ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 10, Number 3, pp. 253-264. http://wuw.scpe.org (© 2009 SCPE

QINNA: A COMPONENT-BASED FRAMEWORK FOR RUNTIME SAFE RESOURCE
ADAPTATION OF EMBEDDED SYSTEMS

LAURE GONNORD*AND JEAN-PHILIPPE BABAUT

Abstract. Even if hardware improvements have increased the performance of embedded systems in the last years, resource
problems are still acute. The persisting problem is the constantly growing complexity of systems, which increase the need for
reusable developement framework and pieces of code. In the case of PDAs and smartphones, in addition to classical needs (safety,
security), developers must deal with quality of service (QoS) constraints, such as resource management.

Qinna was designed to face with these problems. In this paper, we propose a complete framework to express ressource constraints
during the developpement process. We propose a component-based architecture, which generic components and algorithms, and a
developpement methodology, to manage QoS issues while developing an embedded software. The obtained software is then able to
automatically adapt its behaviour to the physical resources, thanks to “degraded modes”. We illustrate the methodology and the
use of Qinna within a case study.

Key words: component, software architecture, resource dynamic management, case study.

1. Introduction. When faced to the problem of designing handled embedded systems, the developer must
be aware of the management of limited physical resources (CPU, Memory).

In order to develop multimedia software on such systems where the quality of the resource (network, battery)
can vary during use, the developer needs tools to:

e casily add/remove functionality (services) during compilation or at runtime;
e adapt component functionality to resources, namely propose “degraded” modes where resources are low;
e evaluate the software’s performances: quality of provided services, consumption rate for some scenarios.

In this context, component-based software engineering appears as a promising solution for the development
of such kinds of systems. Indeed it offers an easier way to build complex systems from base components ([9]),
and the management of physical resource can be done by embedding the system calls in high level components.
The main advantages thus appear to be the re-usability of code and also the flexibility of such systems.

The Qinna framework ([11, 12, 3]) was designed to handle the specification and management of resource
constraints problems during the component-based system development. Variability is encoded into discrete
implementation levels and links between them. Quantity of resource constraints can also be encoded. Qinna
provides algorithms to ensure resource constraints and dynamically adapt the implementation levels according
to resource availability at runtime. The main advantage of the method is then the reusability of the resource
components and the generic adaptation algorithms.

In this journal paper, we propose a complete formalization of Qinna framework (algorithms and compo-
nents), and as proof of concept, a case study consisting of the development of a remote viewer application with
the help of Qinna’s implementation in C++. In Section 2 we recall Qinna’s main concepts, as introduced in [11]
and formalized later in [3]. In Section 3, we give an overview of Qinna’s C++ implementation, and then provide
the general implementation steps to develop a resource-aware application with Qinna in Section 4. Finally we
illustrate the whole framework on the viewer case study (Section 5).

2. Description of the Qinna framework.

2.1. Qinna’s main concepts. The framework designed in [11] and [12], and further formalized in [3] has
the following characteristics:

e Both the application pieces of code and the resource are components. The resource services are enclosed
in components like Memory, CPU, Thread.

e The variation of quality of the provided services are encoded by the notion of implementation level.
The code used to provide the service is thus different according to the current implementation level.

e The link between the implementation levels is made through an explicit relation between the imple-
mentation level of the provided service and the implementation levels of the services it requires. For
instance, the developer can express that a video component provides an image with highest quality
when it has enough memory and sufficient bandwidth.

*Université of Lille, LIFL Laure.Gonnord@lifl.fr
TUBO, LISyC, Université Européenne de Bretagne Jean.Philippe.Babau@univ-brest.fr This work has been partially supported
by the REVE project of the French National Agency for Research (ANR)

253

254 Laure Gonnord and Jean-Philippe Babau

e All the calls to a “variable function” are made through an existing contract that is negotiated. This
negotiation is made automatically through the Qinna components. A contract for a service at some
objective implementation level is made only if all its requirements can be reserved at the corresponding
implementation levels and also satisfy some constraints called Quality of resource constraints (QoR). If
it not the case, the negotiation fails.

