernode, identifies another node which is capable of being made the
supernode, and maintains it as a spare supernode. The spare can be made a supernode in case of failures or
load surges. Supernodes lazily keep updating metadata information in the spare nodes. This way, the amount
of metadata transfer required for bringing up a new supernode is significantly reduced. When a supernode fails,
the spare of the failed supernode or that of one of its replica set supernodes can be used as a replacement.
Similarly, one of the better prepared spares, i. e., spares with little metadata transfer pending, can be used
while adding additional supernodes to a cluster.

3.4. Metadata Consistency. Periodically, a supernode, Si, sends the collected status information of
all the resources it is responsible for to all the other supernodes in the cluster. We do not attempt to achieve
sequential consistency among supernodes for such non-critical information because it can be expensive. However,
for critical information such as file metadata, Si and its replica set must always be in a synchronized state,
i. e., sequential consistency semantics need to be observed. Otherwise, if Si performs some file operation, such
as providing a write lock to a user, and fails before letting its replica set know about the lock, the available
metadata in the replica set becomes inconsistent with the actual state. For similar reasons, user/group metadata
must also be maintained consistently among supernodes and their corresponding replica sets.

We adopt the Paxos agreement protocol for the consistent maintenance of critical metadata among Si and
its replica set. Si sends the proposal to its replica set, waits for a sufficient number of responses, performs the

The Edge Node File System: A Distributed File System for High Performance Computing 121

/ENFS

/usra /usrb /usr

User F ile Spa
es

/usr1 /usr1 /usr1
/Cluster1 /Clustern/Clusteri

Fig. 3.4. Hierarchical File System Namespace

proposed operation and informs the replica set about the completion of the operation. Even if Si fails before
sending the completion message, its replica set can verify if the proposed operation was performed to completion
or not. This way, a total order is maintained among the updates made to such metadata. Since the replica set
size is a constant, the overhead of maintaining consistency does not increase with an increase in the number of
supernodes in a cluster.

3.5. Namespace Management. We employ a single hierarchical file system namespace with the root
named as /ENFS (Fig. 3.4). Each filename, including the path, is therefore unique. The first level of namespace
partitioning is achieved by making the supernodes of a cluster (CId1) operate as metadata servers for all the
files and directories belonging to their cluster, i. e., all files and directories having a prefix of /ENFS/CId1/.
Every user/group in ENFS must belong to one of the clusters. In order to be unique system-wide, user identifiers
can be of the form ClusterId/UserId and user home directories can be of the form /ENFS/ClusterId/UserId/.
Distribution of responsibilities for files and directories among the supernodes in a cluster is done as is discussed
in section 3.2. Since filenames including paths are hashed to identify responsible supernodes, metadata of
different files in the same directory may be managed by different supernodes. In order to support POSIX
directory access semantics, whenever a file or subdirectory is created, updated or deleted, the metadata of the
parent directory must also be updated. Symbolic links are supported in ENFS by including the entire name
of the original file or directory in the link’s metadata. All operations on links are forwarded to the supernodes
that manage the linked file’s metadata.

Users requiring access to their own files and to the other files belonging to their cluster are served metadata
by supernodes of their own cluster. Since cluster formation is based on the proximity of nodes, network latency
between clients and metadata servers for such file accesses is small. In order to determine the metadata server
(supernode) responsible for any other file, clients will need the current supernodes map file of the cluster to
which the required file belongs. This may require O(logN) hops, where N is the size of the structured overlay.
This cost is, however, amortized over future accesses to files belonging to the same clusters. Supernodes of a
cluster prefetch and maintain the supernodes map files of all clusters, whose files have been recently accessed
by their users, thus thwarting the need to query the structured layer for every single access.

Though hashing helps in balancing query loads to a large extent, sudden increases in demand for individual
files, referred to as flash crowds, can still overload the corresponding supernodes. In ENFS, when a supernode,
Si, notices an increase in the number of queries for a particular file, the cluster’s supernodes map file is
immediately updated with a note suggesting that queries for the popular file must be forwarded through the
client’s supernode. Supernodes of other clusters that receive such queries, then, fetch and cache the popular
file’s metadata locally. These supernodes respond to future queries themselves, until the note is removed from
the supernodes map file of Si’s cluster (when demand for the file falls). The distribution of the responsibility
of serving the metadata of popular files is shown in figure 3.5. Flash crowds can be handled in this manner just
for read-only accesses. When the requests from flash crowds are largely update requests, performance is likely
to get affected.

Network partitioning within a cluster is taken care of by the active replication and migration of metadata
and data across the various supernodes and storage nodes of a cluster. When a small portion of the cluster
becomes unreachable, it is unlikely that any data/metadata will become inaccessible.

