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REAL TIME BEHAVIOR OF DATA
IN DISTRIBUTED EMBEDDED SYSTEMS*

TANGUY LE BERRE, PHILIPPE MAURAN, GERARD PADIOU, PHILIPPE QUEINNEC

Abstract. Nowadays, embedded systems appear more and more as distributed systems structured as a set of communicating
components. Therefore, they show a less deterministic global behavior than centralized systems and their design and analysis
must address both computation and communication scheduling in more complex configurations. We propose a modeling framework
centered on data. More precisely, the interactions between the data located in components are expressed in terms of a so-called
observation relation. This abstraction is a relation between the values taken by two variables, a source and an image, where the
image gets past values of the source. We extend this abstraction with time constraints in order to specify and analyze the availability
of timely sound values.

The formal description of the observation-based computation model is stated using the formalism of transition systems, where
real time is handled as a dedicated variable. As a first result, this approach allows to focus on specifying time constraints attached
to data and to postpone task and communication scheduling matters. At this level of abstraction, the designer has to specify
time properties about the timeline of data such as their freshness, stability, latency...As a second result, a verification of the
global consistency of the specified system can be automatically performed. The verification process can start either from the timed
properties (e.g. the period) of data inputs or from the timed requirements of data outputs (e.g. the latency). Lastly, communication
protocols and task scheduling strategies can be derived as a refinement towards an actual implementation.
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1. Introduction. Distributed Real Time Embedded (DRE) systems are increasingly widespread and com-
plex. In this context, we propose a modeling framework centered on data to specify and analyze the real time
behavior of these DRE systems. More precisely, such systems are structured as time-triggered communicating
components. Instead of focusing on the specification and verification of time constraints upon computations
structured as a set of tasks, we choose to consider data interactions between components. These interactions
are expressed in terms of an abstraction called observation, which aims at expressing the impossibility for a site
to maintain an instant knowledge of other sites. In this paper, we extend this observation with time constraints
limiting the time shift induced by distribution. Starting from this modeling framework, the specification and
verification of real time data behaviors can be carried out.

In a first step, we outline some related works which have adopted similar approaches but in different contexts
and/or different formal frameworks.

Then, we describe the underlying formal system used to develop our distributed real time computation
model, namely state transition systems. In this formal framework, we define a dedicated relation called obser-
vation to describe data interactions. An observation relation describes an invariant property between so-called
source and image variables. Informally, at any execution point, the history of the image variable is a sub-history
of the source variable. Actually, the source is an arbitrary state expression. An observation abstracts the rela-
tion between the inputs and the outputs of a communication protocol or between the arguments and the results
of a computation.

To express timed properties on the variables and their relation, we extend the framework so as to be able
to describe the timeline of state variables. Therefore, for each state variable z, its timeline, an abstraction of
its time behavior, is introduced in terms of an auxiliary variable & which records its update instants. Then,
real time constraints on data, for instance periodicity or steadiness, are expressed by relating these dedicated
variables and the current time. These auxiliary variables are also used to restrict the time shift between the
source and the image of an observation: the semantics of the observation relation is extended to allow to relate
the time behavior of a source and of an image by expressing different properties, such as the time lag between
the current value of the image and its corresponding source value.

The real time constraints about data behavior can be specified by means of these timed observations as
illustrated in an automotive speed control example.

Lastly, we discuss the possibility to check the consistency of a specification stated in terms of timed ob-
servations. A specification is consistent if and only if the verification process can construct correct executions.

* An earlier version of this paper was presented at the 3rd Real-Time Software Workshop, RT'S2008, in Wisla, Poland, October 20,
2008.

TUniversité de Toulouse—IRIT, 2, rue Charles Camichel, 31071 TouLouse, FRANCE {tleberre, mauran, padiou,
queinnec}@enseeiht.fr

229



230 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe Quéinnec

However, the target systems are potentially infinite and an equivalent finite state transition system must be
derived from the initial one before verification. The feasibility of this transformation is based upon assumptions
about finite bounds of the time constraints.

2. State of the Art. We are interested in systems such as sensors networks. Our goal is to guarantee that
the input data dispatched to processing units are timely sound despite the time shift introduced by the transit of
data. Most approaches taken to check timed properties of distributed systems are based on studying the timed
behavior of tasks. For example, works such as [10] propose to include the timed properties of communication
in classical scheduling analysis.

