
S
alable Computing: Pra
ti
e and Experien
eVolume 10, Number 3, pp. 253�264. http://www.s
pe.org ISSN 1895-1767
© 2009 SCPEQINNA: A COMPONENT-BASED FRAMEWORK FOR RUNTIME SAFE RESOURCEADAPTATION OF EMBEDDED SYSTEMSLAURE GONNORD∗AND JEAN-PHILIPPE BABAU†Abstra
t. Even if hardware improvements have in
reased the performan
e of embedded systems in the last years, resour
eproblems are still a
ute. The persisting problem is the
onstantly growing
omplexity of systems, whi
h in
rease the need forreusable developement framework and pie
es of
ode. In the
ase of PDAs and smartphones, in addition to
lassi
al needs (safety,se
urity), developers must deal with quality of servi
e (QoS)
onstraints, su
h as resour
e management.Qinna was designed to fa
e with these problems. In this paper, we propose a
omplete framework to express ressour
e
onstraintsduring the developpement pro
ess. We propose a
omponent-based ar
hite
ture, whi
h generi

omponents and algorithms, and adeveloppement methodology, to manage QoS issues while developing an embedded software. The obtained software is then able toautomati
ally adapt its behaviour to the physi
al resour
es, thanks to �degraded modes�. We illustrate the methodology and theuse of Qinna within a
ase study.Key words:
omponent, software ar
hite
ture, resour
e dynami
 management,
ase study.1. Introdu
tion. When fa
ed to the problem of designing handled embedded systems, the developer mustbe aware of the management of limited physi
al resour
es (CPU, Memory).In order to develop multimedia software on su
h systems where the quality of the resour
e (network, battery)
an vary during use, the developer needs tools to:
• easily add/remove fun
tionality (servi
es) during
ompilation or at runtime;
• adapt
omponent fun
tionality to resour
es, namely propose �degraded� modes where resour
es are low;
• evaluate the software's performan
es: quality of provided servi
es,
onsumption rate for some s
enarios.In this
ontext,
omponent-based software engineering appears as a promising solution for the developmentof su
h kinds of systems. Indeed it o�ers an easier way to build
omplex systems from base
omponents ([9℄),and the management of physi
al resour
e
an be done by embedding the system
alls in high level
omponents.The main advantages thus appear to be the re-usability of
ode and also the �exibility of su
h systems.The Qinna framework ([11, 12, 3℄) was designed to handle the spe
i�
ation and management of resour
e
onstraints problems during the
omponent-based system development. Variability is en
oded into dis
reteimplementation levels and links between them. Quantity of resour
e
onstraints
an also be en
oded. Qinnaprovides algorithms to ensure resour
e
onstraints and dynami
ally adapt the implementation levels a

ordingto resour
e availability at runtime. The main advantage of the method is then the reusability of the resour
e
omponents and the generi
 adaptation algorithms.In this journal paper, we propose a
omplete formalization of Qinna framework (algorithms and
ompo-nents), and as proof of
on
ept, a
ase study
onsisting of the development of a remote viewer appli
ation withthe help of Qinna's implementation in C++. In Se
tion 2 we re
all Qinna's main
on
epts, as introdu
ed in [11℄and formalized later in [3℄. In Se
tion 3, we give an overview of Qinna's C++ implementation, and then providethe general implementation steps to develop a resour
e-aware appli
ation with Qinna in Se
tion 4. Finally weillustrate the whole framework on the viewer
ase study (Se
tion 5).2. Des
ription of the Qinna framework.2.1. Qinna's main
on
epts. The framework designed in [11℄ and [12℄, and further formalized in [3℄ hasthe following
hara
teristi
s:
• Both the appli
ation pie
es of
ode and the resour
e are
omponents. The resour
e servi
es are en
losedin
omponents like Memory, CPU, Thread.
• The variation of quality of the provided servi
es are en
oded by the notion of implementation level.The
ode used to provide the servi
e is thus di�erent a

ording to the
urrent implementation level.
• The link between the implementation levels is made through an expli
it relation between the imple-mentation level of the provided servi
e and the implementation levels of the servi
es it requires. Forinstan
e, the developer
an express that a video
omponent provides an image with highest qualitywhen it has enough memory and su�
ient bandwidth.

∗Université of Lille, LIFL Laure.Gonnord�lifl.fr
†UBO, LISyC, Université Européenne de Bretagne Jean.Philippe.Babau�univ-brest.fr This work has been partially supportedby the REVE proje
t of the Fren
h National Agen
y for Resear
h (ANR)253

254 Laure Gonnord and Jean-Philippe Babau
• All the
alls to a �variable fun
tion� are made through an existing
ontra
t that is negotiated. Thisnegotiation is made automati
ally through the Qinna
omponents. A
ontra
t for a servi
e at someobje
tive implementation level is made only if all its requirements
an be reserved at the
orrespondingimplementation levels and also satisfy some
onstraints
alled Quality of resour
e
onstraints (QoR). Ifit not the
ase, the negotiation fails.

QoSComponentBroker1

...