3.6. Resource Monitoring. Supernodes of a cluster are responsible for monitoring the status of cluster
resources. Nodes periodically send their status information to the appropriate supernodes. In addition to

122 Kovendhan Ponnavaikko and Janakiram D

(a) (b)

Supernode

Client

for the popular file
Supernode responsible

Fig. 3.5. Handling Flash Crowds (a) Occurrence of flash crowds (b) Distribution of responsibility

the current values of vital node characteristics, the status information also includes the version number of the
supernodes map file that is known to the nodes. If there is mismatch between the actual version number and
the received number, the supernode sends the node the current file. This is done to ensure that the nodes in
a cluster have current knowledge about the supernodes responsible for that cluster. When a supernode, Si,
does not receive the status information from a node for a certain period of time, it checks if that node has
failed. If the node has failed, Si periodically attempts to ping the failed node. When the node becomes active
again, Si sends the node the current supernodes map file. The frequency and duration of node failures are
used to quantify the reliability of a node. This measure is maintained at the supernodes along with other node
characteristics. Node status information and failures are immediately made known to the supernodes in Si’s
replica set.

3.7. Resource Discovery. The two layered system model of ENFS enables the efficient discovery of
system-wide resources with specific characteristics. Since supernodes periodically broadcast status information
about the nodes they are responsible for, to the other supernodes in their cluster, all the supernodes of a
cluster maintain more or less up-to-date information about all the nodes in their cluster. Supernodes also
maintain information about the clusters closest to them in the system. When a supernode is not able to
locate enough resources with specific characteristics (to handle a user request) within its cluster, it can send
appropriate queries to the supernodes of nearby clusters. However, in certain scenarios, a supernode may not
be able to locate enough suitable resources in any of its nearby clusters. Flooding the system with queries loads
the network and also does not provide any guarantees. ENFS exploits the reach of the structured overlay to
efficiently discover resources located anywhere in the system.

A node is usually characterized by different capabilities or features such as processing speed, memory size,
storage capacity, uplink/downlink bandwidths, system architecture, etc. Each characteristic ci can be quantified
by values belonging to mi categories. For example, memory sizes can be categorized as being less than mr1

MBs, between mr1 and mr2 MBs, . . . , greater than mrm MBs, etc. Standard system-wide policies can be used
for the discretization of the values of the different characteristics. For every category of each characteristic, a
file is maintained in the structured layer that includes the identifiers of all the clusters that have a large number
of resources of that capability available for use. The file also includes the approximate number of resources in
each cluster. JuxMem [5] uses a similar strategy for the available memory alone.

The characteristic category file in the structured layer must be updated by supernodes only when their
clusters have a large number of resources (with the corresponding capability) on a regular basis. A pessimistic
estimate must be used for the number of resources listed as available. This is important because every small
variation in the number of resources available in a cluster should not necessitate a change to the file in the
structured layer. Using such an approach, the number of clusters to which queries must be sent for resource
discovery is significantly reduced. Discovering resources with a combination of characteristics is also possible
by making individual queries for each characteristic and then joining the results.

4. File Management. A useful, yet ignored feature in distributed file systems, is that of allowing users
to have some level of control over choosing appropriate resources for the storage of their files. Most of the times,

The Edge Node File System: A Distributed File System for High Performance Computing 123

users generating data files, to be used by high performance computing applications, have some knowledge about
the characteristics and requirements of the applications that are going to use their data. Information about
the set of users who are going to perform computations on the files may also be sometimes available. Data
placement based on such knowledge can result in significant improvements in application performance.

4.1. File Placement.

4.1.1. User Preferences. As discussed in section 2.2.1, high performance computing applications differ
widely in their characteristics, and hence, resource requirements. Resource requirements can be specified in
terms of the processing speed, network bandwidth, memory size, storage capacity, architecture, etc. Location
preferences, on the other hand, can be specified based on expected access patterns. Users may want files to be
stored in the proximity of specific nodes or clusters. For example, if certain files are expected to be used by the
members of a particular group, the files are best placed in the proximity of the nodes frequented by those group
members. Certain files may most of the times be used by applications together with a few other files. Such files
are best placed in the proximity of the associated files in order to reduce the amount of data transfer required
during the execution of the application.

To register preferences about resource characteristics, users must specify values for the different character-
istics that storage nodes are expected to possess. The preferred characteristics must be specified as a prioritized
list. To indicate location preferences, users can specify the set of users, groups, clusters, files or directories in
the proximity of which their files must be placed. As in the previous case, location preferences must also be
specified in the order of favor. Replication of user data is necessary to distribute the load on storage sites,
handle storage site failures and also to enable parallel access. Users can explicitly specify the required levels of
replication for their files based on expected demands.