Our approach is state-based and not event-based. We express the timed requirements as safety properties
that must be satisfied in all states. The definition of these properties do not refer to the events of the system
and is only based on the values of the system variables. We depart from scheduling analysis by focusing on the
variables behavior and not considering the tasks and related system events. Our intent is to allow the developer
to give a more declarative statement of the system properties, easier to write and less error-prone. Indeed,
reasoning about state predicates is usually simpler than reasoning about a set of valid sequences of events.

Others approaches based on variables are mainly related to the field of databases. For example, the variables
semantics and their timed validity domain are used in [12] to optimize transaction scheduling in databases. Our
work stands at a higher level since we propose to give an abstract description of the system in terms of a
specification of relations between data. For instance, our framework can be used to check the correctness of an
algorithm with regards to the aging of the variables values. It can also be used to specify a system without
knowing its implementation.

Similar works use temporal logic to specify the system. For example, in [2], OCL constraints are used to
define the temporal validity domain of variables. A variation of TCTL is used to check the system synchroniza-
tion and prevent a value from being used out of its validity domain. This work also defines timed constraints on
the behavior and the relations between application variables, but these relations are defined using events such
as message sending whereas our definitions are based on the variable values.

In [9], constraints between intervals during which state variables remain stable are defined by means of
Allen’s linear temporal logic. In other words, this approach also uses an abstraction of the data timelines in
terms of stability intervals. However, the constraints remain logical and do not relate to real time. Nevertheless,
the authors expect to apply this approach in the context of autonomous embedded systems.

Using a semantics based on state transition system, we give a framework which aims at describing the
relations between the data in a system, and specifying the required timed properties of the system.

3. Theoretical settings.

3.1. State Transition System. Models used in this paper are based on state transition systems. Our
work uses the TLA+ formalism [7], but this paper does not require any prior knowledge of TLA+. A state is
an assignment of values to variables. A transition relation is a predicate on pairs of states. A transition system
is a couple (set of states, transition relation). A step is a pair of states which satisfies the transition relation.
An execution o is any infinite sequence of states ogoq ...0; ... such that two consecutive states form a step. We
note o; — 0,41 the step between the two consecutive states o; and ;1.

A temporal predicate is a predicate on executions; we note o = P when the execution o satisfies the predicate
P. Such a predicate is generally written in linear temporal logic. A state expression e (in short, an expression)
is a formula on variables; the value of e in a state o; is noted e.o;. The sequence of values taken by e during an
execution o is noted e.o. A state predicate is a boolean-valued expression on states.

3.2. Introducing Time. We consider real time properties of the system data. To distinguish them from
(logical) temporal properties, such properties are called timed properties. Time is integrated in our transition
system in a simple way, as described in [1]: time is represented by a variable T taking values in an infinite
totally ordered set, such as N or RT. T is an increasing and unbound variable. There is no condition on the
density of time, and moreover, it makes no difference whether time is continuous or discrete (see discussion
in [8]). However, as an execution is a sequence of states, the actual sequence of values taken by T during a
given execution is necessarily discrete. This is the digital clock view of the real world. Note that we refer to
the variable T' to study time and that we do not use the usual timed traces notation.
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An execution can be seen as a sequence of snapshots of the system, each taken at some instant of time. We
require that there are “enough” snapshots, that is that no variable can have different values at the same time
and so in the same snapshot. Any change in the system implies time passing.

Definition 3.1 (Separation) An ezecution o is separated if and only if for any variable x:
Vi,j:T.0; =T.0; = x.0y = 2.0

In the following, we consider only separated executions. This allows to timestamp changes of variables and
ensures a consistent computation model.

3.3. Clocks. Let us consider a totally ordered set of values D, such as N or R*. A clock is a (sub-)appro-
ximation of a sequence of D values. We note [X — Y] the set of all functions whose domain is X and whose
range is any subset of Y.

Definition 3.2 (Clock) A clock ¢ is a function in [D — D] such that:
e it never outgrows its argument value:
VieD:e(t) <t
e it is monotonously increasing:
Vi, t' e Dt <t = c(t) < c(t)
o [t is lively:
VteD: 3t €D:c(t') > c(t)
The predicate clock(c) is true if the function c is a clock.