QoSDomain

QoSComponentManager1

Manager2

Manager3

Broker2

Broker3
ontra
t maintenan
e
fun
tional partadmission, reservation
QoSComponent C1

gestion part
C3

C2

Fig. 2.1. Ar
hite
ture exampleThese
hara
teristi
s are implemented through new
omponents whi
h are illustrated in Figure 2.1: toea
h appli
ation
omponent (or group of
omponents) whi
h provide one or more variable servi
e Qinna asso-
iates a QoSComponent Ci. The variability of a variable servi
e is made through the use of a
orrespondingimplementation level variable. Then, two new
omponents are introdu
ed by Qinna to manage the resour
eissues of the instan
es of this QoSComponent :
• a QoSComponentBroker whi
h goal is to realize the admission of a
omponent. The Broker de
ideswhether or not a new instan
e
an be
reated, and if a servi
e
all
an be performed w.r.t. the quantityof resour
e
onstraints (QoR).
• a QoSComponentManager whi
h manages the adaptation for the servi
es provided by the
omponent.It
ontains a mapping table whi
h en
ode the relationship between the implementation levels of ea
hof these servi
es and their requirements.At last, Qinna provides a single
omponent named QoSDomain for the whole ar
hite
ture. It manages all theservi
e requests inside and outside the appli
ation. The
lient of a servi
e asks the Domain for reservation ofsome implementation level and is eventually returned a
ontra
t if all
onstraints are satis�ed. Then, after ea
hservi
e request, the Domain makes an a
knowledgment only of the
orresponding
ontra
t is still valid.2.2. Quantity of Resour
e
onstraints in Qinna. A Quantity of resour
e
onstraint (QRC) is aquantitative
onstraint on a
omponent C and the servi
e (si) it proposes. QRCs are for instan
e formula onthe total instan
e of a given
omponent type, of the total amount of resour
e (memory, CPU) allo
ated to agiven
omponent. They are two types of
onstraints, depending on their purpose:
• Component type
onstraints (CTC) express properties of
omponents of the same type and their pro-vided servi
es.
• Component instan
e
onstraints (CIC) express properties of a parti
ular instan
e of a
omponent.The management of these
onstraints is automati
ally done at runtime, if the developer implements themin the following way:
• In the QoSComponent, for ea
h servi
e, implement the two fun
tions: testCIC and updateCIC. Theformer de
ides whether or not the
all to the servi
e
an be performed, and the later updates variablesafter the fun
tion
all. In addition, there must be an initialization of the CICs formulas at the
reationof ea
h instan
e.
• Similarly, in the QoSComponentBroker, for ea
h provided servi
e, implement the two fun
tions testCTCand updateCTC.Then, Qinna maintains resour
e
onstraints at runtime through the following pro
edure:
• When the Broker for C is
reated, the parameters used in testCTC are set.
• The
reation of an instan
e of C is made by the Broker i� CTCcompo(C) is true. During the
reation,the CIC parameters are set.

Qinna: a
omponent-based framework for runtime safe resour
e adaptation of embedded systems 255
• The CIC(si) and CTC(si) de
ision pro
edures are invoked at ea
h fun
tion
all. A negative answer toone of these de
ision pro
edures will
ause the failure of the
urrent
ontra
t. We will detail the notionof
ontra
t in Se
tion 2.4.Example The Memory
omponent provides only one servi
e mallo
, whi
h has only one parameter, thenumber of blo
ks to allo
ate. It has an integer attribute, memory, whi
h denotes the global memory size andis set at the
reation of ea
h instan
e. We also suppose that we have no garbage
olle
tor, so the blo
ks areallo
ated only on
e. Figure 2.2 illustrates the di�eren
e between type and instan
e
onstraints.

CTC : memory ≤ 1024

CIC : memory ≤ 24CIC : memory ≤ 1000

∑
p
(arg(occp(malloc) ≤ 1000

C
1

C
2

C =Global MemoryFig. 2.2. Type vs Instan
e
onstraints
• CTC for C = Memory: the formula CTCcompo(C) ≡

∑
j memory(Cj) ≤ 1024 expresses that the globalmemory quantity for the whole appli
ation is 1024 kilobytes. A new instan
e will not be
reated if itsmemory
onstant is set to a too big number. Then CTCserv(malloc) ≡

∑
k arg(occk(malloc)) ≤ 1024for
es the
alls to mallo
 stop when all the 1024 kilobytes have been allo
ated.

• CIC for Memory: if we want to allo
ate some Memory for a parti
ular (group of)
omponent(s), we
an express similar properties in one parti
ular instan
e (see C1 on the Figure).Expression of resour
e
onstraints and
ode generationQinna also provides a way to des
ribe the resour
e
onstraints into a higher-lever language
alled qMEDL, avariant of MEDL event logi
 des
ribed in [6℄, and whose pre
ise syntax and semanti
s is des
ribed in [3℄. Roughlyspeaking, the logi

an express boolean formulae on o

uren
es of events. Atoms are of the form Q ⊲⊳ K, with
K
onstant and ⊲⊳∈ {6, =, <, . . .}, and Q is a quantity. The quantity are obtained by the use of auxiliaryvariables and
alls to value and time spe
ial fun
tions: to ea
h event e (or newC), time(e) and valuek(e) giverespe
tively the date of the last o

