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t. Nowadays, embedded systems appear more and more as distributed systems stru
tured as a set of 
ommuni
ating
omponents. Therefore, they show a less deterministi
 global behavior than 
entralized systems and their design and analysismust address both 
omputation and 
ommuni
ation s
heduling in more 
omplex 
on�gurations. We propose a modeling framework
entered on data. More pre
isely, the intera
tions between the data lo
ated in 
omponents are expressed in terms of a so-
alledobservation relation. This abstra
tion is a relation between the values taken by two variables, a sour
e and an image, where theimage gets past values of the sour
e. We extend this abstra
tion with time 
onstraints in order to spe
ify and analyze the availabilityof timely sound values.The formal des
ription of the observation-based 
omputation model is stated using the formalism of transition systems, wherereal time is handled as a dedi
ated variable. As a �rst result, this approa
h allows to fo
us on spe
ifying time 
onstraints atta
hedto data and to postpone task and 
ommuni
ation s
heduling matters. At this level of abstra
tion, the designer has to spe
ifytime properties about the timeline of data su
h as their freshness, stability, laten
y. . .As a se
ond result, a veri�
ation of theglobal 
onsisten
y of the spe
i�ed system 
an be automati
ally performed. The veri�
ation pro
ess 
an start either from the timedproperties (e.g. the period) of data inputs or from the timed requirements of data outputs (e.g. the laten
y). Lastly, 
ommuni
ationproto
ols and task s
heduling strategies 
an be derived as a re�nement towards an a
tual implementation.Key words: real time data, distributed systems, veri�
ation1. Introdu
tion. Distributed Real Time Embedded (DRE) systems are in
reasingly widespread and 
om-plex. In this 
ontext, we propose a modeling framework 
entered on data to spe
ify and analyze the real timebehavior of these DRE systems. More pre
isely, su
h systems are stru
tured as time-triggered 
ommuni
ating
omponents. Instead of fo
using on the spe
i�
ation and veri�
ation of time 
onstraints upon 
omputationsstru
tured as a set of tasks, we 
hoose to 
onsider data intera
tions between 
omponents. These intera
tionsare expressed in terms of an abstra
tion 
alled observation, whi
h aims at expressing the impossibility for a siteto maintain an instant knowledge of other sites. In this paper, we extend this observation with time 
onstraintslimiting the time shift indu
ed by distribution. Starting from this modeling framework, the spe
i�
ation andveri�
ation of real time data behaviors 
an be 
arried out.In a �rst step, we outline some related works whi
h have adopted similar approa
hes but in di�erent 
ontextsand/or di�erent formal frameworks.Then, we des
ribe the underlying formal system used to develop our distributed real time 
omputationmodel, namely state transition systems. In this formal framework, we de�ne a dedi
ated relation 
alled obser-vation to des
ribe data intera
tions. An observation relation des
ribes an invariant property between so-
alledsour
e and image variables. Informally, at any exe
ution point, the history of the image variable is a sub-historyof the sour
e variable. A
tually, the sour
e is an arbitrary state expression. An observation abstra
ts the rela-tion between the inputs and the outputs of a 
ommuni
ation proto
ol or between the arguments and the resultsof a 
omputation.To express timed properties on the variables and their relation, we extend the framework so as to be ableto des
ribe the timeline of state variables. Therefore, for ea
h state variable x, its timeline, an abstra
tion ofits time behavior, is introdu
ed in terms of an auxiliary variable x̂ whi
h re
ords its update instants. Then,real time 
onstraints on data, for instan
e periodi
ity or steadiness, are expressed by relating these dedi
atedvariables and the 
urrent time. These auxiliary variables are also used to restri
t the time shift between thesour
e and the image of an observation: the semanti
s of the observation relation is extended to allow to relatethe time behavior of a sour
e and of an image by expressing di�erent properties, su
h as the time lag betweenthe 
urrent value of the image and its 
orresponding sour
e value.The real time 
onstraints about data behavior 
an be spe
i�ed by means of these timed observations asillustrated in an automotive speed 
ontrol example.Lastly, we dis
uss the possibility to 
he
k the 
onsisten
y of a spe
i�
ation stated in terms of timed ob-servations. A spe
i�
ation is 