The following shell command shows how a user can load a file into ENFS:
$ enfs put [options] local filename enfs filename

User preferences can be specified using command line options, as is done in POSIX commands. For example
an option such as –cpu=5 can be used to specify that the file must be stored on nodes with processing speeds
greater than 5 GHz. It is not practical to specify several options for each file. The required options can be set
at the level of a directory and all the files created in that directory can inherit the set options. On the other
hand, users can create combinations of options that they use often (locally on their nodes) and just specify the
name of the combination while loading files. The DFS component on the node can replace the name of the
combination with the entire set of options.

4.1.2. Block Management. In ENFS, files are split into data blocks. As much as possible, the blocks
are stored on different nodes. Among other benefits, this provides for parallel access and fault tolerance. The
size of a block can be configured by the user based on application requirements. By default, the system sets
the block size in accordance to the file size. ENFS uses the native file system present in a node’s Operating
System (OS) for the storage of data blocks as files in the local storage devices. The local file names are stored
in the ENFS file’s metadata. Block storage in the local file system and block transfers between nodes happen
as a binary stream of data. This way, differences in the file storage formats of different file systems cannot
corrupt the contents of data blocks. The network subsystem and other hardware interfaces of the OS are used
for purposes such as communication, monitoring, etc.

4.1.3. Placement Strategy. Each supernode maintains a database with entries for all the resources in its
cluster. Such a database assists in quickly identifying resources with required characteristics. Resources from
other clusters can be discovered as discussed in section 3.7. Supernodes keep track of the set of nodes that each
user frequents. Aggregating this information from all the members of a group, supernodes can associate a set
of nodes with each group. From the metadata of files belonging to a directory, supernodes can determine the
set of nodes that store most of the data belonging to files in that directory. All such information is gathered by
supernodes lazily (as low priority tasks) and is used to make locality based placement decisions.

When users do not specify any preference for resource characteristics, supernodes select the set of storage
nodes considering just the available storage space. When no location preference is indicated, supernodes try to
store all the replicas within the same cluster and in nearby clusters. While placing data blocks, supernodes also
take into consideration the reliability of nodes. Since files have to be available at all times, at least a few of
the replicas must be stored on nodes with high reliability, while the other replicas can be stored on nodes with
lesser reliability. At a high level, our file placement algorithm performs the steps shown in figure 4.1.

124 Kovendhan Ponnavaikko and Janakiram D

Location preference specified?

Initial set of clusters chosen based

on preferences specified

Chosen clusters queried for nodes

with the required characteristics

reliability available for storing

Enough nodes with appropriate

file blocks (incl. replicas)?

Data transfer from source to

selected nodes initiatedRelax node characteristics

requirement

Own cluster and a few

neighboring clusters chosen

No

Yes No

Yes

Block level allotment doneCan more relevant clusters

be discovered?

Yes

No

Fig. 4.1. Bird’s Eye View of the File Placement Strategy

4.2. File Access. In ENFS, file metadata is maintained on reliable and capable nodes, with a single point
of access for each file. Such a design makes it convenient for the system to support a large spectrum of access
semantics. The single interface allows clients to use the data in various modes. Concurrent accesses can also
be easily coordinated. For example, concurrent accesses to files can be controlled by associating files with
exclusive and shared locks. All exclusive locks must have been released before shared locks can be obtained by
clients and all kinds of locks (shared and exclusive) must be released before an exclusive lock can be obtained.
Lock granularity (block level or file level) and lifetime can also be configured. Applications can use ENFS
library functions such as lockf() and lockb() to lock/unlock files and blocks respectively. These functions take
as arguments the filename, block identifier, type of lock, lifetime, etc. Supernodes ensure that locks are not
violated while responding to read and write requests from multiple users.

4.2.1. Access Semantics. By selecting appropriate access modes, applications can improve their perfor-
mances significantly. Selecting the right kind of lock can reduce wait times to access data. Due to concurrent
accesses, it is possible that multiple versions of a file are available. A user, not too particular about requiring
the latest version, can request for read access to any version of a file [42]. This way, the user is more likely
to gain access faster. Users can also specify whether the order in which their updates are applied on files is
important or not. When the updating order is not important, multiple updates can be simultaneously applied
on the various replicas and hence high performance can be achieved. Commutative updates such as counter
increments/decrements can be unordered. The setattr shell command can be used to modify such options for a
file:

$ enfs setattr [options] enfs filename

Caching file contents locally helps in reducing data access times during subsequent usages. In order to
ensure that contents have not been modified, files and blocks maintain version numbers (included in the file
metadata). Version numbers in the metadata can be compared with version numbers of data items cached by
users to determine if cache contents are valid or not. Block level version numbers are useful, especially in the
case of large files. Without block level version numbers, caches can be invalidated even when a small portion of
a large file is altered.