urren
e of the event and the kth argument of the fun
tion
all when it o

urs.The Memory
onstraint for the whole appli
ation then
an be en
oded by N ≤ 1024 where N
ounts thetotal amount of mallo
's arguments: mallo
 -> N:=N+value_1(mallo
). The translation is then made by theqMEDL2 to C++ translator, and gives the following pro
edures (the identi�ers have been
hanged for lisibility,usedmem is a lo
al variable to
ount the global amount of memory used yet):bool testCIC_mallo
(int nbblo
ks){return (usedmem + nbblo
ks <= 1024)}bool updateCIC_mallo
(int nbblo
ks){usedmem = usedmem + nbblo
ks; }2.3. QoS Linking
onstraints. Unlike quality of resour
e
onstraints, linking
onstraints express therelationship between
omponents, in terms of quality of servi
e. For instan
e, the following property is a linking
onstraint: � to provide the getImages at a �good� level of quality, the ImageBuffer
omponent requires a�big� amount of memory and a �fast� network�. This relationship between the di�erent QoS of
lient and serverservi
es are
alled QoS Linking Servi
e Constraints (QLSC).Implementation Level To all provided servi
es that
an vary a

ording to the desired QoS we asso
iatean implementation level. This implementation level (IL) en
odes whi
h part of implementation to
hoosewhen supplying the servi
e. These implementation levels are totally ordered for a given servi
e. As theseimplementation levels are �nitely many, we
an restri
t ourselves to the
ase of positive integers and supposethat implementation level 0 is the �best� level, 1 gives a lesser quality of servi
e, and so on.We assume that required servi
es for a given servi
e doesn't
hange a

ording to the implementation level,that is, the
all graph of a given servi
e is always the same. However, the arguments of the required servi
es
alls may
hange.

256 Laure Gonnord and Jean-Philippe BabauLinking
onstraints expression Let us
onsider a
omponent C whi
h provides a servi
e s that requires
r1 and r2 servi
es. Qinna permits to link the di�erent implementation levels between
allers and
allees. Therelationship between the di�erent implementation levels
an be viewed as a fun
tion whi
h asso
iates to ea
himplementation level of s an implementation level for r1 and for r2:

QLSCs : N −→ N
2

IL 7−→ (IL1, IL2)This fun
tion is stati
ally en
oded by the developer within the appli
ation. For instan
e, it
an easily beimplemented in the QoSManager through a �mapping� table whose lines en
ode the tuples of linked implemen-tation levels: (ILs1
, ILr1

, ILr2
). The natural order of the lines of the table is used to determine whi
h tuple to
onsider if the
urrent negotiation fails.

linking constraint

r2

r1

s1

ILr1

ILr2

ILs1Fig. 2.3. Implementation levels and linking
onstraintsThus, as soon as an implementation level is set for the s1 servi
e, the implementation levels of all requiredservi
es (and all the implementation levels in the
all tree) are set (Figure 2.3). This has a
onsequen
e notonly on the exe
uted
ode of all the involved servi
es (and also internal fun
tions) but also on the argumentsof the servi
e
alls.Therefore, if a user asks for the servi
e s1 at some implementation level, the demand may fail due to someresour
e
onstraint. That's why every demand for a servi
e must be negotiated and the notion of
ontra
t willbe a

urate to implement a set of a satisfa
tory implementation levels for (a set of) future
alls.Implementation of linking
onstraints in Qinna The links between the provided QoS and the QoS ofthe required servi
es are made through a table whose lines en
ode the tuples of linked implementation levels:
(ILs, ILr1

, ILr2
). This �mapping� table is en
oded in the QoSManager. The natural order of the lines of thetable is used to determine whi
h tuple to
onsider if the
urrent negotiation fails.Now we have all the elements to de�ne the notion of
ontra
t.2.4. Qinna's
ontra
ts. Qinna provides the notion of
ontra
t to ensure both behavioral
onstraints(Type Constraints and Intan
e Constraints of servi
es, as des
ribed in Se
tion 2.2) and linking
onstraints.When a servi
e
all is made at some implementation level, all the subservi
es implementation level are �xedimpli
itly through the linking
onstraints. As all the implementation levels for a same servi
e are ordered, theobje
tive is to �nd the best implementation level that is feasible (w.r.t. the behavioral
onstraints of all the
omponents and servi
e involved in the
all tree).Contra
t Negotiation All servi
e
alls in Qinna are made after negotiation. The user (at toplevel) ofthe servi
e asks for the servi
e at some interval of �satisfa
tory� implementation levels. Qinna then is ableto �nd the best implementation level in this interval that respe
ts all the behavioral
onstraints (CICs andCTCs of all the servi
es involved in the
all tree). If there is no interse
tion between feasible and satisfa
toryimplementation levels, no
ontra
t is built. In the other
ase, a
ontra
t is made for the spe
i�
 servi
e. A
ontra
t is thus a tuple (id, si, IL, [ILmin, ILmax], imp) denoting respe
tively its identi�ant number, the referredservi
e, the
urrent implementation level, the interval of satisfa
tory implementation levels, and the importan
eof the
ontra
t. This last variable is used to sort the list of all
urrent
ontra
ts and is used for degradation (seenext paragraph). The importan
e value is stati
ally set by the developer ea
h time he asks for a new
ontra
t.After
ontra
t initialization, all the servi
e
alls must respe
t the terms of the
ontra
t. In the other
ase,there will be some renegotiation.Contra
t Maintenan
e and Degradation After ea
h servi
e
all the de
ision pro
edure for behavioral
onstraints are updated. After that, a
ontra
t may not be valid anymore. As all servi
e
alls are madethrough the Brokers by the Domain, the Domain is automati
ally noti�ed of a
ontra
t failure. In this
ase, the