In the following, clocks are used to characterize the timed behavior of variables. They are defined on the
values taken by the time variable T, to express a time delayed behavior, as well as on the indices of the sequence
of states, to express a logical precedence.

4. Specification of Data Timed Behavior. We introduce here the relation and properties used in our
framework to describe the properties that must be satisfied by a system. Our approach is state-based and gives
the relation that must be satisfied in all states. We define the observation relation to describe the relation
between variables. A way to describe the timed behavior of variables, that is properties of the history of data,
is introduced. We then extend the observation relation to enable the expression of timed constraints on the
behavior of system variables linked by observations. For that purpose we define predicates which bind and
constraint relevant instants of the timeline of the source and the image of an observation. These predicates are
expressed as bounds on the difference between two relevant instants.

4.1. The Observation Relation. We define an observation relation on state transition systems as in [5].
The observation relation is used to abstract a value correlation between variables. Namely, the observation
relation states that the values taken by one variable are values previously taken by another variable or state
expression.

In the basic case, the observation relation binds two variables, the source x and the image ‘x, and denotes
that the history of the variable ‘x is a sub-history of the variable z. The relation is defined by a couple
< source,image > and the existence of at least a clock that defines for each state which one of the previous
values of the source is taken by the image. This definition is actually given to allow any state expression (a
formula on variables) as the source!. The formal definition is:

Definition 4.1 (Observation) The variable ‘z is an observation of the state expression e in execution o:
ocE‘z= e iff:

Jce [N = NJ]:clock(c) A Vi: ‘w0 =e.o.n

LAs we could introduce a new variable aliased to this expression, we often talk, in the following, of the source variable. This is
to simplify the wording and the description.
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Fic. 4.1. The Observation Relation

5

This relation states that any value of ‘x is a previous value of e. Due to the properties of the observation
clock ¢, ‘x is assigned e values in accordance with the chronological order. Moreover, ¢ always eventually
increases, so ‘x is always eventually updated with a new value of e. Figure 4.1 shows an example of an
observation relation binding two variables x and ‘z.

The observation can be used to abstract communication in a distributed system, as well as to abstract
computations:

e Communication consists in transferring the value of a local variable to a remote one. Communication
time and lack of synchronization create a lag between the source and the image, which is modeled by
remote < local.

e In state transition systems, an expression f(X) models an instantaneous computation. By writing
y =< f(X), we model the fact that a computation takes time and that the value of y is based on the
value of X at the beginning of the computation. Here X can be a tuple of variables, according to
the arity of f: given X = (x1,...,x,), the observation o = ‘z < f(X) means that 3 c € [N — NJ] :
clock(c) A Vi : ‘w.o; = f(21.0c(3), -+ Tn.Oc(s))- As the same clock is used, all values of the inputs (X)
are read at the same time, implying a synchronous behavior.

Additional observation relations can be introduced to model an asynchronous reading of the inputs. For
instance, ‘a < a, ‘b= b,c< f(‘a,‘d) models a system where a and b are independently read (the first
two observations), and then ¢ is computed through a function f.

Note that the observation definition does not refer to real time and only models an arbitrary delay in terms

of state sequences. Real time properties will now be introduced.

4.2. The Timeline of Variables. In order to state properties about the timed behavior of a variable x,
we want to be able to refer to the last time z was updated. These are called the update instants and form its
timeline . The definition of % is based on the history of the values taken by x and captures the instants when
each value of x appeared, e.g. the beginning of each occurrence.

Definition 4.2 (timeline) For a separated execution o and a variable x, the variable & is the timeline of x
and is defined by:

Vi:Z.op= T-O-min{j\VkG[j.,i]: z.0;,=T.0%}

The timeline & is built from the history of x values and is a sequence of update instants. For a variable x
and a state o;, the update instant of x in o; is defined as the value taken by the time T at the earliest state
when the value x.0; appeared and continuously remained unchanged until state o;.

Note that the developer may provide an explicit definition of &, without having to describe the actual values
of z, e.g. by stating that z is periodically updated.
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Fic. 4.2. Graph of &

When z is updated and its value changes then the value of % is also updated. Conversely if & changes then
x is updated. This property allows us to rely exclusively on the values of Z to study the timed properties of x.