QoSComponent €;

functional part
QoSComponentBrokerl
admission, reservatio

QoSComponentManagerl :
contract maintenance |:

_ QoSDomain gestion part P,

Fic. 2.1. Architecture example

These characteristics are implemented through new components which are illustrated in Figure 2.1: to
each application component (or group of components) which provide one or more variable service Qinna asso-
ciates a QoSComponent €;. The variability of a variable service is made through the use of a corresponding
implementation level variable. Then, two new components are introduced by Qinna to manage the resource
issues of the instances of this QoSComponent:

e a QoSComponentBroker which goal is to realize the admission of a component. The Broker decides
whether or not a new instance can be created, and if a service call can be performed w.r.t. the quantity
of resource constraints (QoR).

e a QoSComponentManager which manages the adaptation for the services provided by the component.
It contains a mapping table which encode the relationship between the implementation levels of each
of these services and their requirements.

At last, Qinna provides a single component named QoSDomain for the whole architecture. It manages all the
service requests inside and outside the application. The client of a service asks the Domain for reservation of
some implementation level and is eventually returned a contract if all constraints are satisfied. Then, after each
service request, the Domain makes an acknowledgment only of the corresponding contract is still valid.

2.2. Quantity of Resource constraints in Qinna. A Quantity of resource constraint (QRC) is a
quantitative constraint on a component € and the service (s;) it proposes. QRCs are for instance formula on
the total instance of a given component type, of the total amount of resource (memory, CPU) allocated to a
given component. They are two types of constraints, depending on their purpose:

e Component type constraints (CTC) express properties of components of the same type and their pro-
vided services.

e Component instance constraints (CIC) express properties of a particular instance of a component.

The management of these constraints is automatically done at runtime, if the developer implements them
in the following way:

e In the QoSComponent, for each service, implement the two functions: testCIC and updateCIC. The
former decides whether or not the call to the service can be performed, and the later updates variables
after the function call. In addition, there must be an initialization of the CICs formulas at the creation
of each instance.

e Similarly, in the QoSComponentBroker, for each provided service, implement the two functions testCTC
and updateCTC.

Then, Qinna maintains resource constraints at runtime through the following procedure:

e When the Broker for € is created, the parameters used in testCTC are set.

e The creation of an instance of € is made by the Broker iff CTCeompo(€) is true. During the creation,
the CIC parameters are set.

Qinna: a component-based framework for runtime safe resource adaptation of embedded systems 255

e The CIC(s;) and CT'C(s;) decision procedures are invoked at each function call. A negative answer to
one of these decision procedures will cause the failure of the current contract. We will detail the notion
of contract in Section 2.4.

Example The Memory component provides only one service malloc, which has only one parameter, the
number of blocks to allocate. It has an integer attribute, memory, which denotes the global memory size and
is set at the creation of each instance. We also suppose that we have no garbage collector, so the blocks are
allocated only once. Figure 2.2 illustrates the difference between type and instance constraints.

;17 (arg(occy(malloc) < 1000

N/

Cl C2
CIC : memory < 1000 CIC : memory < 24
€ —Global Memory CTC : memory < 1024

Fia. 2.2. Type vs Instance constraints

e CTC for € = Memory: the formula CTCeompo(€) = 3_; memory(€7) < 1024 expresses that the global
memory quantity for the whole application is 1024 kilobytes. A new instance will not be created if its
memory constant is set to a too big number. Then CTCyepy(malloc) = 3, arg(ocer(malloc)) < 1024
forces the calls to malloc stop when all the 1024 kilobytes have been allocated.

e CIC for Memory: if we want to allocate some Memory for a particular (group of) component(s), we
can express similar properties in one particular instance (see €' on the Figure).

Expression of resource constraints and code generation

Qinna also provides a way to describe the resource constraints into a higher-lever language called gMEDL, a
variant of MEDL event logic described in [6], and whose precise syntax and semantics is described in [3]. Roughly
speaking, the logic can express boolean formulae on occurences of events. Atoms are of the form Q <1 K, with
K constant and <€ {<,=,<,...}, and @ is a quantity. The quantity are obtained by the use of auxiliary
variables and calls to value and time special functions: to each event e (or newg), time(e) and valuey(e) give
respectively the date of the last occurrence of the event and the k" argument of the function call when it occurs.

The Memory constraint for the whole application then can be encoded by N < 1024 where N counts the
total amount of malloc’s arguments: malloc -> N:=N+value_1(malloc). The translation is then made by the
gMEDL2 to C++ translator, and gives the following procedures (the identifiers have been changed for lisibility,
usedmen is a local variable to count the global amount of memory used yet):

bool testCIC_malloc(int nbblocks){
return (usedmem + nbblocks <= 1024)}

bool updateCIC_malloc(int nbblocks){
usedmem = usedmem + nbblocks; }

2.3. QoS Linking constraints. Unlike quality of resource constraints, linking constraints express the
relationship between components, in terms of quality of service. For instance, the following property is a linking
constraint: “ to provide the getImages at a “good” level of quality, the ImageBuffer component requires a
“big” amount of memory and a “fast” network”. This relationship between the different QoS of client and server
services are called QoS Linking Service Constraints (QLSC).