Qinna: a
omponent-based framework for runtime safe resour
e adaptation of embedded systems 257Domain tries to degrade the
ontra
t of least importan
e (whi
h may be not the same as the
urrent one). Thisdegradation has
onsequen
es on the resour
e and thus
an permit other servi
e
alls inside the �rst
ontra
t.Basi
ally, degrading a
ontra
t
onsists in setting a lesser implementation level among the satisfa
tory ones,but whi
h is still feasible. If it is not possible, the
ontra
t is stopped.It is important to noti
e that
ontra
t degradation is e�e
tive only at toplevel, and thus is performed bythe Domain. It means that there is no degradation of implementation level outside toplevel. That is why weonly speak of
ontra
t for servi
e at toplevel.Use of servi
es Ea
h
all to a servi
e at toplevel as
onsequen
es on the
ontra
t whi
h has been nego
iatedfor him. We suppose that a
ontra
t is made before the �rst invo
ation of the desired servi
e. The veri�
ation
ould automati
ally be done with Qinna, but is not not yet implemented. All the noti�
ations of failures arelogged for the developer.3. Qinna's
omponents implementation in C++. We implemented in C++ the Qinna
omponentsand algorithms. These
omponents are provided through
lasses whi
h we detail in this se
tion.3.1. Qinna's
omponents for the management of servi
es. QoSComponent The QoSComponent
lass provides generi

onstru
tors and destru
tors, and
ontains a private stru
ture to save the
urrent imple-mentation levels of the
omponent provided servi
e. All QoS
omponents will inherit from this
lass.QoSBroker The QoSBroker
lass
ontains a private stru
ture to save the referen
es to all the
orresponding
omponents it is responsible for. It provides the two fun
tions Free(QoSComponent* refQ
) and Reserve(...).As testCIC and updateCIC fun
tions signature depends of ea
h
omponent/servi
e, these fun
tions will beprovided in ea
h instan
e of QoSBroker.QoSManager The QoSManager
lass
ontains all information for the servi
e provided by its asso
iated
omponent. It provide the following publi
 fun
tions:
• bool SetServi
eInfos(int idserv, QoSComponent *
ompo, int nbreq, int nbmap) initializesthe manager for the idserv servi
e, provided by *
ompo, with nbreq required servi
es and nbmap di�erentimplementation levels. Return true if su

essful, false otherwise.
• bool AddLevQoSReq(int idserv, int lv, int irq, int lrq) adds the tuple (lv, irq, lrq) (the lvimplementation level for idserv is linked to the lrq implementation level for irq servi
e) in the mappingtable for idserv.
• int Reserve(int idserv, int lv) is used for the reservation of the idserv servi
e at level il. Itreturns the lo
al number of (sub)
ontra
t of the Manager or 0 if the reservation has failed (due toresour
e
onstraints).QoSDomain The QoSDomain
lass provides fun
tions for managing
ontra
ts at toplevel:
• bool AddServi
e(int servi
e, int nbRq, int nbMp, QoSManager *qm) adds the servi
e servicewith nbRq required servi
es and nbMp implementation levels, with asso
iated manager ∗qm.
• int Reserve(QoSComponent *
ompo,int ns , int lv, int imp) is used for reservation of the ser-vi
e ns provided by the
omponent ∗compo at level lv and importan
e imp. it returns the number of
ontra
t (in domain) if su

essful, 0 otherwise.
• bool Free(int id) frees the
ontra
t number id (of domain).ManagerContra
t This
lass provides a generi
 stru
ture for a sub
ontra
t whi
h en
odes a tuple of theform < id, lv, ∗rq, v > where id is the
ontra
t number, lv the
urrent level, rq is the
omponent that providesthe servi
e and v is a C++-ve
tor that en
ode the levels of the required servi
es. This
lass provides a

essfun
tions to these variables and a fun
tion to
hange the implementation level.DomainContra
t This
lass provides a stru
ture for
ontra
ts at toplevel. A Domain
ontra
t is a tupleof the form < di, i, lv, ∗rq > where di is the global identi�er of the
ontra
t, ∗rq is the manager asso
iated tothe
omponent that provides the servi
e, i is the lo
al number of sub
ontra
t for the manager, and lv is the
urrent level of the servi
e.Remark 1 All servi
es and
ontra
ts have global identi�ers used in toplevel. However, it is important to noti
ethat servi
e and (sub)
ontra
ts have lo
al identi�ers in their respe
tive managers.

258 Laure Gonnord and Jean-Philippe Babau3.2. Basi
 resour
e
omponents. In the
all graph of one servi
e, leaves are physi
al resour
es (Memory,CPU, Network). As all resour
es must be en
apsulated inside
omponents, we need to en
apsulate the basefun
tions into QoSComponents. For instan
e, the Memory
omponent must be en
oded as a wrapper around themallo
 fun
tion, and the asso
iated broker basi
ally implements the CIC fun
tions whi
h de
ide if the globalamount of allo
ated memory is rea
hed or not.Sometimes, the basi
 fun
tions are en
apsulated in higher level
omponents. For instan
e, a high levellibrary might provide a DisplayImage fun
tion whi
h makes an expli
it
all to mallo
, but this
all is hiddenby the use of the library. In this parti
ular
ase, the management of basi
 resour
e fun
tions
an be done intwo di�erent but equivalent ways:
• the
reation of a �phantom� Memory
omponent whi
h provides the two servi
es amallo
 (for abstra
tmallo
) and afree. Ea
h time the developer makes a
all to an �impli
it� resour
e fun
tion (i. e.when the
alled fun
tion needs a signi�
ant amount of memory, like DisplayImage), he has to
allMemory.amalllo
. The Qinna's C++ implementation provides some basi