The Edge Node File System: A Distributed File System for High Performance Computing 125

Processed Record

j’

(b)(a)
Insert record k

Modify record jDelete record i

jiRecord ids:

Fig. 4.2. (a) Progress of a Computation (b) Changes Made to the File

4.2.2. Computation Scheduling. Most high performance computing applications involve operations
such as filtering the contents of a file to extract useful information, enforcing data transformations or performing
CPU intensive scientific computations on file contents. Since supernodes have information about all the resources
in their cluster and are capable of discovering resources from other clusters, they are well suited for the job of
scheduling different kinds of operations on file contents. Based on the specified access preferences, supernodes
schedule tasks on appropriate nodes and have the results returned to the user. For example, in order to execute
a divisible load application [7] on the contents of a file, supernodes can efficiently set up computation specific
dynamic overlay networks, such as the one discussed in our earlier work [31].

In a large scale system involving several users and long running applications, scenarios can arise in which
user Ua makes changes to a file while another user Ub is performing a high performance computation on the file
contents. A few examples for scenarios where computation results need to be kept up-to-date with changing
datasets are web crawlers providing fresh content, re-runs of experiments resulting in better values for a portion
of the dataset, sensors detecting new events, etc. Requiring Ub to restart the computation after every change
made to the file is not efficient since file sizes are usually huge and computations take a significant amount of
time. Similarly, not allowing changes to be made to the file when a computation is being performed can lock the
file for long periods of time. In ENFS, we address this issue by enabling the user to provide certain functions
(similar to MapReduce [14]) to the responsible supernode which can then handle simultaneous updates to the
file while computations are in progress on the data. For certain classes of application, such as embarrassingly
parallel applications with commutative updates, the scheduler can continue processing one portion of the file
when another portion is being altered, because there is little or no inter-task communication involved. Thus,
when changes are made to a file, if it is possible to undo the effects of deleted records from the result, the
computation can be made to be consistent with the current contents of the file. For such applications, it may
be possible for the user to provide the following details/functions to the supernode:

• The types of record and result
• The function compute(record) => result—represents the computation that is performed on every

record.
• The function aggregate(< result > ∗) => result—aggregates a set of results into one.
• The function recompute(result, record) => result—reverses the effect of the computation of a single

record from the current result.

Let us assume that the computation initiated by Ub has progressed as shown in figure 4.2(a). Each small box
represents a record. Shaded boxes represent records that have been processed and unshaded blocks represent
records that have not yet been processed. Let us also assume that Ua modifies the file as shown in figure 4.2(b).
Ua deletes the record labeled i, inserts record k and modifies record j, the modified record being labeled j′. In
order to make Ub’s computation consistent with the current contents of the file, the following functions must
be invoked by the supernode:

1. result = recompute(result, i)
2. result = recompute(result, j)
3. result1 = compute(k)
4. result2 = compute(j′)
5. result = aggregate(result, result1, result2)

Steps 1 and 2 are required to undo the effects of old records i and j on the result. Steps 3 and 4 obtain the
results of performing the computation on new records k and j′. The final step combines the three results into
one. The updates will then have been incorporated into the result and the computation can continue with
the records which have not been processed yet. With such user defined functions, ENFS can be customized to
support a wide variety of access semantics.

126 Kovendhan Ponnavaikko and Janakiram D

4.3. Data Migration. Data stored in a storage node may have to be migrated to other nodes due to
several reasons such as changing access patterns, failure of storage nodes and changes in the characteristics of
nodes. Data migration and creation of new replicas based on access patterns help in improving application
performance. In ENFS, data transfer time is saved by migrating blocks closer to the nodes/clusters where they
are being frequently transferred to. This reduces the effects of high network latency on access times. Moreover,
based on the frequency of access, new replicas are autonomously created and unused ones deleted.

A supernode ascertains that a node has abnormally failed only if the node remains offline for extended
periods of time. When a supernode detects an abnormal node failure, it passes on the information to the
supernodes responsible for the files stored in the failed node. The respective supernodes can then create new
replicas. Changes in node characteristics are also handled in a similar manner.

