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DEPLOYMENT OF EMBEDDED WEB SERVICES IN REAL-TIME SYSTEMS

GUIDO MORITZ, STEFFEN PRUETER, DIRK TIMMERMANN*AND FRANK GOLATOWSKI'

Abstract. Service-oriented architectures (SOA) become more and more important in networked embedded systems. The main
advantages of Service-oriented architectures are a higher abstraction level and interoperability of devices. In this area, Web services
have become an important standard for communication between devices. However, this upcoming technology is only available on
devices with sufficient resources. Therefore, embedded devices are often excluded from the deployment of Web services due to a
lack of computing power, insufficient memory space and limited bandwidth. Furthermore, embedded devices often require real-time
capabilities for communication and process control. This paper presents a new table driven approach to handle real-time capable
Web services communication, on embedded hardware through the Devices Profile for Web Services.
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1. Introduction. High research efforts are made to develop cross domain communication middleware
basing on architectural concepts like REST (Representational state transfer) and Service-oriented Device Ar-
chitectures (SODA) [25] and on technologies like UPnP (Universal Plug and Play), JINI, and DPWS (Devices
Profile for Web Services). While UPnP, DLNA and related technologies are established in networked home and
small office environments, DPWS is widely used in the automation industry at device level [26] and it has been
shown that they are also applicable for Enterprise integration [24, 27]. Barisic et al. [33] outline the potential
of SOA to become a key factor in embedded software development. Embedded development process can be
improved significantly if the SOA paradigm is used in each development stage. However, to make this happen
it is necessary to establish the grounding for deeply embedded systems and real-time system

Besides the advantages of SODA, additional resources are required to host a necessary software stack. There
are SODA toolkits available for resource-constrained devices like UPnP stacks [28] or DPWS toolkits [8, 9].
However, additional effort is necessary for deployment on deeply embedded devices and especially for embedded
real-time systems. Deeply embedded devices are small microcontrollers with only a few kB of memory and
RAM (e.g. MSP430, ARM7). These devices cannot be applied with comprehensive operating systems. But
they are essential because as they combine price, low power properties, size and build-in hardware modules.

This work presents a new approach, which can be applied to deeply embedded devices and serve real-time
and specification compliant DPWS communication.

2. Services in Device Controlling Systems. The World Wide Web Consortium (W3C) specifies the
Web services standard [13]. UPnP is a popular specification in the home domain. Due to the lack of security
mechanisms and the missing service proxy it is limited to small networks (see [2]). Furthermore, UPnP based
communication scales not with the arising high number of future coming wireless smart cooperating objects due
to its usage of Simple Service Discovery Protocol (SSDP) for device discovery at run-time. Web services are
already widely used in large networks and the internet for business processes and server-to-server communication
mainly. This client-to-server interaction uses SOAP [12] for the transport layer and Extensible Markup Language
(XML) for the data representation [1, 15]. On the other hand, the Web services protocols need much computing
power and memory, in order to enable a device-to-device communication with more constraint resources as
servers. Therefore, a consortium lead by Microsoft has defined the Devices Profile for Web services (DPWS) [4].
DPWS uses several Web services protocols, while keeping aspect of resource constraint devices. In comparison to
standard Web services, DPWS is able to discover devices at run time dynamically based on WS-Discovery, WS-
MetadataExchange and WS-Transfer, without a global service registry (UDDI). The included WS-Eventing [6]
specification also enables clients to subscribe for events on a device to get notified by state changes. Thus,
pull messaging is avoided in favor of push messaging, which is a significant advantage for resource constraint
devices and networks. DPWS is integrated in Microsofts operating systems Windows Vista and Windows 7
and furthermore in miscellaneous frameworks like e.g. .net Micro Framework. Additionally, open source stacks
are available [8]. In August 2008 a technical committee (TC) at OASIS was formed for the “Web Services
Discovery and Web Services Devices Profile” (WS-DD) [5]. WS-DD defines a lightweight subset of the Web
Services protocol suite that makes it easy to find, share, and control devices on a network. The work of this
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TC is based on the former DPWS, WS-Discovery and SOAP-over-UDP specification. In July 2009 version 1.1
of named specifications were published by the OASIS WS-DD TC. For many companies, this is the reason for
developing new interfaces for their products based on these protocols.