onsistent if and only if the veri�
ation pro
ess 
an 
onstru
t 
orre
t exe
utions.
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However, the target systems are potentially in�nite and an equivalent �nite state transition system must bederived from the initial one before veri�
ation. The feasibility of this transformation is based upon assumptionsabout �nite bounds of the time 
onstraints.2. State of the Art. We are interested in systems su
h as sensors networks. Our goal is to guarantee thatthe input data dispat
hed to pro
essing units are timely sound despite the time shift introdu
ed by the transit ofdata. Most approa
hes taken to 
he
k timed properties of distributed systems are based on studying the timedbehavior of tasks. For example, works su
h as [10℄ propose to in
lude the timed properties of 
ommuni
ationin 
lassi
al s
heduling analysis.Our approa
h is state-based and not event-based. We express the timed requirements as safety propertiesthat must be satis�ed in all states. The de�nition of these properties do not refer to the events of the systemand is only based on the values of the system variables. We depart from s
heduling analysis by fo
using on thevariables behavior and not 
onsidering the tasks and related system events. Our intent is to allow the developerto give a more de
larative statement of the system properties, easier to write and less error-prone. Indeed,reasoning about state predi
ates is usually simpler than reasoning about a set of valid sequen
es of events.Others approa
hes based on variables are mainly related to the �eld of databases. For example, the variablessemanti
s and their timed validity domain are used in [12℄ to optimize transa
tion s
heduling in databases. Ourwork stands at a higher level sin
e we propose to give an abstra
t des
ription of the system in terms of aspe
i�
ation of relations between data. For instan
e, our framework 
an be used to 
he
k the 
orre
tness of analgorithm with regards to the aging of the variables values. It 
an also be used to spe
ify a system withoutknowing its implementation.Similar works use temporal logi
 to spe
ify the system. For example, in [2℄, OCL 
onstraints are used tode�ne the temporal validity domain of variables. A variation of TCTL is used to 
he
k the system syn
hroniza-tion and prevent a value from being used out of its validity domain. This work also de�nes timed 
onstraints onthe behavior and the relations between appli
ation variables, but these relations are de�ned using events su
has message sending whereas our de�nitions are based on the variable values.In [9℄, 
onstraints between intervals during whi
h state variables remain stable are de�ned by means ofAllen's linear temporal logi
. In other words, this approa
h also uses an abstra
tion of the data timelines interms of stability intervals. However, the 
onstraints remain logi
al and do not relate to real time. Nevertheless,the authors expe
t to apply this approa
h in the 
ontext of autonomous embedded systems.Using a semanti
s based on state transition system, we give a framework whi
h aims at des
ribing therelations between the data in a system, and spe
ifying the required timed properties of the system.3. Theoreti
al settings.3.1. State Transition System. Models used in this paper are based on state transition systems. Ourwork uses the TLA+ formalism [7℄, but this paper does not require any prior knowledge of TLA+. A state isan assignment of values to variables. A transition relation is a predi
ate on pairs of states. A transition systemis a 
ouple (set of states, transition relation). A step is a pair of states whi
h satis�es the transition relation.An exe
ution σ is any in�nite sequen
e of states σ0σ1 . . . σi . . . su
h that two 
onse
utive states form a step. Wenote σi → σi+1 the step between the two 
onse
utive states σi and σi+1.A temporal predi
ate is a predi
ate on exe
utions; we note σ |= P when the exe
ution σ satis�es the predi
ate
P . Su
h a predi
ate is generally written in linear temporal logi
. A state expression e (in short, an expression)is a formula on variables; the value of e in a state σi is noted e.σi. The sequen
e of values taken by e during anexe
ution σ is noted e.σ. A state predi
ate is a boolean-valued expression on states.3.2. Introdu
ing Time. We 
onsider real time properties of the system data. To distinguish them from(logi
al) temporal properties, su
h properties are 
alled timed properties. Time is integrated in our transitionsystem in a simple way, as des
ribed in [1℄: time is represented by a variable T taking values in an in�nitetotally ordered set, su
h as N or R