Implementation Level To all provided services that can vary according to the desired QoS we associate
an implementation level. This implementation level (IL) encodes which part of implementation to choose
when supplying the service. These implementation levels are totally ordered for a given service. As these
implementation levels are finitely many, we can restrict ourselves to the case of positive integers and suppose
that implementation level 0 is the “best” level, 1 gives a lesser quality of service, and so on.

We assume that required services for a given service doesn’t change according to the implementation level,
that is, the call graph of a given service is always the same. However, the arguments of the required services
calls may change.

256 Laure Gonnord and Jean-Philippe Babau

Linking constraints expression Let us consider a component € which provides a service s that requires
r1 and rq services. Qinna permits to link the different implementation levels between callers and callees. The
relationship between the different implementation levels can be viewed as a function which associates to each
implementation level of s an implementation level for r; and for ro:

QLSC,:| N — N?
IL — (ILy,ILs)

This function is statically encoded by the developer within the application. For instance, it can easily be
implemented in the QoSManager through a “mapping” table whose lines encode the tuples of linked implemen-
tation levels: (ILs,,IL,,,IL,,). The natural order of the lines of the table is used to determine which tuple to
consider if the current negotiation fails.

5
ry = == F—
——ELM S1
- =

-

T I e AN

= =linking constraint

Fia. 2.3. Implementation levels and linking constraints

Thus, as soon as an implementation level is set for the s; service, the implementation levels of all required
services (and all the implementation levels in the call tree) are set (Figure 2.3). This has a consequence not
only on the executed code of all the involved services (and also internal functions) but also on the arguments
of the service calls.

Therefore, if a user asks for the service s; at some implementation level, the demand may fail due to some
resource constraint. That’s why every demand for a service must be negotiated and the notion of contract will
be accurate to implement a set of a satisfactory implementation levels for (a set of) future calls.

Implementation of linking constraints in Qinna The links between the provided QoS and the QoS of
the required services are made through a table whose lines encode the tuples of linked implementation levels:
(ILs,IL,,,IL,,). This “mapping” table is encoded in the QoSManager. The natural order of the lines of the
table is used to determine which tuple to consider if the current negotiation fails.

Now we have all the elements to define the notion of contract.

2.4. Qinna’s contracts. Qinna provides the notion of contract to ensure both behavioral constraints
(Type Constraints and Intance Constraints of services, as described in Section 2.2) and linking constraints.

When a service call is made at some implementation level, all the subservices implementation level are fixed
implicitly through the linking constraints. As all the implementation levels for a same service are ordered, the
objective is to find the best implementation level that is feasible (w.r.t. the behavioral constraints of all the
components and service involved in the call tree).

Contract Negotiation All service calls in Qinna are made after negotiation. The user (at toplevel) of
the service asks for the service at some interval of “satisfactory” implementation levels. Qinna then is able
to find the best implementation level in this interval that respects all the behavioral constraints (CICs and
CTCs of all the services involved in the call tree). If there is no intersection between feasible and satisfactory
implementation levels, no contract is built. In the other case, a contract is made for the specific service. A
contract is thus a tuple (id, s;, IL, [I Liin, I Limaz], imp) denoting respectively its identifiant number, the referred
service, the current implementation level, the interval of satisfactory implementation levels, and the importance
of the contract. This last variable is used to sort the list of all current contracts and is used for degradation (see
next paragraph). The importance value is statically set by the developer each time he asks for a new contract.

After contract initialization, all the service calls must respect the terms of the contract. In the other case,
there will be some renegotiation.

Contract Maintenance and Degradation After each service call the decision procedure for behavioral

constraints are updated. After that, a contract may not be valid anymore. As all service calls are made
through the Brokers by the Domain, the Domain is automatically notified of a contract failure. In this case, the

Qinna: a component-based framework for runtime safe resource adaptation of embedded systems 257

Domain tries to degrade the contract of least importance (which may be not the same as the current one). This
degradation has consequences on the resource and thus can permit other service calls inside the first contract.
Basically, degrading a contract consists in setting a lesser implementation level among the satisfactory ones,
but which is still feasible. If it is not possible, the contract is stopped.
It is important to notice that contract degradation is effective only at toplevel, and thus is performed by
the Domain. It means that there is no degradation of implementation level outside toplevel. That is why we
only speak of contract for service at toplevel.