5. Performance Studies. A prototype version of ENFS has been implemented and in this section, we
present preliminary performance results. We have used the Andrew Benchmark [20] to assess ENFS. Andrew
Benchmark (AB) is widely used to study file system performances and consists of five phases, namely: 1) creation
of directories, 2) copying files into the directories, 3) reading file attributes, 4) reading file contents, and
5) performing a hybrid set of operations on the files, such as reading, computing and writing. All the five
phases of the workload are relevant in the context of a DFS for HPC applications. Phases 1 and 3 characterize
metadata creation and access performance. Phases 2 and 4 characterize data write and read performance.
Phase 5 measures the support provided to computation tasks. The performance of a DFS relative to popular
file systems such as NFS can be used to make indirect comparisons between itself and any other DFS for which
results exist.

Our experimental setup includes a set of 80 machines belonging to two labs in our department. Most of
the machines have Pentium 4 processors (3.8 GHz), 1 GB RAM and 80 GB hard disk drives. The predominant
operating system is Linux version 4. The machines are all connected to a 100 Mbps LAN, with 30 machines in
one subnet and the remaining 50 in another. The machines are split into 2 to 5 clusters, each cluster having
between 16 and 70 nodes, depending on the experiment. On an average, each cluster maintains 4 supernodes.
The NFS server is a Pentium 4 machine of 3.8 GHz processor speed and 4 GB RAM, running NFSv3.

Table 5.1

Andrew Benchmark: ENFS vs. NFSv3

Phase ENFS (ms) NFSv3 (ms)

Phase 1 40 8

Phase 2 72066 83227

Phase 3 202 51

Phase 4 34905 86487

Phase 5 3141 28627

Table 5.2

Overheads of the Paxos Algorithm

No. of Time taken for

Supernodes Consensus (ms)

2 47

16 62

32 108

64 269

Table 5.1 shows the running times of the different AB phases for ENFS and NFSv3. Phases 2 (write) and 4
(read) involve a lot of data transfer (800 MB in each phase). Since data storage is distributed among several
nodes, the running times of these phases are lesser in ENFS than in NFS. ENFS also performs significantly
better than NFS in phase 5 because it exploits the computing power of storage nodes to parallelize computations.
Overall, in this setup, ENFS performs about forty percent better than NFS. In comparison, Pastis [9] achieves
execution times lesser than two times that of NFS, while Ivy [29] and OceanStore [24] perform two to three
times worse than NFS.

Multiple instances of AB are started in different nodes simultaneously and the performance studied. Fig-
ure 5.1 shows the average execution time per run for the different number of simultaneous AB runs (1 to 5).
In ENFS, when the nodes on which AB is started belong to different clusters, the average execution times is
more or less a constant. When the nodes belong to the same cluster, a small increase in the execution time is
noticed with every additional node. This is because, in the first case, a larger set of supernodes cater to client
requests than in the second case, where only a single cluster’s supernodes handle all the load. NFS performance
deteriorates rapidly with the number of runs because of the single server which serves data and metadata to all
the nodes.

The same workload is used to measure the execution times of AB runs in the Hadoop Distributed File
System (HDFS) [8]. HDFS is an open source file system with an architecture similar to that of the Google File

The Edge Node File System: A Distributed File System for High Performance Computing 127

nfsv3
hdfs

enfs - same cluster
enfs - diff. clusters

No. of concurrent AB runs

A
v
er

a
g
e

ti
m

e/
ru

n
(s

ec
o
n
d
s)

6543210

1200

1000

800

600

400

200

0

Fig. 5.1. Concurrent AB Runs

System (GFS) [17] (discussed in section 6). A HDFS cluster maintains a single namenode, which manages the
namespace, and several datanodes, which store data blocks and serve read and write requests. Since data storage
is decentralized, HDFS also performs much better than NFS. However, since the metadata is still managed by
a central server in HDFS, its performance is effected when the number of simultaneous file system operations
increases. When five concurrent AB runs are started, HDFS’s average benchmark time is more than two times
that of ENFS.

We measure the overhead introduced by the Paxos algorithm while trying to achieve consensus among
supernodes. Table 5.2 shows the average time taken to achieve consensus among varying numbers of supernodes
within a cluster. We observe that, though agreement time increases with the number of supernodes, the
overheads are not too high (about a quarter of a second for 64 supernodes in a LAN setting).

A flash crowd scenario is created and the response of ENFS is studied. Table 5.4 shows the average response
times for metadata requests as observed by clients, with and without load distribution. As expected, the average
response time reduces significantly when the responsibility of supplying popular file’s metadata is distributed
among the supernodes of the clusters from which requests are being issued.