+. T is an in
reasing and unbound variable. There is no 
ondition on thedensity of time, and moreover, it makes no di�eren
e whether time is 
ontinuous or dis
rete (see dis
ussionin [8℄). However, as an exe
ution is a sequen
e of states, the a
tual sequen
e of values taken by T during agiven exe
ution is ne
essarily dis
rete. This is the digital 
lo
k view of the real world. Note that we refer tothe variable T to study time and that we do not use the usual timed tra
es notation.
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ution 
an be seen as a sequen
e of snapshots of the system, ea
h taken at some instant of time. Werequire that there are �enough� snapshots, that is that no variable 
an have di�erent values at the same timeand so in the same snapshot. Any 
hange in the system implies time passing.De�nition 3.1 (Separation) An exe
ution σ is separated if and only if for any variable x:
∀i, j : T.σi = T.σj ⇒ x.σi = x.σjIn the following, we 
onsider only separated exe
utions. This allows to timestamp 
hanges of variables andensures a 
onsistent 
omputation model.3.3. Clo
ks. Let us 
onsider a totally ordered set of values D, su
h as N or R

+. A 
lo
k is a (sub-)appro-ximation of a sequen
e of D values. We note [X → Y ] the set of all fun
tions whose domain is X and whoserange is any subset of Y .De�nition 3.2 (Clo
k) A 
lo
k c is a fun
tion in [D → D] su
h that:
• it never outgrows its argument value:
∀t ∈ D : c(t) ≤ t

• it is monotonously in
reasing:
∀t, t′ ∈ D : t < t′ ⇒ c(t) ≤ c(t′)

• It is lively:
∀t ∈ D : ∃t′ ∈ D : c(t′) > c(t)The predi
ate clock(c) is true if the fun
tion c is a 
lo
k.In the following, 
lo
ks are used to 
hara
terize the timed behavior of variables. They are de�ned on thevalues taken by the time variable T , to express a time delayed behavior, as well as on the indi
es of the sequen
eof states, to express a logi
al pre
eden
e.4. Spe
i�
ation of Data Timed Behavior. We introdu
e here the relation and properties used in ourframework to des
ribe the properties that must be satis�ed by a system. Our approa
h is state-based and givesthe relation that must be satis�ed in all states. We de�ne the observation relation to des
ribe the relationbetween variables. A way to des
ribe the timed behavior of variables, that is properties of the history of data,is introdu
ed. We then extend the observation relation to enable the expression of timed 
onstraints on thebehavior of system variables linked by observations. For that purpose we de�ne predi
ates whi
h bind and
onstraint relevant instants of the timeline of the sour
e and the image of an observation. These predi
ates areexpressed as bounds on the di�eren
e between two relevant instants.4.1. The Observation Relation. We de�ne an observation relation on state transition systems as in [5℄.The observation relation is used to abstra
t a value 
orrelation between variables. Namely, the observationrelation states that the values taken by one variable are values previously taken by another variable or stateexpression.In the basi
 
ase, the observation relation binds two variables, the sour
e x and the image ‘x, and denotesthat the history of the variable ‘x is a sub-history of the variable x. The relation is de�ned by a 
ouple

< source, image > and the existen
e of at least a 
lo
k that de�nes for ea
h state whi
h one of the previousvalues of the sour
e is taken by the image. This de�nition is a
tually given to allow any state expression (aformula on variables) as the sour
e1. The formal de�nition is:De�nition 4.1 (Observation) The variable ‘x is an observation of the state expression e in exe
ution σ:
σ � ‘x≺· e i�:

∃ c ∈ [N → N] : clock(c) ∧ ∀i : ‘x.σi = e.σc(i)

1As we 
ould introdu
e a new variable aliased to this expression, we often talk, in the following, of the sour
e variable. This isto simplify the wording and the des
ription.
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c(i) 0 0 0 0 3 4 4 5 6 8Fig. 4.1. The Observation RelationThis relation states that any value of ‘x is a previous value of e. Due to the properties of the observation
lo
k c, ‘x is assigned e values in a

ordan
e with the 
hronologi
al order. Moreover, c always eventuallyin
reases, so ‘x is always eventually updated with a new value of e. Figure 4.1 shows an example of anobservation relation binding two variables x and ‘x.The observation 
an be used to abstra
t 
ommuni
ation in a distributed system, as well as to abstra
t
omputations:
• Communi
ation 
onsists in transferring the value of a lo
al variable to a remote one. Communi
ationtime and la
k of syn
hronization 
reate a lag between the sour
e and the image, whi
h is modeled by

remote≺· local.
• In state transition systems, an expression f(X) models an instantaneous 
omputation. By writing

y ≺· f(X), we model the fa
t that a 
omputation takes time and that the value of y is based on thevalue of X at the beginning of the 
omputation. Here X 
an be a tuple of variables, a