Use of services Each call to a service at toplevel as consequences on the contract which has been negociated
for him. We suppose that a contract is made before the first invocation of the desired service. The verification
could automatically be done with Qinna, but is not not yet implemented. All the notifications of failures are
logged for the developer.

3. Qinna’s components implementation in C++4. We implemented in C++ the Qinna components
and algorithms. These components are provided through classes which we detail in this section.

3.1. Qinna’s components for the management of services. QoSComponent The QoSComponent
class provides generic constructors and destructors, and contains a private structure to save the current imple-
mentation levels of the component provided service. All QoS components will inherit from this class.

QoSBroker The QoSBroker class contains a private structure to save the references to all the corresponding
components it is responsible for. It provides the two functions Free (QoSComponent* refQc) and Reserve(...).
As testCIC and updateCIC functions signature depends of each component/service, these functions will be
provided in each instance of QoSBroker.

QoSManager The QoSManager class contains all information for the service provided by its associated
component. It provide the following public functions:

e bool SetServiceInfos(int idserv, QoSComponent *compo, int nbreq, int nbmap) initializes
the manager for the idserv service, provided by *compo, with nbreg required services and nbmap different
implementation levels. Return true if successful, false otherwise.

e bool AddLevQoSReq(int idserv, int lv, int irq, int lrq) adds the tuple (lv,irg,lrq) (the lv
implementation level for idserv is linked to the Irq implementation level for irq service) in the mapping
table for idserv.

e int Reserve(int idserv, int 1v) is used for the reservation of the idserv service at level il. It
returns the local number of (sub) contract of the Manager or 0 if the reservation has failed (due to
resource constraints).

QoSDomain The QoSDomain class provides functions for managing contracts at toplevel:

e bool AddService(int service, int nbRq, int nbMp, QoSManager *qm) adds the service service
with nbRq required services and nbMp implementation levels, with associated manager xgm.

e int Reserve(QoSComponent *compo,int ns , int lv, int imp) is used for reservation of the ser-
vice ns provided by the component xcompo at level [v and importance imp. it returns the number of
contract (in domain) if successful, 0 otherwise.

e bool Free(int id) frees the contract number id (of domain).

ManagerContract This class provides a generic structure for a subcontract which encodes a tuple of the
form < id,lv, *rq,v > where id is the contract number, [v the current level, rq is the component that provides
the service and v is a C++-vector that encode the levels of the required services. This class provides access
functions to these variables and a function to change the implementation level.

DomainContract This class provides a structure for contracts at toplevel. A Domain contract is a tuple
of the form < di,i,lv,*rq > where di is the global identifier of the contract, *rq is the manager associated to
the component that provides the service, ¢ is the local number of subcontract for the manager, and [v is the
current level of the service.

Remark 1 All services and contracts have global identifiers used in toplevel. However, it is important to notice
that service and (sub) contracts have local identifiers in their respective managers.

258 Laure Gonnord and Jean-Philippe Babau

3.2. Basic resource components. In the call graph of one service, leaves are physical resources (Memory,
CPU, Network). As all resources must be encapsulated inside components, we need to encapsulate the base
functions into QoSComponents. For instance, the Memory component must be encoded as a wrapper around the
malloc function, and the associated broker basically implements the CIC functions which decide if the global
amount of allocated memory is reached or not.

Sometimes, the basic functions are encapsulated in higher level components. For instance, a high level
library might provide a DisplayImage function which makes an explicit call to malloc, but this call is hidden
by the use of the library. In this particular case, the management of basic resource functions can be done in
two different but equivalent ways:

e the creation of a “phantom” Memory component which provides the two services amalloc (for abstract
malloc) and afree. Each time the developer makes a call to an “implicit” resource function (i. e.
when the called function needs a significant amount of memory, like DisplayImage), he has to call
Memory.amallloc. The Qinna’s C++ implementation provides some basic components like Memory,
Network and CPU and their associated brokers.

e the creation of QoSComponent around the library function DisplayImage which is responsible (through
its broker) for the global amount of “quantity of resource” used for the DisplayImage function.

Both solutions need a precise knowledge of the libraries functions w.r.t the resource consumption. We
assume that the developer has this knowledge since he designs a resource-aware application. In our case study
we used the first solution.