Table 5.3 shows the execution times for a computation on a 600 MB dataset while it is being updated by
other users. The time taken to compute a single record, of size 1 MB, on a 3.8 GHz Linux machine is 102 ms
and the time taken to recompute the result when a record is updated is 151 ms. It may be noted that the
recompute function is applied only on the updated records and not on the entire file. Execution times increase
linearly with the rate of updates to the file. Also, for the entire computation, we observe that execution times
are lesser for smaller block sizes. As the block size increases, the number of storage nodes used to store the file
decreases. In other words, the number of nodes, whose processing power is directly usable for the computation
decreases, thus increasing computation times.

Table 5.3

Computation Execution Times

Updates Execution Time (seconds)

/second Block size (MBs)

20 50 100

4 4 8 15

10 6 11 17

20 10 15 22

40 17 23 31

Table 5.4

Flash Crowds: Average Response Times

Avg. response

time (ms)

Flash crowds 29

After load distribution 11

6. Related Work. Certain distributed file system protocols such as Network F ile System (NFS) [38],
Andrew File System (AFS) [21] and Common Internet F ile System (CIFS) [26] employ the client/server
model. File data and metadata are both managed by a single or a limited set of servers. Since the servers are

128 Kovendhan Ponnavaikko and Janakiram D

potential bottlenecks, these systems do not scale with increasing numbers of simultaneous accesses. Moreover,
these systems support parallelism at the level of directories only, which is not as beneficial to applications as
parallelism at the level of files.

A recent approach to file system design has been to decouple data and metadata [17][39][47][10]. In these
systems, metadata and data are served by different sets of servers. Google F ile System (GFS) [17] is a DFS
for data intensive applications, custom-built for the application workload and technical environment at Google.
A single master maintains all file metadata and several chunkservers store file contents. Lustre F ile System
[39] and Panasas F ile System [47] are similar systems that decouple data and control and use Object based
Storage Devices (OSD) for their storage needs. Requiring specialized object storage nodes precludes the usage
of the storage capacities of most edge nodes. Parallel V irtual F ile System (PVFS) [10] is an open source
DFS that attempts to provide high performance and scalable file system services for node clusters. While data
is spread out among a large number of cluster nodes, metadata is still served by a single server in PVFS1, and
by a small set of servers in PVFS2. All these systems maintain a single, or a fixed set of metadata servers. This
imposes a constraint on the scalability of the system and also affects performance. For several applications,
performance depends on the speed with which file and directory metadata can be accessed and updated.

Farsite [3] is another DFS which decouples data and metadata. File system namespace is maintained using
a collection of replica groups arranged in the form of a tree. File metadata is replicated and stored on the
directory group nodes in a Byzantine fault tolerant manner. As with other hierarchy traversal systems, locating
the directory group for a file deep in the hierarchy may require several hops, thus making metadata access
expensive. Ceph [44] is an OSD based DFS which uses a pseudo random function called CRUSH [45] for the
distribution of data among nodes in the object storage cluster. The usage of CRUSH rules out the possibility
of considering specific node characteristics while making data placement decisions.

OceanStore [24] is a global scale data storage utility that uses untrusted infra-structure. Data objects
are stored on primary and secondary tier nodes. Updates are serialized among the primary tier nodes using
a Byzantine fault tolerant algorithm and propagated to the secondary tier nodes using a dissemination tree.
High churn rates among the primary tier nodes can result in expensive maintenance overheads. The overheads
involved in the maintenance of two tiers of nodes and a tree for each data object can also be significantly high.
Moreover, every update results in the creation of a new version which is archived in the system, making the
system inefficient for large sized files. Ivy [29] is a P2P read/write file system based on logs. Each participant
maintains a log with information about all the changes made to the data and metadata in the file system.
A participant appends changes only to its own log. However, it reads from the logs of other participants
and maintains a total order by using version vectors. As a result, Ivy is suitable only for a small number of
participants.

JuxMem [5] is a hierarchical platform that supports mutable data sharing services for Grid computing.
The hierarchy includes a set of peer groups (clusters) and an overlay network consisting of cluster managers from
the peer groups. A data group is created for each data block that is stored in the system. The group handles
tasks such as replication, consistency maintenance, data access, etc. The overheads of maintaining individual
groups for the data items can affect the system’s scalability with respect to the number of data items. Moreover,
JuxMem largely ignores namespace management issues and the task of optimizing metadata access.