ording tothe arity of f : given X = 〈x1, . . . , xn〉, the observation σ |= ‘x≺· f(X) means that ∃ c ∈ [N → N] :
clock(c) ∧ ∀i : ‘x.σi = f(x1.σc(i), . . . , xn.σc(i)). As the same 
lo
k is used, all values of the inputs (X)are read at the same time, implying a syn
hronous behavior.Additional observation relations 
an be introdu
ed to model an asyn
hronous reading of the inputs. Forinstan
e, ‘a≺· a, ‘b≺· b, c≺· f(‘a, ‘b) models a system where a and b are independently read (the �rsttwo observations), and then c is 
omputed through a fun
tion f .Note that the observation de�nition does not refer to real time and only models an arbitrary delay in termsof state sequen
es. Real time properties will now be introdu
ed.4.2. The Timeline of Variables. In order to state properties about the timed behavior of a variable x,we want to be able to refer to the last time x was updated. These are 
alled the update instants and form itstimeline x̂. The de�nition of x̂ is based on the history of the values taken by x and 
aptures the instants whenea
h value of x appeared, e.g. the beginning of ea
h o

urren
e.De�nition 4.2 (timeline) For a separated exe
ution σ and a variable x, the variable x̂ is the timeline of xand is de�ned by:

∀i : x̂.σi = T.σmin{j|∀k∈[j..i]: x.σi=x.σk}The timeline x̂ is built from the history of x values and is a sequen
e of update instants. For a variable xand a state σi, the update instant of x in σi is de�ned as the value taken by the time T at the earliest statewhen the value x.σi appeared and 
ontinuously remained un
hanged until state σi.Note that the developer may provide an expli
it de�nition of x̂, without having to des
ribe the a
tual valuesof x, e.g. by stating that x is periodi
ally updated.
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i-1Fig. 4.2. Graph of x̂When x is updated and its value 
hanges then the value of x̂ is also updated. Conversely if x̂ 
hanges then
x is updated. This property allows us to rely ex
lusively on the values of x̂ to study the timed properties of x.We also de�ne the instant Next(x̂) that returns, at ea
h state, the next value of x̂ and thus the next instantwhen the value of x is updated, i. e. the instant when the 
urrent value disappears. If x is stable at a state σi(no new update), then Next(x̂).σi = +∞.As in the 
ase of sour
e variable versus sour
e expression, the de�nition of a timeline x̂, whi
h is given for avariable x, is a
tually valid for a state expression. For the sake of 
larity, we will on
e again talk of �variables�where �state expressions� 
ould equally be used in the remainder of this se
tion.4.3. Behavior of Variables. The timeline x̂ is used to des
ribe the timed behavior of a variable x. Inthis paper, we fo
us on spe
i�
 kinds of variables. We expe
t ea
h value of ea
h variable to remain un
hangedfor a bounded number of time units. We want to be able to express the minimum and the maximum durationbetween two 
onse
utive updates. This allows to des
ribe two basi
 behaviors: a sporadi
 variable keeps ea
hvalue for a minimum duration, and on the 
ontrary, a lively variable has to be updated often, no value 
an bekept longer than a given duration. These properties are formulated by bounds on the di�eren
e between x̂ and
Next(x̂), using a property 
alled Steadiness applied to a variable. These bounds denote how long ea
h valueof x 
an be kept.De�nition 4.3 (Steadiness) The steadiness of a variable x in the range [δ, ∆] is de�ned by:

σ � x {Steadiness(δ, ∆)} ,

∀i : δ ≤ Next(x̂).σi − x̂.σi < ∆

∆ − δ is the jitter on x updates. More elaborate properties 
an be derived from the steadiness property.For example, we 
an introdu
e a stronger property, periodi
ity, where no time drift is allowed.
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De�nition 4.4 (Periodi
ity) A variable x is periodi
 of period P with jitter J and phase φ i�:
σ � x {Periodic(P, J, Φ)} ,

x {Steadiness(P − 2J, P + 2J)}∧
∀i : ∃n ∈ N : x̂.σi ∈ [φ + nP − J, φ + nP + J ]Su
h a variable is updated around all instants φ+ nP . Note that J must verify J < P/4 to ensure that thevariable is updated on
e and only on
e per period.4.4. Timed Observation. We use the 
on
ept of timeline to extend the observation relation with timed
hara
teristi
s. The timed 
onstraints that extend the observation must 
apture the laten
y introdu
ed by theobservation and the timeline of the sour
e to produ
e the timeline of the image. We de�ne a set of predi
ateson the instants 
hara
terizing the sour
e and the image timelines and the observation 
lo
k. Formally, a timedobservation is de�ned as follows:De�nition 4.5 (Timed Observation) A timed observation is de�ned as an observation satisfying a set ofpredi
ates.

σ � ‘x≺· e







Predicate1(δ1, ∆1),
P redicate2(δ2, ∆2),

. . .