We also define the instant Next(Z) that returns, at each state, the next value of Z and thus the next instant
when the value of x is updated, i. e. the instant when the current value disappears. If x is stable at a state o;
(no new update), then Next(Z).0; = +o0.

As in the case of source variable versus source expression, the definition of a timeline &, which is given for a
variable z, is actually valid for a state expression. For the sake of clarity, we will once again talk of “variables”
where “state expressions” could equally be used in the remainder of this section.

4.3. Behavior of Variables. The timeline & is used to describe the timed behavior of a variable z. In
this paper, we focus on specific kinds of variables. We expect each value of each variable to remain unchanged
for a bounded number of time units. We want to be able to express the minimum and the maximum duration
between two consecutive updates. This allows to describe two basic behaviors: a sporadic variable keeps each
value for a minimum duration, and on the contrary, a lively variable has to be updated often, no value can be
kept longer than a given duration. These properties are formulated by bounds on the difference between & and
Next(), using a property called Steadiness applied to a variable. These bounds denote how long each value
of = can be kept.

Definition 4.3 (Steadiness) The steadiness of a variable x in the range [5, A] is defined by:

o F x {Steadiness(5,A)} £
Vi:d§ < Next().0; — .0y < A

A — 0 is the jitter on z updates. More elaborate properties can be derived from the steadiness property.
For example, we can introduce a stronger property, periodicity, where no time drift is allowed.
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Definition 4.4 (Periodicity) A wvariable x is periodic of period P with jitter J and phase ¢ iff:

o Ex {Periodic(P,J,®)} =
x {Steadiness(P — 2J, P+ 2J)}A
Vi:IneN:z.0; €[p+nP—J ¢+nP+J]

Such a variable is updated around all instants ¢ + nP. Note that J must verify J < P/4 to ensure that the
variable is updated once and only once per period.

4.4. Timed Observation. We use the concept of timeline to extend the observation relation with timed
characteristics. The timed constraints that extend the observation must capture the latency introduced by the
observation and the timeline of the source to produce the timeline of the image. We define a set of predicates
on the instants characterizing the source and the image timelines and the observation clock. Formally, a timed
observation is defined as follows:

Definition 4.5 (Timed Observation) A timed observation is defined as an observation satisfying a set of
predicates.

Predicate (61, A1),
oF‘w= el Predicates(d, Ay), » =

Jde € [N — NJ : clock(c) A
Vi:‘z.o; = e.oqq) A
Predicates (¢, 01, A1)A
Predicates(c, d2, As) . ..

The predicates that can be used to describe the timed properties of the relation between two variables are the
following ones:

Definition 4.6 Given a variable ‘x and a state expression e such that o E ‘x < e with a clock ¢ € [N — N, the
predicates are:

Lag(c, 8, A)
Stability(c, 6, A)
Latency(c, §, A)
Medium(c, §, A)
Freshness(c, 6, A)
Fitness(c, 8, A)

6 < ‘Zo; — é-”c(i) <A

3 < Next(€).0c(s) — €.0c31) < A
6 <T.o;— é.ac(i) <A
6<T.o;— T-Uc(i) <A

) S T-O'c(i) — é-ac(i) < A

0 < Newt(€).o.4) — T.oc) < A

(1> 11> 11> > > >

When no lower (resp. upper) bound is significant, 0 (resp. +00) should be used.

These predicates have to be true at every state and every instant. The definition of an observation is
done by stating which predicates must be satisfied. So far, this set has been sufficient to express the different
behaviors that we had to analyze, but it can be extended.

e Predicate Lag is used to bound the duration between an update of the source and an update of the
image. An upper bound states that, when the image is updated, it must be updated with an expression
of source that was updated in a recent time. A lower bound states that when there is an update of the
source, the new value cannot be used to update the image before the lower bound has elapsed.

e Predicate Latency bound in each state the time elapsed since the assignment of the image’s current
value on the source.

e Predicate Stability is used to filter sources values depending on their duration. For example we can
eliminate transient values and keep sporadic ones, or the contrary.