4. Methodology to use Qinna. We suppose that in the application all resources, including hardware
resources (Memory, CPU) or software ones (viewer, buffer), are encoded by components. Here are the main
steps for integrating Qinna into an existing application designed in C++:

1. Identify the variable services which are functions whose call may fail due to some resource reasons.

They are of two types:

e simple functions like Memory.malloc whose code does not vary. They have a unique implementa-

tion level.

e “adaptive” functions whose code can vary according to implementation levels.
The first step is thus to identify the services whose quality vary and associate to each of this services a
unique key, and if the code vary, clearly identify the variant code through a code of the form:
switch(implLevel)

{

case 0 :

}
where implLevel is the associated (variable) attribute of the host component for this service. We must
identify which variable services are required for each provided service, and the relationship between the
different implementation levels.

2. Create Qinna components. First, cut the source code into QoSComponents that can provide one
or more QoSservices. As the QoS negotiation will only be made between QoSComponents of different
types, this split will have many consequences on the QoS management. For each QoSComponentC
(which inherits from the QoSComponent class), the designer must encode two classes: QoSBrokerC and
QoSManagerC which respectively inherit from the QoSBroker and QoSManager generic classes. For the
whole application, the designer will directly use the QoSDomain generic class.

3. Implement Quality of Resource constraints. These constraints are set in two different ways:

e The type constraints (CTC) for component C' implementation is composed of additional functions
in QoSBrokerC : initCTC which is executed at the creation of the Broker, and which sets the
decision procedures parameters ; a testCTC function to determine whether a new instance can be
created or not ; an updateCTC to save modifications of the resources after the creation. For each
provided QoS service s;, we add to new functions: testCTC(idsi) which is executed before the
call of a service and tells if the service can be done, and updateCTC(idsi) to be executed after
the call.

e The instance constraints (CIC) for C' are also composed of three functions to encode in the
QoSComponentC: setCIC to set the resources constants, testCTC(idsi) which is used to de-

Qinna: a component-based framework for runtime safe resource adaptation of embedded systems 259

cide if a service of identifiant ids can be called, and updateCTC(idsi) to update the resource

constraints after a call to the s; function.

4. Implement the linking constraints. The links between required services and provided service via
implementation levels are set by the invocation of the SetService and AddLevQoSReq functions of the
managers. These functions will be invoked at toplevel.

5. Modify the main file to initialize Qinna components at toplevel. Here are the main steps:

e For each base resource (CPU, Memory, ...)

(a) Invoke the constructor for the associated Broker. The constructor’s arguments must contain
the initialization of internal variables for type constraints (the total amount of memory for
example).

(b) Create the associated Manager with the Broker as argument.

c) Register the QoS services inside the Manager through the use of SetServiceInfos function.

Create QoSComponents instances via the Broker.reserve(...) function. The arguments

can be a certain amount of resource used by the component.

e For all the other QoSComponents, the required components first:

a
b

S~
o
~

) Create the associated Broker and Manager.

) Set the services information.

) If a service requires another service of another component, use the function Manager.AddReq
to link the required manager. Then use Manager.AddLevQoSReq to set the linking constraints.
(d) Create QoSComponent instances by invoking the corresponding reservation function

(Broker .Reserve).
e Create the QoSDomain and add the services that are used at toplevel (Domain.AddService)
e Reserve services via the QoSDomain and save the contracts’ numbers.

5. Viewer Implementation using Qinna.

5.1. Specification. Our case study is a remote viewer application whose high level specification follows:

e The system is composed of a mobile phone and a remote server. The application allows the downloading
and the visualization of remote images via a wireless link.

e The remote directory is reached via a ftp connection. After connection, two buttons “Next” and “Pre-
vious” are used to display images one by one. Locally, some images are stored in a buffer. To provide
a better quality of service, some images are downloaded in advance, while the oldest ones are removed
from the photo memory.

e The application must manage different qualities of services for the resources: shortage of bandwidth
and memory, or disconnections of the ftp server. When needed it can download images in lower quality
(in size or image compression rate).

e Different storage policies are possible, and there are many parameters which can be modified; like the
size of the buffer, or the number of images that are downloaded each time. We want to evaluate which
policy is the best according to a given scenario.

We want to use Qinna for two objectives:

e the maintenance of the application with respect to the different qualities of service,

e the evaluation of the influence of the parameters, on the non-functional behavior (timing performance
and resource usage).