7. Conclusions and Future Work. In this paper, we have discussed the design of a distributed file
system built on top of Internet edge nodes. The DFS attempts to address the needs of widely spread scientific
communities that share and run high performance computing applications on large data files. The system allows
data placement decisions to be based on user’s preference of storage resource characteristics and locations. The
two layered architecture allows for the efficient discovery and usage of system-wide storage resources with specific
characteristics. ENFS supports flexible consistency management and access semantics to improve application
performance. We demonstrate a mechanism that allows a user to continue performing computations on a large
dataset, while it is being modified by another user. The limitation, however, is that it can be applied only to
certain types of application.

ENFS needs to be further tested by obtaining performance measurements from a larger and wider network
of nodes, resembling a real-world scenario. The design of ENFS can be exploited for efficient file discovery. Files
can be associated with tags or keywords that describe their contents. The tags to clusters mapping can be stored
in the structured overlay in much the same way as it is done for the discovery of far-off resources with specific
characteristics. This significantly reduces the number of clusters that must be queried for discovering relevant

The Edge Node File System: A Distributed File System for High Performance Computing 129

files. A group of HPC enthusiasts are working towards defining a few POSIX file system APIs conducive to
high performance computing applications [1]. A possible future work is to make ENFS support the proposed
POSIX extensions.

REFERENCES

[1] POSIX extensions. http://www.pdl.cmu.edu/posix, 2006.
[2] Biomedical Informatics Research Network. http://www.nbirn.net, 2007.
[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. Lorch, M. Theimer, and

R. Wattenhofer, Farsite: Federated, available, and reliable storage for an incompletely trusted environment, SIGOPS
OSR, 36 (2002), pp. 1–14.

[4] S. R. Alam and J. S. Vetter, An analysis of system balance requirements for scientific applications, in Proc. of ICPP ’06,
2006, pp. 229–236.

[5] G. Antoniu, L. Boug, and M. Jan, Juxmem: An adaptive supportive platform for data sharing on the grid, Scalable
Computing: Practice and Experience, 6 (2005), pp. 45–55.

[6] Y. Bejerano, Y. Breitbart, M. Garofalakis, and R. Rastogi, Physical topology discovery for large multisubnet networks,
in Proc. IEEE INFOCOM 03, 2003, pp. 342–352.

[7] V. Bharadwaj, T. G. Robertazzi, and D. Ghose, Scheduling Divisible Loads in Parallel and Distributed Systems, IEEE
Computer Society, 1996.

[8] D. Borthakur, The Hadoop Distributed File System: Architecture and design. http://hadoop.apache.org/core/docs/

current/hdfs_design.html, 2008.
[9] J.-M. Busca, F. Picconi, and P. Sens, Pastis: A highly-scalable multi-user peer-to-peer file system, in Euro-Par, 2005,

pp. 1173–1182.
[10] P. H. Carns, Walter, R. B. Ross, and R. Thakur, PVFS: A parallel file system for linux clusters, in Proc. 4th Annual

Linux Showcase and Conference, 2000, pp. 317–327.
[11] A. Chien, B. Calder, S. Elbert, and K. Bhatia, Entropia: Architecture and performance of an enterprise desktop grid

system, JPDC, 63 (2003), pp. 597–610.
[12] B. Cochran, Distributed file systems: History, taxonomy, and cutting edge ideas, tech. report, University of Illinois at

Urbana-Champaign, 2004.
[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, Vivaldi: A decentralized network coordinate system, in Proc. of the ACM

SIGCOMM’04 Conference, 2004, pp. 15–26.
[14] J. Dean and S. Ghemawat, MapReduce: simplified data processing on large clusters, Commun. ACM, 51 (2008), pp. 107–113.
[15] D. Eastlake and P. Jones, US Secure Hash Algorithm 1 (SHA1). RFC Editor, USA, 2001.
[16] M. R. Fahey and J. Candy, GYRO: A 5-D Gyrokinetic-Maxwell Solver, in Proc. of Supercomputing ’04, 2004, p. 26.
[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, The Google File System, SIGOPS OSR, 37 (2003), pp. 29–43.
[18] R. Govindan and H. Tangmunarunkit, Heuristics for Internet map discovery, in Proc. IEEE INFOCOM 00, 2000, pp. 1371–

1380.
[19] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, Data management in an international

data grid project, in Proc. of First IEEE/ACM International Workshop on Grid Computing, Springer-Verlag, 2000,
pp. 77–90.

[20] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. N. Sidebotham, and M. West, Scale and
performance in a distributed file system, SIGOPS OSR, 21 (1987), pp. 1–2.

[21] J. H. Howard, An overview of the Andrew File System, in USENIX Winter, 1988, pp. 23–26.
[22] D. J. Kerbyson and P. W. Jones, A performance model of the Parallel Ocean Program, Int. J. High Perform. Comput.