omponents like Memory,Network and CPU and their asso
iated brokers.
• the
reation of QoSComponent around the library fun
tion DisplayImagewhi
h is responsible (throughits broker) for the global amount of �quantity of resour
e� used for the DisplayImage fun
tion.Both solutions need a pre
ise knowledge of the libraries fun
tions w.r.t the resour
e
onsumption. Weassume that the developer has this knowledge sin
e he designs a resour
e-aware appli
ation. In our
ase studywe used the �rst solution.4. Methodology to use Qinna. We suppose that in the appli
ation all resour
es, in
luding hardwareresour
es (Memory, CPU) or software ones (viewer, bu�er), are en
oded by
omponents. Here are the mainsteps for integrating Qinna into an existing appli
ation designed in C++:1. Identify the variable servi
es whi
h are fun
tions whose
all may fail due to some resour
e reasons.They are of two types:

• simple fun
tions like Memory.mallo
 whose
ode does not vary. They have a unique implementa-tion level.
• �adaptive� fun
tions whose
ode
an vary a

ording to implementation levels.The �rst step is thus to identify the servi
es whose quality vary and asso
iate to ea
h of this servi
es aunique key, and if the
ode vary,
learly identify the variant
ode through a
ode of the form:swit
h(implLevel){
ase 0 :...}where implLevel is the asso
iated (variable) attribute of the host
omponent for this servi
e. We mustidentify whi
h variable servi
es are required for ea
h provided servi
e, and the relationship between thedi�erent implementation levels.2. Create Qinna
omponents. First,
ut the sour
e
ode into QoSComponents that
an provide oneor more QoSservi
es. As the QoS negotiation will only be made between QoSComponents of di�erenttypes, this split will have many
onsequen
es on the QoS management. For ea
h QoSComponentC(whi
h inherits from the QoSComponent
lass), the designer must en
ode two
lasses: QoSBrokerC andQoSManagerC whi
h respe
tively inherit from the QoSBroker and QoSManager generi

lasses. For thewhole appli
ation, the designer will dire
tly use the QoSDomain generi

lass.3. Implement Quality of Resour
e
onstraints. These
onstraints are set in two di�erent ways:
• The type
onstraints (CTC) for
omponent C implementation is
omposed of additional fun
tionsin QoSBrokerC : initCTC whi
h is exe
uted at the
reation of the Broker, and whi
h sets thede
ision pro
edures parameters ; a testCTC fun
tion to determine whether a new instan
e
an be
reated or not ; an updateCTC to save modi�
ations of the resour
es after the
reation. For ea
hprovided QoS servi
e si, we add to new fun
tions: testCTC(idsi) whi
h is exe
uted before the
all of a servi
e and tells if the servi
e
an be done, and updateCTC(idsi) to be exe
uted afterthe
all.
• The instan
e
onstraints (CIC) for C are also
omposed of three fun
tions to en
ode in the

QoSComponentC: setCIC to set the resour
es
onstants, testCTC(idsi) whi
h is used to de-

Qinna: a
omponent-based framework for runtime safe resour
e adaptation of embedded systems 259
ide if a servi
e of identi�ant ids
an be
alled, and updateCTC(idsi) to update the resour
e
onstraints after a
all to the si fun
tion.4. Implement the linking
onstraints. The links between required servi
es and provided servi
e viaimplementation levels are set by the invo
ation of the SetServi
e and AddLevQoSReq fun
tions of themanagers. These fun
tions will be invoked at toplevel.5. Modify the main �le to initialize Qinna
omponents at toplevel. Here are the main steps:
• For ea
h base resour
e (CPU, Memory, . . .)(a) Invoke the
onstru
tor for the asso
iated Broker. The
onstru
tor's arguments must
ontainthe initialization of internal variables for type
onstraints (the total amount of memory forexample).(b) Create the asso
iated Manager with the Broker as argument.(
) Register the QoS servi
es inside the Manager through the use of SetServi
eInfos fun
tion.(d) Create QoSComponents instan
es via the Broker.reserve(...) fun
tion. The arguments
an be a
ertain amount of resour
e used by the
omponent.
• For all the other QoSComponents, the required
omponents �rst:(a) Create the asso
iated Broker and Manager.(b) Set the servi
es information.(
) If a servi
e requires another servi
e of another
omponent, use the fun
tion Manager.AddReqto link the required manager. Then use Manager.AddLevQoSReq to set the linking
onstraints.(d) Create QoSComponent instan
es by invoking the
orresponding reservation fun
tion(Broker.Reserve).
• Create the QoSDomain and add the servi
es that are used at toplevel (Domain.AddServi
e)
• Reserve servi
es via the QoSDomain and save the
ontra
ts' numbers.5. Viewer Implementation using Qinna.5.1. Spe
i�
ation. Our
ase study is a remote viewer appli
ation whose high level spe
i�
ation follows:

• The system is
omposed of a mobile phone and a remote server. The appli
ation allows the downloadingand the visualization of remote images via a wireless link.
• The remote dire
tory is rea
hed via a ftp
onne
tion. After
onne
tion, two buttons �Next� and �Pre-vious� are used to display images one by one. Lo
ally, some images are stored in a bu�er. To providea better quality of servi
e, some images are downloaded in advan
e, while the oldest ones are removedfrom the photo memory.
• The appli
ation must manage di�erent qualities of servi
es for the resour
es: shortage of bandwidthand memory, or dis
onne
tions of the ftp server. When needed it
an download images in lower quality(in size or image
ompression rate).
• Di�erent storage poli
ies are possible, and there are many parameters whi
h
an be modi�ed; like thesize of the bu�er, or the number of images that are downloaded ea
h time. We want to evaluate whi
hpoli
y is the best a

ording to a given s
enario.We want to use Qinna for two obje
tives:
• the maintenan
e of the appli
ation with respe
t to the di�erent qualities of servi
e,
• the evaluation of the in�uen
e of the parameters, on the non-fun
tional behavior (timing performan
eand resour
e usage).5.2. The fun
tional part. The fun
tional part of the viewer is developed with Qt1 (a C++ library whi
hprovides graphi
al
omponents and implementations of the ftp proto
ol). Figure 5.2 des
ribes the main partsof the standalone appli
ation. We
hose to make the downloading part via the ftp proto
ol. The wireless partis not en
oded.
• The FtpClient
lass makes a
onne
tion to an existing ftp server and has a list of all distant images.It provides a getSome fun
tion to enable the downloading of many �les at on
e.
• The ImageBuffer
lass is responsible for the management of downloaded �les in a lo
al dire
tory. Asthe spe
i�
ation says, this bu�er has a limited size and di�erent poli
y for downloading images. The
lass provides the two fun
tions donext and doprevious whi
h are asyn
hronous fun
tions. A signal

1http://trollte
h.
om/produ
ts/qt/

260 Laure Gonnord and Jean-Philippe Babau

Fig. 5.1. S
reenshot of the viewer appli
ation
ImageViewer ImageBuffer

FtpClient

init() next/previous

donext/doprevious

connect
provided required

downloadList

getSomeconnect

Main ImageScreen
displayImage

get

setPixmap

initBuffer

Fig. 5.2. Fun
tional view of the appli
ationis thrown if/when the desired image is ready to be displayed. It eventually downloads future images in
urrent dire
tory.
• The ImageViewer
lass is a high level
omponent to make the interfa
e between the ftp and bu�er
lasses to the graphi
s
omponents.
• The ImageS
reen
lass is responsible for the display of the image in a graphi

omponent namedQPixmap.
• The main
lass provides all the graphi
s
omponents for the Graphi
al User Interfa
e.5.3. Integration of Qinna. Now that we have the fun
tional part of the appli
ation, we add the followingresour
e
omponents: Memory, and Network whi
h are QoSComponents that provide variable servi
es. We onlyfo
us on these two basi
 resour
es. The Network
omponent is only linked to the FtpClient, whereas Memorywill be shared between all
omponents. For Memory, the only variable servi
e is amallo
 whi
h
an fail if theglobal amount of dedi
ated memory is rea
hed ; this fun
tion has only one implementation level. For Network,the provided fun
tion get
an fail if there is too mu
h a
tivity on network (notion of bandwidth).Then we follow the above methodology in the parti
ular
ase of our remote viewer.

Qinna: a
omponent-based framework for runtime safe resour
e adaptation of embedded systems 261
downloadList

setPixmap

Network

ImageScreen

ImageBuffer

FtpClient

initBuffer

connect

connect

ImageGUI

QoSComponent

QoSComponent instance

service with variable quality

provided

required

start

ScreenMemory

BufferMemory

Memory

Thread

thread

get
donext

displayImage

getSomedopreviousget
previousnext. . . amallo
 amallo

Fig. 5.3. Ar
hite
ture exampleIdenti�
ation of the variable servi
es (step 1)Now as the variable servi
es for low level
omponents have been identi�ed, we list the following adaptiveservi
es for the fun
tional part:
• ImageS
reen.displayImagevaries among memory, it has three implementation levels whi
h
orrespondto the quality of the displayed image. We add
alls to Memory.amallo
 fun
tion to simulate the use ofMemory.
• Ftp
lient.getsome's implementation varies among available memory and the
urrent bandwidth ofnetwork. If there is not enough memory or network, it adapts the poli
y of the downloads. It has threeimplementation levels. We add
alls to Network.bandwidth to simulate the network resour
es that areneeded to download �les.
• ImageBuffer.donext/previous varies among available memory: if there is not enough memory theimage is saved with high
ompression.Creation of the QoSComponents (step 2)The resour
e
omponents are QoSComponents. Then, the three
omponents ImageS
reen, FtpClientand ImageBuffer are QoSComponents whi
h provide ea
h one variable servi
e. Imageviewer and Main areQoSComponents as well. Figure 5.3 represents now the stru
ture of the appli
ation at this step.For the sake of simpli
ity, we only share Memory into two parts, a part for ImageBuffer and the other partfor imageBuffer. That means that ea
h of these
omponents have their own amount of memory.Resour
e
onstraints (steps 3 and 4)The quantity of resour
e
onstraints we have �xed are
lassi
al ones (bounds for the memory instan
es,unique instantiation for the imageS
reen
omponent, no more than 80 per
ent of bandwidth for the ftpClient,et
). The QLSC are very similar to those des
ribed in [11℄ for a videogame appli
ation. Here we show how wehave implemented some of these
onstraints in our appli
ation.
• Quantity of resour
e
onstraints The imageS
reen
omponent is responsible for the unique servi
edisplay_image (display the image on the graphi
 video widget). Here are some behavioral
onstraintswe implemented for this
omponent:� There is only one instan
e of the
omponent on
e.� The display fun
tion
an only display images with size lesser or equal to 1200 ∗ 800.� There is only one
all to the display fun
tion on
e.These type
onstraints are easily implemented in the asso
iated Broker (imageS
reenBroker) in thefollowing way: the
onstraint �maximum of instan
e� requires two private attributes nbinstan
e andnbinstan
emax whi
h are de
lared and initialized at the
reation of the Broker with values 0 and 1.Then the reservation of a new imageS
reen by the Broker is done after
he
king whether or not

nbinstance + 1 ≤ nbinstancemax. If all
he
ks are true, it reserves the instan
e and in
rementsnbinstan
e.