e The observation clock and the difference i — ¢(i) give the logical delay introduced by the observation.
Predicate Medium bounds the temporal delay related to this logical delay. So the bounds state that
there must exist a logical delay inducing a temporal delay satisfying the bounds, i. e. in each state,
there must be one previous state so that the time elapsed since that state is below this upper bound
and above the lower bound and so that the image’s current value was assigned on the source. A lower
bound can be used to state that a value of the source cannot appear on the source before this lower
bound has elapsed and so this bounds denotes a communication or computation time.
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Fia. 5.1. Cruise Control System

e Predicates Freshness and Fitness are used to define intervals of time, relative to the update instants, that
the observation clock is prevented to refer. So the logical delay that satisfies the predicate Medium must
refer to an instant that satisfies the Freshness and Fitness predicates. An upper bound on Freshness
prevents states where the value of the source is not fresh anymore to be referred. For example, a
conjunction of Medium and Freshness predicates states that the current value of the image must have
been available on the source recently and that it was still fresh at these instants. On the contrary, a
lower bound on Freshness denotes an impossibility to access a value just after its assignment. Fitness
allows or forbids the states depending on the time remaining until the source value is updated. A lower
bound prevents to refer to a state where the value is about to be updated.

Note that, at the beginning of an execution, some predicates such as Medium cannot be satisfied. In order
to address this problem, the timed predicates do not have to be satisfied in initial states. The image values are
replaced by a given default value. This extension is similar to the “followed by” operator — in Lustre [6].

5. Specifying a System in Terms of Timed Observations.

5.1. A Brief Description. As an example, we consider a simplified car cruise control system. The goal
of such a system is to control the throttle and the brakes in order to reach and keep a given target speed. The
system is composed of several interacting components (see Figure 5.1):

a speed monitor, which computes the current speed, based on a sensor counting wheel turns;
the throttle actuator, which controls the engine;
the brakes, which slow down the car;
the control system which handles the speed depending on the current and the chosen speed;

e a communication bus which links the devices and the control system.
The environment, the driver, and the engine influence the speed of the car. Once the cruise control is activated
and a target speed is chosen, the control system can choose either to accelerate by increasing the voltage of the
throttle actuator or to decelerate by decreasing this voltage and by using brakes. In order to ensure a reactive
behavior, each command issued by the cruise control system must be carried out within a given time limit.

Each component uses and/or produces data. We use observations to specify the system and characterize
correct executions.

5.2. Data and Observations. Firstly, we define the state variables of the cruise control system, and we
bind these variables using observation relations.

The speed monitor computes the values of a variable speed, and these values are sent to the control system
as a variable ‘speed. We express this as an observation ‘speed < speed.

The choices of the control system are based on the current speed and more precisely on the value of ‘speed.
Two functions are used to compute the values used as inputs by the brakes and by the throttle actuator. Using the
speed values, we compute the values of two variables: throttle < controll(‘speed) and brake < control2(‘speed).

Lastly, the values of throttle and brake are delivered to dedicated devices into variables ‘throttle and ‘brake,
such that ‘throttle < throttle and ‘brake < brake.
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- variables behaviors:
speed {Steadiness(d1,+00)}
throttle {Steadiness(d2, +00)}
brake {Steadiness(ds, +00)}

- communications:
‘speed < speed {Medium(dy, +00)}
‘throttle < throttle { Medium(d4, +00)}
‘brake < brake {Medium(d4, +00)}
- computations:

throttle < controll(‘speed) { Medium(d5,+00)}
brake < control2(‘speed) { Medium(ds, +00)}
- complete processing chains:
‘throttle < controll(speed) {Latency(0,A)}
‘brake < control2(speed) {Latency(0,A)}

Fia. 5.2. System Specification

5.3. Requirements and Properties. We express the requirements and known timed properties of the
system, and we state them as characteristics of the system variables and observations. These characteristics are
given in Figure 5.2.

The speed is computed using the ratio of the number of wheel turns to the elapsed time. A minimum time
is required to produce a significant result. Thus, there must be a minimum time §; between each update of
speed. Also, due to scheduling constraints, there must be a minimum time d (respectively d3) between each
computation and update, of throttle (respectively brake).

Each communication on the bus takes a minimum transit time, regardless of the communicating protocol
that is chosen. Predicate Medium (see Definition 4.6) is used to define a lower bound on the observations
expressing communication. Similarly, we represent the minimum computation time of functions controll and
control2, by means of predicate Medium.