,

∃c ∈ [N → N] : clock(c) ∧
∀i : ‘x.σi = e.σc(i) ∧
Predicate1(c, δ1, ∆1)∧
Predicate2(c, δ2, ∆2) . . .The predi
ates that 
an be used to des
ribe the timed properties of the relation between two variables are thefollowing ones:De�nition 4.6 Given a variable ‘x and a state expression e su
h that σ � ‘x≺· e with a clock c ∈ [N → N], thepredi
ates are:

Lag(c, δ, ∆) , δ ≤ ‘x̂.σi − ê.σc(i) < ∆

Stability(c, δ, ∆) , δ ≤ Next(ê).σc(i) − ê.σc(i) < ∆

Latency(c, δ, ∆) , δ ≤ T.σi − ê.σc(i) < ∆

Medium(c, δ, ∆) , δ ≤ T.σi − T.σc(i) < ∆

Freshness(c, δ, ∆) , δ ≤ T.σc(i) − ê.σc(i) < ∆

F itness(c, δ, ∆) , δ ≤ Next(ê).σc(i) − T.σc(i) < ∆When no lower (resp. upper) bound is signi�
ant, 0 (resp. +∞) should be used.These predi
ates have to be true at every state and every instant. The de�nition of an observation isdone by stating whi
h predi
ates must be satis�ed. So far, this set has been su�
ient to express the di�erentbehaviors that we had to analyze, but it 
an be extended.
• Predi
ate Lag is used to bound the duration between an update of the sour
e and an update of theimage. An upper bound states that, when the image is updated, it must be updated with an expressionof sour
e that was updated in a re
ent time. A lower bound states that when there is an update of thesour
e, the new value 
annot be used to update the image before the lower bound has elapsed.
• Predi
ate Laten
y bound in ea
h state the time elapsed sin
e the assignment of the image's 
urrentvalue on the sour
e.
• Predi
ate Stability is used to �lter sour
es values depending on their duration. For example we 
aneliminate transient values and keep sporadi
 ones, or the 
ontrary.
• The observation 
lo
k and the di�eren
e i − c(i) give the logi
al delay introdu
ed by the observation.Predi
ate Medium bounds the temporal delay related to this logi
al delay. So the bounds state thatthere must exist a logi
al delay indu
ing a temporal delay satisfying the bounds, i. e. in ea
h state,there must be one previous state so that the time elapsed sin
e that state is below this upper boundand above the lower bound and so that the image's 
urrent value was assigned on the sour
e. A lowerbound 
an be used to state that a value of the sour
e 
annot appear on the sour
e before this lowerbound has elapsed and so this bounds denotes a 
ommuni
ation or 
omputation time.
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• Predi
ates Freshness and Fitness are used to de�ne intervals of time, relative to the update instants, thatthe observation 
lo
k is prevented to refer. So the logi
al delay that satis�es the predi
ate Medium mustrefer to an instant that satis�es the Freshness and Fitness predi
ates. An upper bound on Freshnessprevents states where the value of the sour
e is not fresh anymore to be referred. For example, a
onjun
tion of Medium and Freshness predi
ates states that the 
urrent value of the image must havebeen available on the sour
e re
ently and that it was still fresh at these instants. On the 
ontrary, alower bound on Freshness denotes an impossibility to a

ess a value just after its assignment. Fitnessallows or forbids the states depending on the time remaining until the sour
e value is updated. A lowerbound prevents to refer to a state where the value is about to be updated.Note that, at the beginning of an exe
ution, some predi
ates su
h as Medium 
annot be satis�ed. In orderto address this problem, the timed predi
ates do not have to be satis�ed in initial states. The image values arerepla
ed by a given default value. This extension is similar to the �followed by� operator → in Lustre [6℄.5. Spe
ifying a System in Terms of Timed Observations.5.1. A Brief Des
ription. As an example, we 
onsider a simpli�ed 
ar 
ruise 
ontrol system. The goalof su
h a system is to 
ontrol the throttle and the brakes in order to rea
h and keep a given target speed. Thesystem is 
omposed of several intera
ting 
omponents (see Figure 5.1):
• a speed monitor, whi
h 
omputes the 
urrent speed, based on a sensor 
ounting wheel turns;
• the throttle a
tuator, whi
h 
ontrols the engine;
• the brakes, whi
h slow down the 
ar;
• the 
ontrol system whi
h handles the speed depending on the 
urrent and the 
hosen speed;
• a 
ommuni
ation bus whi
h links the devi
es and the 
ontrol system.The environment, the driver, and the engine in�uen
e the speed of the 
ar. On
e the 
ruise 
ontrol is a
tivatedand a target speed is 
hosen, the 
ontrol system 
an 
hoose either to a