262 Laure Gonnord and Jean-Philippe BabauThe
he
king of memory is done by setting the global amount of memory for ImageBuffer andimageBuffer in lo
al variables whi
h are set to 0 at the beginning of ea
h
ontra
t, and updatedea
h time the fun
tion amallo
 is
alled.These
onstraints are rather simple but we
an imagine more
omplex ones, provided they
an be
he
ked with bounded
omplexity (this is a
onstraint
oming from the fa
t the Qinna
omponents willalso be embedded).
• QoS Linking
onstraintsTo illustrate the di�eren
e between quality of resour
e
onstraints and linking
onstraints, we showhere the
onstraints for the FtpClient.getSome:� The implementation level 0
orresponds to 3 su

essive downloads with the Network.get fun
tion.The fun
tion has a unique implementation level but ea
h
all to it is made with 60 as argument,to model the fa
t it requires 60% of the total bandwidth. These three
alls are made through theuse of the Thread.thread with implementation level 0 (qui
k thread, no a
tive wait).� The implementation level 1
orresponds to 2
alls to the get fun
tion with 40% of bandwidth ea
htime. These two
alls are made through the use of the Thread.thread with implementation level

1 (middle thread, few a
tive wait).� The implementation level 2
orresponds to 1
all to the get fun
tion with 20% bandwidth. This
all is made through the use of the Thread.threadwith implementation level 2 (more a
tive wait).Thus if the available bandwidth is too low, a negotiation or an existing
ontra
t will fail be
ause of theresour
e
onstraints. The
reation of the
ontra
t may fail be
ause a thread
annot be provided at the desiredimplementation level.Modi�
ation of toplevel (step 5) This part is straightforward. The only
hoi
es we have to make arethe relative amount of resour
e (Memory, Network) whi
h are allo
ated to ea
h QoSComponents. The tests
enario is detailed in se
tion 5.5.5.4. Some statisti
s. The viewer is written in 4350 lines of
ode, the fun
tional part taking roughly 1800lines. The other lines are Qinna's generi

omponents (1650 lo
.), 600 lines of
ode for the new
omponents(images
reenBroker, imageS
reenManager et
.) and 300 lines of
ode for the test s
enarios. The binary is alsomu
h bigger 4.7Mbytes versus 2Mbytes without Qinna.Thus Qinna is
ostly, but all the supplementary lines of
ode do not need to be rewritten, be
ause:
• Generi
 Qinna
omponents, algorithms, and the basi
 resour
e
omponents are provided with Qinna.
• The de
ision fun
tions for Quality of servi
e
onstraints
ould be automati
ally generated or be providedas a �library of
ommon
onstraints�.
• The initialization at toplevel
ould be
omputed-aided through user-friendly tables.We think that the
ost of Qinna in terms of binary
ode
an be strongly redu
ed by avoiding the existingredundan
y in our
urrent implementation.Moreover, Qinna's implementation
an be viewed as a prototype to evaluate the resour
e use and the qualityof servi
e management. After a preliminary phase with the whole implementation used to �nd the best linking
onstraints, we
an imagine an optimized
ompilation through glue
ode whi
h neither in
ludes brokers normanagers.5.5. Results. We realized a s
enario with a new
omponent whose only obje
tive is to use the basi
 re-sour
es Memory and Network. This TestC
omponent provides only the foobar fun
tion at toplevel. This fun
-tion has two implementation levels, and requires two fun
tions: S
reenMemory.amallo
 and Network.get. Thewhole appli
ation provides four fun
tions at toplevel: TestC.foobar, ImageViewer.donext (and doprevious)and ImageS
reen.displayimage. Three
ontra
ts are negotiated, in the following importan
e order: foobar�rst, then donext and doprevious, then displayimage. We made the three
ontra
ts and download and visual-ize images at the highest qualities, but at some point the foobar fun
tion
auses the degradation of the
ontra
tfor displayimage, and the images are then shown in a degraded version, like the Ei�el tower on Figure 5.1.The gap between the
hara
teristi
s of the
ontra
t and the e�e
tive resour
e usage
an be make throughthe use of log fun
tions provided by the Qinna implementation. Figure 5.4 shows for instan
e the memory usagefor another played s
enario.