Appl., 19 (2005), pp. 261–276.
[23] T. Kosar and M. Livny, Stork: Making data placement a first class citizen in the grid, in Proc. of ICDCS ’04, 2004,

pp. 342–349.
[24] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,

C. Wells, and B. Zhao, Oceanstore: An architecture for global-scale persistent storage, SIGARCH Comput. Archit.
News, 28 (2000), pp. 190–201.

[25] L. Lamport, The part-time parliament, Trans. Comput. Syst, 16 (1998), pp. 133–169.
[26] P. J. Leach and D. C. Naik, A Common Internet File System Protocol (CIFS). Internet draft, Internet Engineering Task

Force (IETF), 1997.
[27] E. Lua, J. Crowcroft, and M. Pias, Highways: Proximity clustering for scalable peer-to-peer networks, in Proc. 4th Int.

Conference on P2P Computing, 2004, pp. 266–267.
[28] Y. Luo and K. W. Cameron, Instruction-level characterization of scientific computing applications using hardware perfor-

mance counters, in WWC ’98: Proc. of the Workload Characterization: Methodology and Case Studies, IEEE Computer
Society, 1998, p. 125.

[29] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, Ivy: A read/write peer-to-peer file system, SIGOPS Oper. Syst.
Rev., 36 (2002), pp. 31–44.

[30] B. K. Pasquale and G. C. Polyzos, Dynamic I/O characterization of I/O intensive scientific applications, in Proc. of
Supercomputing ’94, 1994, pp. 660–669.

[31] K. Ponnavaikko and D. Janakiram, Overlay network management for scheduling tasks on the grid, in ICDCIT, 2007,
pp. 166–171.

[32] K. Ranganathan and I. Foster, Simulation studies of computation and data scheduling algorithms for data grids, Journal
of Grid Computing, 1 (2003), pp. 53–62.

130 Kovendhan Ponnavaikko and Janakiram D

[33] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica, Load balancing in structured P2P systems, in
Proc. of IPTPS 2003, 2003, pp. 68–79.

[34] M. V. Reddy, A. V. Srinivas, T. Gopinath, and D. Janakiram, Vishwa: A reconfigurable P2P middleware for grid
computations, in Proc. of ICPP ’06, 2006, pp. 381–390.

[35] R. Rivest, The MD5 Message-Digest Algorithm. RFC Editor, USA, 1992.
[36] D. Roselli, J. R. Lorch, and T. E. Anderson, A comparison of file system workloads, in Proc. of USENIX Annual Technical

Conference, 2000, pp. 4–4.
[37] A. Rowstron and P. Druschel, Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer

systems, in Middleware ’01, Nov. 2001, pp. 329–350.
[38] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, Design and implementation of the Sun Network

Filesystem, in Proc. Summer 1985 USENIX Conf., 1985, pp. 119–130.
[39] P. Schwan, Lustre: Building a file system for 1000-node clusters, in Proc. of Linux Symposium, 2003, pp. 380–386.
[40] A. V. Srinivas and D. Janakiram, Scaling a shared object space to the Internet: Case study of Virat, Journal of Object

Technology, 5 (2006), pp. 75–95.
[41] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and H. Balakrishnan, Chord: A scalable peer-to-peer lookup service

for Internet applications, in Proc. of ACM SIGCOMM ’01, vol. 31, October 2001, pp. 149–160.
[42] J. Stribling, E. Sit, M. F. Kaashoek, J. Li, and R. Morris, Don’t give up on distributed file systems, in Proc. of the 6th

IPTPS, Feb 2007.
[43] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita, Performance analysis of scheduling and replication algorithms on

grid datafarm architecture for high-energy physics applications, in Proc. of 12th IEEE HPDC, 2003, pp. 34–43.
[44] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn, Ceph: A scalable, high-performance distributed

file system, in OSDI, 2006, pp. 307–320.
[45] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn, CRUSH: Controlled, scalable, decentralized placement of

replicated data, in Proc. of Supercomputing ’06, 2006, pp. 31–31.
[46] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller, Dynamic metadata management for petabyte-scale file

systems, in Proc. of Supercomputing ’04, 2004, pp. 4–4.
[47] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka, and B. Zhou, Scalable performance

of the Panasas parallel file system, in Proc. of the 6th USENIX Conference on File and Storage Technologies, 2008,
pp. 1–17.

[48] Q. Xu and J. Subhlok, Automatic clustering of grid nodes, in Proc. of GRID ’05, IEEE Computer Society, 2005, pp. 227–233.

Edited by: Thomas Ludwig
Received: June 16, 2008
Accepted: March 9, 2009