elerate by in
reasing the voltage of thethrottle a
tuator or to de
elerate by de
reasing this voltage and by using brakes. In order to ensure a rea
tivebehavior, ea
h 
ommand issued by the 
ruise 
ontrol system must be 
arried out within a given time limit.Ea
h 
omponent uses and/or produ
es data. We use observations to spe
ify the system and 
hara
terize
orre
t exe
utions.5.2. Data and Observations. Firstly, we de�ne the state variables of the 
ruise 
ontrol system, and webind these variables using observation relations.The speed monitor 
omputes the values of a variable speed, and these values are sent to the 
ontrol systemas a variable ‘speed. We express this as an observation ‘speed≺· speed.The 
hoi
es of the 
ontrol system are based on the 
urrent speed and more pre
isely on the value of ‘speed.Two fun
tions are used to 
ompute the values used as inputs by the brakes and by the throttle a
tuator. Using thespeed values, we 
ompute the values of two variables: throttle≺· control1(‘speed) and brake≺· control2(‘speed).Lastly, the values of throttle and brake are delivered to dedi
ated devi
es into variables ‘throttle and ‘brake,su
h that ‘throttle≺· throttle and ‘brake≺· brake.
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- variables behaviors:
speed {Steadiness(δ1, +∞)}

throttle {Steadiness(δ2, +∞)}
brake {Steadiness(δ3, +∞)}- 
ommuni
ations:

‘speed≺· speed {Medium(δ4, +∞)}
‘throttle≺· throttle {Medium(δ4, +∞)}

‘brake≺· brake {Medium(δ4, +∞)}- 
omputations:
throttle≺· control1(‘speed) {Medium(δ5, +∞)}
brake≺· control2(‘speed) {Medium(δ6, +∞)}- 
omplete pro
essing 
hains:
‘throttle≺· control1(speed) {Latency(0, ∆)}
‘brake≺· control2(speed) {Latency(0, ∆)}Fig. 5.2. System Spe
i�
ation5.3. Requirements and Properties. We express the requirements and known timed properties of thesystem, and we state them as 
hara
teristi
s of the system variables and observations. These 
hara
teristi
s aregiven in Figure 5.2.The speed is 
omputed using the ratio of the number of wheel turns to the elapsed time. A minimum timeis required to produ
e a signi�
ant result. Thus, there must be a minimum time δ1 between ea
h update of

speed. Also, due to s
heduling 
onstraints, there must be a minimum time δ2 (respe
tively δ3) between ea
h
omputation and update, of throttle (respe
tively brake).Ea
h 
ommuni
ation on the bus takes a minimum transit time, regardless of the 
ommuni
ating proto
olthat is 
hosen. Predi
ate Medium (see De�nition 4.6) is used to de�ne a lower bound on the observationsexpressing 
ommuni
ation. Similarly, we represent the minimum 
omputation time of fun
tions control1 and
control2, by means of predi
ate Medium.We expe
t ea
h data to be used soon enough after ea
h update. More pre
isely, we want ea
h 
ommandissued to the brake or to the throttle to be based on fresh values of the speed. Thus, we require the 
ompletepro
essing 
hain to be 
ompleted in a short enough time.A 
omposition of observations is an observation, for example if y≺· x and z ≺· f(y) then z ≺· f(x) [5℄. We usethis property to de�ne the pro
essing 
hains relating ‘throttle and ‘brake to speed, via ′speed as observations,whi
h enables us to express the requirements on the duration of the pro
essing 
hains as upper bounds of
Latency predi
ates (see De�nition 4.6) on these observations. Note that, although the Latency upper bound(∆) is the only upper bound given in the system spe
i�
ation, it impli
itly sets upper bounds on the Mediumand Steadiness 
hara
teristi
s of the other observations and variables of valid exe
utions.5.4. Case Study Analysis. The goal of the analysis is to prove that the spe
i�
ation is 
onsistent and thatthere is at least one exe
ution satisfying the requirements. In our example, a nonempty set of valid exe
utionsensures the availability of timely sound values. From this set, we 
an dedu
e the required update frequen
y ofthe speed variable. For example, we 
he
k the existen
e of a maximum time a