Qinna: a
omponent-based framework for runtime safe resour
e adaptation of embedded systems 263

Fig. 5.4. Memory use6. Related works. Other works also propose to use a development framework to handle resour
e vari-ability. In [10℄ and [6℄, the author propose a model-based framework for developping self-adaptative programs.This approa
h uses high-level spe
i�
ations based on temporal logi
 formula to generate program monitors. Atruntime, these monitors
at
h the system events and a
tivates the re
on�guration. This approa
h is similar tous ex
ept that it mainly deals with hybrid automata and there is no notion of
ontra
t degradation nor generi
algorithm for nego
iation.The expression and maintenan
e of resour
e
onstraints is also
onsidered as a fundamental issue, so mu
hwork deals with this subje
t. In [5℄, the author use a probabilisti
 approa
h to evaluate the resour
e
onsumedby the program paths. Some other works in the domain of veri�
ation try to prove
onforman
e of one programto some spe
i�
ation: in [7℄, for instan
e, the authors use syn
hronous observers to en
ode and verify logi
altime
ontra
ts. At last, the QML language ([2℄, [1℄) is now well used to express QoS properties. This lastapproa
h is
omplementary to our one sin
e it provides a language whi
h
ould be
ompiled into sour
e
odefor QoSComponents or Brokers.7. Con
lusion and future work. In this paper, we have presented a
ase study using the softwarear
hite
ture Qinna whi
h was designed to handle resour
e
onstraints during the development and the exe
utionof embedded programs. We fo
used mainly on the development part, by giving a general development s
heme touse Qinna, and illustrating it on a
ase study. The resulting appli
ation is a resour
e-aware appli
ation, whoseresour
es
onstraints are guaranteed at runtime, and whose adaptation to variability of servi
e is automati
allydone by the Qinna
omponents, through the notion of
ontra
ts. At last, we are able to evaluate at runtimethe threshold between
ontra
tualised resour
e and the real amount of resour
e e�e
tively used.This work has shown the e�e
tivity of Qinna with respe
t to the programming e�ort, and the performan
eof the modi�ed appli
ation.Future work in
lude some improvements of Qinna's C++
omponents, mainly on data stru
tures, in orderto de
rease the global
ost of Qinna in terms of binary size, and more spe
i�
 and detailed resour
e
omponents,in order to better �t to the platform spe
i�
ations. Integrating Qinna into a model driven development tools,su
h as Gaspard ([8℄),
an be a way to improve this e�
ien
y.From the theoreti
al point of view, there is also a need for a way to manage the linking
onstraints. Thedeveloper has still to link the implementation levels of required and provided servi
es, and the order between allimplementations levels is �xed by him as well. The tuning of all these links
an only be done though simulationyet. We think that some methods like
ontroller synthesis ([4℄)
ould be used to dis
over the/a optimal orderand linking relations w.r.t. some
onstraints su
h as �minimal variability�, �best rea
tivity� et
..Finally, some theoreti
al work would be ne
essary in order to use Qinna as a predi
tion tool, and providean e�
ient
ompilation into �glue
ode�. REFERENCES[1℄ S. Frølund and J. Koistinen, Qml : A language for quality of servi
e spe
i�
ation, te
h. rep., HPL-98-10, 1998.[2℄ , Quality of servi
es spe
i�
ation in distributed obje
t systems design, in Pro
eedings of the 4th
onferen
e on USENIXConferen
e on Obje
t-Oriented Te
hnologies and Systems (COOTS), Berkeley, CA, USA, 1998, USENIX Asso
iation.

264 Laure Gonnord and Jean-Philippe Babau[3℄ L. Gonnord and J.-P. Babau, Quantity of Resour
e Properties Expression and Runtime Assuran
e for Embedded Systems,in ACS/IEEE International Conferen
e on Computer Systems and Appli
ations, AICCSA'09, Rabbat, Moro

o, May2009, pp. 428�435.[4℄ F. M. K. Altisen, A. Clodi
 and E. Rutten, Using
ontroller synthesis to build property-enfor
ing layers, in EuropeanSymposium on Programming (ESOP), April 2003.[5℄ H. Koziolek and V. Firus, Parametri
 Performan
e Contra
ts: Non-Markovian Loop Modelling and an ExperimentalEvaluation, in Formal Foundations of Embedded Software and Component-Based Software Ar
hite
tures (FESCA), Ele
-troni
al Notes in Computer S
ien
e, Vienna, Austria, 2006.[6℄ I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan, Runtime assuran
e based on formal spe
i�
ations,in Pro
eedings of the International Conferen
e on Parallel and Distributed Pro
essing Te
hniques and Appli
ations(IPDPS'99), 1999.[7℄ F. Maranin
hi and L. Morel, Logi
al-time
ontra
ts for rea
tive embedded
omponents, in 30th EUROMICRO Conferen
eon Component-Based Software Engineering Tra
k, ECBSE'04, Rennes, Fran
e, Aug. 2004.[8℄ I.-R. Quadri, S. Meftali, and J.-L. Dekeyser, An mde approa
h for implementing partial dynami
 re
on�guration infpgas, in Pro
eedings of the 16th International Conferen
e on IP-Based System-on-
hip, Grenoble, Fran
e, 2007.[9℄ M. Sparling, Lessons learned through six years of
omponent-based development, Commun. ACM, 43 (2000).[10℄ L. Tan, Model-based self-monitoring embedded systems with temporal logi
 spe
i�
ations, in Pro
eedings of the 20thIEEE/ACM International Conferen
e on Automated Software Engineering (ASE'05), 2005.[11℄ J.-C. Tournier, Qinna: une ar
hite
ture à base de
omposants pour la gestion de la qualité de servi
e dans les systèmesembarqués mobiles, PhD thesis, INSA-Lyon, 2005.[12℄ J.-C. Tournier, V. Olive, and J.-P. Babau, Towards a dynami
 management of QoS
onstraints in embedded systems,in Workshop QoSCBSE, in
onjun
tion with ADA'03, Toulouse, Fran
e, June 2003.Edited by: Janusz ZalewskiRe
eived: September 30, 2009A

epted: O
tober 19, 2009