We expect each data to be used soon enough after each update. More precisely, we want each command
issued to the brake or to the throttle to be based on fresh values of the speed. Thus, we require the complete
processing chain to be completed in a short enough time.

A composition of observations is an observation, for example if y < z and z < f(y) then z < f(x) [5]. We use
this property to define the processing chains relating ‘throttle and ‘brake to speed, via 'speed as observations,
which enables us to express the requirements on the duration of the processing chains as upper bounds of
Latency predicates (see Definition 4.6) on these observations. Note that, although the Latency upper bound
(A) is the only upper bound given in the system specification, it implicitly sets upper bounds on the Medium
and Steadiness characteristics of the other observations and variables of valid executions.

5.4. Case Study Analysis. The goal of the analysis is to prove that the specification is consistent and that
there is at least one execution satisfying the requirements. In our example, a nonempty set of valid executions
ensures the availability of timely sound values. From this set, we can deduce the required update frequency of
the speed variable. For example, we check the existence of a maximum time acceptable between each update.
We analyze the admissible values of the Medium to deduce the communication and computation times that
are permitted. Then, we determine the possible values of the observation clocks in the states corresponding to
the timeline of the image. These values give the instants at which the values of the source are caught and so,
for example the instants when a message must be sent or when a computation must start.

For all these properties, a choice must be done. For example, choosing a set of executions may alleviate the
bounds on communication time but then reduce the instants when the message must be sent.

6. System Analysis. We give here properties of our framework based on observations in order to carry
out an analysis. A system specified with observation relations must be analyzed to check the consistency of the
specification, i. e. if there exists an execution satisfying the specification.

We discuss the analysis method in a discrete context. The semantics of the specification is restricted by
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discretizing time: i. e. the values taken by time 7T are in N. For discussion about the loss of information using
discrete time instead of dense time and defending our choice, see [8] for example.

6.1. Feasibility of a Specification. Given a specification based on our framework, the value of T is
unbounded and we have no restriction on the values that can be taken by variables. Therefore the system
defined by the specification is infinite. Nevertheless, we can build a finite system equivalent to the specification
for the timed properties studied with this framework. This allows us to model-check the consistency of the
specification in a finite time. Here are the main principles of this proof. The definition of a finite system
bisimilar to the original one is based on two equivalence relations.

Since the scope of this framework is to check the satisfaction of timed requirements, we focus on the auxiliary
variables used to describe the timeline of each application variable. We define a system where only variables
denoting instants are kept, i. e. the variable describing the timelines and the observation clocks. The states
and transitions of the system are defined by the values of these variables and the satisfaction of observations
and variables properties. Allowed states and transitions do not depend on the values that can be taken by
each variable but on the instants describing their timeline and on the observation clocks. Thus, when we build
a system where only these instants are considered, we do not lose or add any characteristics about the timed
behavior of the system. We define an equivalence where two states are equivalent if and only if the observation
clocks and the timeline variables are equal. This equivalence is used to build a bisimilarity relation between the
specified system and the one built upon only the instants.

The second reason preventing to consider a bounded number of states is the lack of bound on time. The
values of the timelines and observation clocks are also unbounded. In order to reduce the possible values that
can be taken by the system variables denoting instants, we define a system where all values of the instants are
stored modulo the length of an analysis interval. We denote this number as L. L must be carefully chosen,
greater than the upper bounds on the variables Steadiness and the observations Latency characteristics and it
has to be a multiple of the variable periods.

Such a number L only exists if all variables and observations have upper bounded characteristics. When the
source of an observation is bounded and so is the observation, such a bound is deduced for the image. Restricting
the behavior by expecting variables to be frequently updated and the shift introduced by distribution to be
bounded seems consistent for such real time systems.

In the system defined by the specification, transitions are based on differences between the instants charac-
terizing the variable timelines. These differences cannot exceed the chosen length L. Thus, for each state, if the
value of the time 7" is known and if the values of the other variables are known modulo L, then for each variable
there is only one possible real value that can be computed using the value of T'. Consequently, considering
the clock values modulo this length does not add or remove any behavior of the original system. We define an
equivalence where two states are equivalent if the timelines and the observation clocks are equal modulo L. A
system built by considering all values modulo L is bisimilar with the original system using this equivalence.