eptable between ea
h update.We analyze the admissible values of the Medium to dedu
e the 
ommuni
ation and 
omputation times thatare permitted. Then, we determine the possible values of the observation 
lo
ks in the states 
orresponding tothe timeline of the image. These values give the instants at whi
h the values of the sour
e are 
aught and so,for example the instants when a message must be sent or when a 
omputation must start.For all these properties, a 
hoi
e must be done. For example, 
hoosing a set of exe
utions may alleviate thebounds on 
ommuni
ation time but then redu
e the instants when the message must be sent.6. System Analysis. We give here properties of our framework based on observations in order to 
arryout an analysis. A system spe
i�ed with observation relations must be analyzed to 
he
k the 
onsisten
y of thespe
i�
ation, i. e. if there exists an exe
ution satisfying the spe
i�
ation.We dis
uss the analysis method in a dis
rete 
ontext. The semanti
s of the spe
i�
ation is restri
ted by
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retizing time: i. e. the values taken by time T are in N. For dis
ussion about the loss of information usingdis
rete time instead of dense time and defending our 
hoi
e, see [8℄ for example.6.1. Feasibility of a Spe
i�
ation. Given a spe
i�
ation based on our framework, the value of T isunbounded and we have no restri
tion on the values that 
an be taken by variables. Therefore the systemde�ned by the spe
i�
ation is in�nite. Nevertheless, we 
an build a �nite system equivalent to the spe
i�
ationfor the timed properties studied with this framework. This allows us to model-
he
k the 
onsisten
y of thespe
i�
ation in a �nite time. Here are the main prin
iples of this proof. The de�nition of a �nite systembisimilar to the original one is based on two equivalen
e relations.Sin
e the s
ope of this framework is to 
he
k the satisfa
tion of timed requirements, we fo
us on the auxiliaryvariables used to des
ribe the timeline of ea
h appli
ation variable. We de�ne a system where only variablesdenoting instants are kept, i. e. the variable des
ribing the timelines and the observation 
lo
ks. The statesand transitions of the system are de�ned by the values of these variables and the satisfa
tion of observationsand variables properties. Allowed states and transitions do not depend on the values that 
an be taken byea
h variable but on the instants des
ribing their timeline and on the observation 
lo
ks. Thus, when we builda system where only these instants are 
onsidered, we do not lose or add any 
hara
teristi
s about the timedbehavior of the system. We de�ne an equivalen
e where two states are equivalent if and only if the observation
lo
ks and the timeline variables are equal. This equivalen
e is used to build a bisimilarity relation between thespe
i�ed system and the one built upon only the instants.The se
ond reason preventing to 
onsider a bounded number of states is the la
k of bound on time. Thevalues of the timelines and observation 
lo
ks are also unbounded. In order to redu
e the possible values that
an be taken by the system variables denoting instants, we de�ne a system where all values of the instants arestored modulo the length of an analysis interval. We denote this number as L. L must be 
arefully 
hosen,greater than the upper bounds on the variables Steadiness and the observations Latency 
hara
teristi
s and ithas to be a multiple of the variable periods.Su
h a number L only exists if all variables and observations have upper bounded 
hara
teristi
s. When thesour
e of an observation is bounded and so is the observation, su
h a bound is dedu
ed for the image. Restri
tingthe behavior by expe
ting variables to be frequently updated and the shift introdu
ed by distribution to bebounded seems 
onsistent for su
h real time systems.In the system de�ned by the spe
i�
ation, transitions are based on di�eren
es between the instants 
hara
-terizing the variable timelines. These di�eren
es 
annot ex
eed the 
hosen length L. Thus, for ea
h state, if thevalue of the time T is known and if the values of the other variables are known modulo L, then for ea
h variablethere is only one possible real value that 
an be 
omputed using the value of T . Consequently, 
onsideringthe 
lo
k values modulo this length does not add or remove any behavior of the original system. We de�ne anequivalen
e where two states are equivalent if the timelines and the observation 
lo
ks are equal modulo L. Asystem built by 
onsidering all values modulo L is bisimilar with the original system using this equivalen
e.Based on these two equivalen
es, we build a system by removing variables whi
h do not denote timelinesor observation 
lo
ks and by 
onsidering the values modulo L. This system is bisimilar to the spe
i�
ation andpreserves the timed properties. Sin
e all values are bounded by the length of the analysis interval and thereis a bounded number of values, it de�nes a system with a bounded number of states. This result proves thede
idability of the framework for the veri�
ation of safety properties that 
an be done using the �nite system.6.2. Complexity. We have proved the existen
e of a �nite system equivalent to our system. We give herethe 
omplexity of a pro
ess to e�e
tively build this equivalent �nite system. In order to build a transition from astate to a new state, we build a set of inequalities dedu
ed from the properties of the previous state and from theobservations and variables properties. To solve this set of inequalities and dedu
e the possible values of instantvariables in the new state, we use di�eren
e bound matri
es [4℄. Considering a system where n variables arestudied, the size of ea
h matrix is O(n2), and the 
omplexity for redu
ing it to its 
anoni
al form and buildingthe new state is O(n3) [4℄. The maximum number of states to build depends on all possible 
ombinations ofvalues taken by variables. Ea
h timed variable 
an take values between 0 and L and the number of instantvariables is a multiple of n, so we have O(Ln) states. Lastly, the 
omplexity to build the system is O(n3 ∗ Ln).Considering the memory, we have to store O(Ln) states and O(L2n) transitions. Therefore this dire
t approa
his te
hni
ally feasible only with small enough systems. The 
omplexity is more heavily impa
ted by the numberof variables (n) than by the analysis interval (L).