5.2. The functional part. The functional part of the viewer is developed with Qt! (a C++ library which
provides graphical components and implementations of the ftp protocol). Figure 5.2 describes the main parts
of the standalone application. We chose to make the downloading part via the ftp protocol. The wireless part
is not encoded.

e The FtpClient class makes a connection to an existing ftp server and has a list of all distant images.
It provides a getSome function to enable the downloading of many files at once.

e The ImageBuffer class is responsible for the management of downloaded files in a local directory. As
the specification says, this buffer has a limited size and different policy for downloading images. The
class provides the two functions donext and doprevious which are asynchronous functions. A signal

Lhttp:/ /trolltech.com/products/qt/

260 Laure Gonnord and Jean-Philippe Babau

Fle View Help

PREVIOUS NEXT INIT 5/8 Buffer is full, ready to display

DISCONNECT | Ftp server: |local

display image
display image
dizsplay image
display image
display image
display image

Fia. 5.1. Screenshot of the viewer application

displayImage setPixmap
Main ® ImageScreen
init() J\ i Lnext/previous
initBuffer
(@
ImageViewer ImageBuffer
donext/doprevious

,L downlimdListL
connect T T T getSome

—e — congect
provided required FtpClient
get

Fia. 5.2. Functional view of the application

is thrown if/when the desired image is ready to be displayed. It eventually downloads future images in
current directory.

e The ImageViewer class is a high level component to make the interface between the ftp and buffer
classes to the graphics components.

e The ImageScreen class is responsible for the display of the image in a graphic component named
QPixmap.

e The main class provides all the graphics components for the Graphical User Interface.

5.3. Integration of Qinna. Now that we have the functional part of the application, we add the following
resource components: Memory, and Network which are QoSComponents that provide variable services. We only
focus on these two basic resources. The Network component is only linked to the FtpClient, whereas Memory
will be shared between all components. For Memory, the only variable service is amalloc which can fail if the
global amount of dedicated memory is reached ; this function has only one implementation level. For Network,
the provided function get can fail if there is too much activity on network (notion of bandwidth).

Then we follow the above methodology in the particular case of our remote viewer.

Qinna: a component-based framework for runtime safe resource adaptation of embedded systems 261

displaylmage ! setPixmay
L e ‘Y § i—(i ScreenMemory
BufferMemory
Memory

ImageBuffer
(®

,,,,,,,,,,,,, A ! g i
) ! %%l;ngtlous chrea d
— required H
®— provided “-----------. downloadLjst | Thread .
service with variable qualit
get auatity connectI T TgetSo e
............................ - nect !

4< o—
get g

Fia. 5.3. Architecture example

Identification of the variable services (step 1)
Now as the variable services for low level components have been identified, we list the following adaptive
services for the functional part:

e ImageScreen.displayImage varies among memory, it has three implementation levels which correspond
to the quality of the displayed image. We add calls to Memory.amalloc function to simulate the use of
Memory.

e Ftpclient.getsome’s implementation varies among available memory and the current bandwidth of
network. If there is not enough memory or network, it adapts the policy of the downloads. It has three
implementation levels. We add calls to Network.bandwidth to simulate the network resources that are
needed to download files.

e ImageBuffer.donext/previous varies among available memory: if there is not enough memory the
image is saved with high compression.

Creation of the QoSComponents (step 2)

The resource components are QoSComponents. Then, the three components ImageScreen, FtpClient
and ImageBuffer are QoSComponents which provide each one variable service. Imageviewer and Main are
QoSComponents as well. Figure 5.3 represents now the structure of the application at this step.

For the sake of simplicity, we only share Memory into two parts, a part for ImageBuffer and the other part
for imageBuffer. That means that each of these components have their own amount of memory.

Resource constraints (steps 3 and 4)

The quantity of resource constraints we have fixed are classical ones (bounds for the memory instances,
unique instantiation for the imageScreen component, no more than 80 percent of bandwidth for the ftpClient,
etc). The QLSC are very similar to those described in [11] for a videogame application. Here we show how we
have implemented some of these constraints in our application.

o Quantity of resource constraints The imageScreen component is responsible for the unique service
display_image (display the image on the graphic video widget). Here are some behavioral constraints
we implemented for this component:

— There is only one instance of the component once.

— The display function can only display images with size lesser or equal to 1200 * 800.

— There is only one call to the display function once.
These type constraints are easily implemented in the associated Broker (imageScreenBroker) in the
following way: the constraint “maximum of instance” requires two private attributes nbinstance and
nbinstancemax which are declared and initialized at the creation of the Broker with values 0 and 1.
Then the reservation of a new imageScreen by the Broker is done after checking whether or not
nbinstance + 1 < nbinstancemazx. If all checks are true, it reserves the instance and increments
nbinstance.