Based on these two equivalences, we build a system by removing variables which do not denote timelines
or observation clocks and by considering the values modulo L. This system is bisimilar to the specification and
preserves the timed properties. Since all values are bounded by the length of the analysis interval and there
is a bounded number of values, it defines a system with a bounded number of states. This result proves the
decidability of the framework for the verification of safety properties that can be done using the finite system.

6.2. Complexity. We have proved the existence of a finite system equivalent to our system. We give here
the complexity of a process to effectively build this equivalent finite system. In order to build a transition from a
state to a new state, we build a set of inequalities deduced from the properties of the previous state and from the
observations and variables properties. To solve this set of inequalities and deduce the possible values of instant
variables in the new state, we use difference bound matrices [4]. Considering a system where n variables are
studied, the size of each matrix is O(n?), and the complexity for reducing it to its canonical form and building
the new state is O(n?®) [4]. The maximum number of states to build depends on all possible combinations of
values taken by variables. Each timed variable can take values between 0 and L and the number of instant
variables is a multiple of n, so we have O(L") states. Lastly, the complexity to build the system is O(n3 * L™).
Considering the memory, we have to store O(L") states and O(L?") transitions. Therefore this direct approach
is technically feasible only with small enough systems. The complexity is more heavily impacted by the number
of variables (n) than by the analysis interval (L).
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6.3. Verification of an Implementation. A second goal is to check that an implementation is correct
with regard to a specification based on observations. This approach is fully described in [13] and is only hinted
here.

As all timed properties are safety properties, an implementation is correct if no execution deadlocks (so as
to ensure liveness) and all its executions are included in the executions defined by the specification.

In order to check the satisfaction of the specification by an implementation, we give a model of the spec-
ification in the same semantics we use to model an implementation. Such a model is described by defining
elementary transitions. An elementary transition relation models the evolution of the values states of avail-
ability in the observation relations of the system. These elementary transition relations are used to build the
variable transition relation of the image of an observation. The variable transition relations are then used to
build the global transition relation.

Once both the specification and the implementations have been translated into such transition relations, we
must verify that the model of the specification simulates the implementation. In order to check this property, we
build a state transition system similar to the synchronized product of labelled transition systems. The actions
are used as labels on the transitions of the systems.

6.4. Other Approaches. Since our approach relies on the TLA+ formalism, we could have used the
dedicated tool TLC, the TLA+ model checker. A logical definition of the observation requires the temporal
existential quantifier 3, which is not implemented in TLC. Therefore a concrete definition of the observation
based on an explicit observation clock has been used. It is only after we have reduced the system to a finite one
that a model checker such as TLC could be used.

To be able to more precisely characterize executions satisfying the specification, we currently explore meth-
ods to build these executions more easily. A first proposal is to reduce the complexity of such a process by
relying on proofs on system properties. The proof approach can easily be used only under certain conditions
and in order to proceed to some system simplifications. For example, a periodic source induces properties for
its image through an observation. Using these properties reduces the number of states we have to build by
forecasting some impossible cases. Proving the full correctness of the system is possible but it is complex and
it has not been automatized yet.

Another way is to use controller synthesis methods [3]. Properties of the observation can be expressed as
safety properties using LTL and be derived as Biichi automata [11]. Two automata describe the behavior of
the source and the image of an observation, exchanging values through a queue. Restrictions can be added
to introduce the used implementation and its compatibility with executions defined by the specification. The
complexity of controller synthesis methods has still to be explored.

7. Conclusion. We propose an approach focused on variables instead of tasks and processes, to model
and analyze distributed real time systems. We specify an abstract model postponing task and communication
scheduling. Based on the state transition system semantics extended by a timed referential, we express relations
between variables and the timed properties of variables and communications. These properties are used to check
the freshness of values, their stability, and the consistency of requirements. A possible analysis is to build a
finite system bisimilar to the specified one. The results are used to help implementation choices.

Perspectives are to search other methods that decrease the complexity of the analysis of a specification
and to use this approach with different examples to expand the number of available properties and increase
expressiveness. We also work on using analysis results to help generating an implementation satisfying the
specification.
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