238 Tanguy Le Berre, Philippe Mauran, Gérard Padiou, and Philippe Quéinne
6.3. Veri�
ation of an Implementation. A se
ond goal is to 
he
k that an implementation is 
orre
twith regard to a spe
i�
ation based on observations. This approa
h is fully des
ribed in [13℄ and is only hintedhere.As all timed properties are safety properties, an implementation is 
orre
t if no exe
ution deadlo
ks (so asto ensure liveness) and all its exe
utions are in
luded in the exe
utions de�ned by the spe
i�
ation.In order to 
he
k the satisfa
tion of the spe
i�
ation by an implementation, we give a model of the spe
-i�
ation in the same semanti
s we use to model an implementation. Su
h a model is des
ribed by de�ningelementary transitions. An elementary transition relation models the evolution of the values states of avail-ability in the observation relations of the system. These elementary transition relations are used to build thevariable transition relation of the image of an observation. The variable transition relations are then used tobuild the global transition relation.On
e both the spe
i�
ation and the implementations have been translated into su
h transition relations, wemust verify that the model of the spe
i�
ation simulates the implementation. In order to 
he
k this property, webuild a state transition system similar to the syn
hronized produ
t of labelled transition systems. The a
tionsare used as labels on the transitions of the systems.6.4. Other Approa
hes. Sin
e our approa
h relies on the TLA+ formalism, we 
ould have used thededi
ated tool TLC, the TLA+ model 
he
ker. A logi
al de�nition of the observation requires the temporalexistential quanti�er ∃∃∃∃∃∃ , whi
h is not implemented in TLC. Therefore a 
on
rete de�nition of the observationbased on an expli
it observation 
lo
k has been used. It is only after we have redu
ed the system to a �nite onethat a model 
he
ker su
h as TLC 
ould be used.To be able to more pre
isely 
hara
terize exe
utions satisfying the spe
i�
ation, we 
urrently explore meth-ods to build these exe
utions more easily. A �rst proposal is to redu
e the 
omplexity of su
h a pro
ess byrelying on proofs on system properties. The proof approa
h 
an easily be used only under 
ertain 
onditionsand in order to pro
eed to some system simpli�
ations. For example, a periodi
 sour
e indu
es properties forits image through an observation. Using these properties redu
es the number of states we have to build byfore
asting some impossible 
ases. Proving the full 
orre
tness of the system is possible but it is 
omplex andit has not been automatized yet.Another way is to use 
ontroller synthesis methods [3℄. Properties of the observation 
an be expressed assafety properties using LTL and be derived as Bü
hi automata [11℄. Two automata des
ribe the behavior ofthe sour
e and the image of an observation, ex
hanging values through a queue. Restri
tions 
an be addedto introdu
e the used implementation and its 
ompatibility with exe
utions de�ned by the spe
i�
ation. The
omplexity of 
ontroller synthesis methods has still to be explored.7. Con
lusion. We propose an approa
h fo
used on variables instead of tasks and pro
esses, to modeland analyze distributed real time systems. We spe
ify an abstra
t model postponing task and 
ommuni
ations
heduling. Based on the state transition system semanti
s extended by a timed referential, we express relationsbetween variables and the timed properties of variables and 
ommuni
ations. These properties are used to 
he
kthe freshness of values, their stability, and the 
onsisten
y of requirements. A possible analysis is to build a�nite system bisimilar to the spe
i�ed one. The results are used to help implementation 
hoi
es.Perspe
tives are to sear
h other methods that de
rease the 
omplexity of the analysis of a spe
i�
ationand to use this approa
h with di�erent examples to expand the number of available properties and in
reaseexpressiveness. We also work on using analysis results to help generating an implementation satisfying thespe
i�
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