262 Laure Gonnord and Jean-Philippe Babau

The checking of memory is done by setting the global amount of memory for ImageBuffer and
imageBuffer in local variables which are set to 0 at the beginning of each contract, and updated
each time the function amalloc is called.
These constraints are rather simple but we can imagine more complex ones, provided they can be
checked with bounded complexity (this is a constraint coming from the fact the Qinna components will
also be embedded).

e (oS Linking constraints
To illustrate the difference between quality of resource constraints and linking constraints, we show
here the constraints for the FtpClient.getSome:

— The implementation level 0 corresponds to 3 successive downloads with the Network.get function.
The function has a unique implementation level but each call to it is made with 60 as argument,
to model the fact it requires 60% of the total bandwidth. These three calls are made through the
use of the Thread.thread with implementation level 0 (quick thread, no active wait).

— The implementation level 1 corresponds to 2 calls to the get function with 40% of bandwidth each
time. These two calls are made through the use of the Thread.thread with implementation level
1 (middle thread, few active wait).

— The implementation level 2 corresponds to 1 call to the get function with 20% bandwidth. This
call is made through the use of the Thread.thread with implementation level 2 (more active wait).

Thus if the available bandwidth is too low, a negotiation or an existing contract will fail because of the
resource constraints. The creation of the contract may fail because a thread cannot be provided at the desired
implementation level.

Modification of toplevel (step 5) This part is straightforward. The only choices we have to make are
the relative amount of resource (Memory, Network) which are allocated to each QoSComponents. The test
scenario is detailed in section 5.5.

5.4. Some statistics. The viewer is written in 4350 lines of code, the functional part taking roughly 1800
lines. The other lines are Qinna’s generic components (1650 loc.), 600 lines of code for the new components
(imagescreenBroker, imageScreenManager etc.) and 300 lines of code for the test scenarios. The binary is also
much bigger 4.7Mbytes versus 2Mbytes without Qinna.

Thus Qinna is costly, but all the supplementary lines of code do not need to be rewritten, because:

e Generic Qinna components, algorithms, and the basic resource components are provided with Qinna.

e The decision functions for Quality of service constraints could be automatically generated or be provided
as a “library of common constraints”.

e The initialization at toplevel could be computed-aided through user-friendly tables.

We think that the cost of Qinna in terms of binary code can be strongly reduced by avoiding the existing
redundancy in our current implementation.

Moreover, Qinna’s implementation can be viewed as a prototype to evaluate the resource use and the quality
of service management. After a preliminary phase with the whole implementation used to find the best linking
constraints, we can imagine an optimized compilation through glue code which neither includes brokers nor
managers.

5.5. Results. We realized a scenario with a new component whose only objective is to use the basic re-
sources Memory and Network. This TestC component provides only the foobar function at toplevel. This func-
tion has two implementation levels, and requires two functions: ScreenMemory.amalloc and Network.get. The
whole application provides four functions at toplevel: TestC.foobar, ImageViewer.donext (and doprevious)
and ImageScreen.displayimage. Three contracts are negotiated, in the following importance order: foobar
first, then donext and doprevious, then displayimage. We made the three contracts and download and visual-
ize images at the highest qualities, but at some point the foobar function causes the degradation of the contract
for displayimage, and the images are then shown in a degraded version, like the Eiffel tower on Figure 5.1.

The gap between the characteristics of the contract and the effective resource usage can be make through
the use of log functions provided by the Qinna implementation. Figure 5.4 shows for instance the memory usage
for another played scenario.

Qinna: a component-based framework for runtime safe resource adaptation of embedded systems 263

100 - -
used memory
80 |---reserved memory. oo

60 + i

40 | -

Memory in %

20 ¢t i

0

0 20 40 60 80 100

Time
Fia. 5.4. Memory use

6. Related works. Other works also propose to use a development framework to handle resource vari-
ability. In [10] and [6], the author propose a model-based framework for developping self-adaptative programs.
This approach uses high-level specifications based on temporal logic formula to generate program monitors. At
runtime, these monitors catch the system events and activates the reconfiguration. This approach is similar to
us except that it mainly deals with hybrid automata and there is no notion of contract degradation nor generic
algorithm for negociation.

The expression and maintenance of resource constraints is also considered as a fundamental issue, so much
work deals with this subject. In [5], the author use a probabilistic approach to evaluate the resource consumed
by the program paths. Some other works in the domain of verification try to prove conformance of one program
to some specification: in [7], for instance, the authors use synchronous observers to encode and verify logical
time contracts. At last, the QML language ([2], [1]) is now well used to express QoS properties. This last
approach is complementary to our one since it provides a language which could be compiled into source code
for QoSComponents or Brokers.

7. Conclusion and future work. In this paper, we have presented a case study using the software
architecture Qinna which was designed to handle resource constraints during the development and the execution
of embedded programs. We focused mainly on the development part, by giving a general development scheme to
use Qinna, and illustrating it on a case study. The resulting application is a resource-aware application, whose
resources constraints are guaranteed at runtime, and whose adaptation to variability of service is automatically
done by the Qinna components, through the notion of contracts. At last, we are able to evaluate at runtime
the threshold between contractualised resource and the real amount of resource effectively used.

This work has shown the effectivity of Qinna with respect to the programming effort, and the performance
of the modified application.

Future work include some improvements of Qinna’s C++ components, mainly on data structures, in order
to decrease the global cost of Qinna in terms of binary size, and more specific and detailed resource components,
in order to better fit to the platform specifications. Integrating Qinna into a model driven development tools,
such as Gaspard ([8]), can be a way to improve this efficiency.

From the theoretical point of view, there is also a need for a way to manage the linking constraints. The
developer has still to link the implementation levels of required and provided services, and the order between all
implementations levels is fixed by him as well. The tuning of all these links can only be done though simulation
yet. We think that some methods like controller synthesis ([4]) could be used to discover the/a optimal order

and linking relations w.r.t. some constraints such as “minimal variability”, “best reactivity” etc..

Finally, some theoretical work would be necessary in order to use Qinna as a prediction tool, and provide
an efficient compilation into “glue code”.

REFERENCES

[1] S. FroLunD AND J. KoISTINEN, @ml : A language for quality of service specification, tech. rep., HPL-98-10, 1998.
2] , Quality of services specification in distributed object systems design, in Proceedings of the 4th conference on USENIX
Conference on Object-Oriented Technologies and Systems (COOTS), Berkeley, CA, USA, 1998, USENIX Association.

264 Laure Gonnord and Jean-Philippe Babau

[3] L. GonnORD AND J.-P. BaBau, Quantity of Resource Properties Expression and Runtime Assurance for Embedded Systems,
in ACS/IEEE International Conference on Computer Systems and Applications, AICCSA’09, Rabbat, Morocco, May
2009, pp. 428-435.

[4] F. M. K. Avrisen, A. Cropic anp E. RuTTEN, Using controller synthesis to build property-enforcing layers, in European
Symposium on Programming (ESOP), April 2003.

[5] H. KozioLek anD V. Firus, Parametric Performance Contracts: Non-Markovian Loop Modelling and an Ezperimental
Ewvaluation, in Formal Foundations of Embedded Software and Component-Based Software Architectures (FESCA), Elec-
tronical Notes in Computer Science, Vienna, Austria, 2006.

[6] I. LEE, S. KannaN, M. Kim, O. SokoLsKY, AND M. VISWANATHAN, Runtime assurance based on formal specifications,
in Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(IPDPS’99), 1999.

[7] F. MARrRANINCHI AND L. MOREL, Logical-time contracts for reactive embedded components, in 30th EUROMICRO Conference
on Component-Based Software Engineering Track, ECBSE’04, Rennes, France, Aug. 2004.

[8] I.-R. QuaDRI, S. MEFTALI, AND J.-L. DEKEYSER, An mde approach for implementing partial dynamic reconfiguration in
fpgas, in Proceedings of the 16th International Conference on IP-Based System-on-chip, Grenoble, France, 2007.

[9] M. SPARLING, Lessons learned through siz years of component-based development, Commun. ACM, 43 (2000).

[10] L. Tan, Model-based self-monitoring embedded systems with temporal logic specifications, in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE’05), 2005.

[11] J.-C. TOURNIER, Qinna: une architecture a base de composants pour la gestion de la qualité de service dans les systémes
embarqués mobiles, PhD thesis, INSA-Lyon, 2005.

[12] J.-C. ToURNIER, V. OLIVE, AND J.-P. BaBAU, Towards a dynamic management of QoS constraints in embedded systems,
in Workshop QoSCBSE, in conjunction with ADA’03, Toulouse, France, June 2003.

Edited by: Janusz Zalewski
Received: September 30, 2009
Accepted: October 19, 2009