Using service gateways is the predominating approach to bridge between different communication layers or
between embedded systems and enterprise systems. Our approach aims at lowering the efforts for integration
and interaction and to set on standards instead of re-develop new protocols. Buckl et al. [32] assume a data
centric processing model is used in embedded systems. Authors differentiate between embedded Services (called
as eServices ) and Web Services. Both worlds are integrated by a service gateway. In [34] Web Services
on Universal Networks (WSUN) is described. The presented SOA based platform (environment) which is
composed of broker, registry and universal adaptor and is able to bridge between different SOA technologies,
like Jini and DPWS. This work concentrates on interoperability between different subnets and uses DPWS to
integrate devices. Some work has been done to integrate DPWS into OSGi. While UPnP support has already
been standardized within OSGi, today some initial work and proposals have been done to extend OSGi with
DPWS [35, 36]. Fiehe et al. [36] describe a distributed architecture which uses DPWS to extend OSGi and
make OSGi a distributed system. This approach is similar to actual work on distributed OSGi inside OSGi
initiative. However, there still exists the lack to integrate DPWS capable device into OSGi.

Less work has been done to bring DPWS on deeply embedded systems and sensor networks and especially
real-time systems. With the new approach, presented in this paper, Web services become also available on
deeply embedded devices. Both, deeply embedded devices and devices that are more powerful will be enabled
to communicate and interact with each other. This substitutes the application layer proxies.

Through linking the devices to a higher level of communication, devices no longer rely on specific transfer
technologies like Ethernet. All devices in an infrastructure are connected via services. This services based
architecture is already used in upper layers. Services based communication becomes available on lower layers
nearest to the physical tier. This allows a higher abstraction level of process structures. The first step to allow
this is the creation of a SODA framework that fulfills the requirements of deeply embedded devices.

3. Requirements for a light weight SODA. High-level communication on resource constrained embed-
ded devices can result in an overall performance degradation. In a previous paper [7] Prueter et. al presented
different challenges which have to be met in order to realize DPWS communication with real-time characteristics.

Firstly, as a basis an underlying real-time operating system must exist, ensuring the scheduling of the
different, tasks in the right order and in specific time slots. Secondly, the physical network has to provide
real-time characteristics. The major challenge in DPWS with respect to the underlying network, is the binding
of DPWS and SOAP. SOAP is bound to the Hypertext Transfer Protocol (HTTP) for transmission. HTTP
is bound to the Transmission Control Protocol (TCP) [10] (see Figure 3.1). The TCP-standard includes non-
deterministic parts concerning a resend algorithm in case of an error. Furthermore, the Medium Access Control
(MAC) to the physical tier has to grant access to the data channel for predictable time slots. For example,
Ethernet cannot fulfill this requirement.

As shown in Figure 3.1, it is possible to use SOAP-over-UDP. But in accordance to the DPWS specification,
a device must support at least one HTTP interface [4].

In [7] Prueter et al. Xenomai [11] is used as operating system and RTNet [14] to grant network access
with real-time characteristics. RTNet relies on the User Datagram Protocol (UDP) instead of TCP and uses
Time Division Multiple Access (TDMA) for Medium Access Control (MAC). The usage of UDP demands
SOAP-over-UDP at the same time. At least two interfaces have to be implemented: A non real-time, DPWS
compliant HTTP/TCP interface and a real-time UDP interface. The disadvantage of using a special network
stack including a special MAC, also implies building up a separate network. In this network, all participating
notes have to conform to the MAC and used protocols.

For deeply embedded devices, various real-time operating systems exist. FreeRTOS [21] is a mini real-time
kernel for miscellaneous hardware platforms like ARM7, ARM9, AVR, x86, MSP430 etc. Unfortunately, no
useful real-time network stack and operating system combination is currently available for these kinds of deeply
embedded devices. Therefore, this paper concentrates on the possibilities to provide real-time characteristics in
the upper layers being on the top of TCP/IP.

The binding of DPWS and TCP through HTTP causes different challenges in granting real-time charac-
teristic for DPWS communication and is still an ongoing work in our research group. It is not possible to
reach deterministic characteristics without specific real-time operating systems and network stacks. A real-time
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operating system grants access to peripheries for predictable time slots and execution of tasks in the right order.
The arising high level communication may not interfere with the real-time process controlling. The underlying
real-time operating system takes care of correct thread management and correct scheduling of the real-time
and non real-time tasks. Tasks on the controller, competing with the communication, are prioritized by the
operating system.

In order to provide Web services on microcontrollers, different challenges have to be met. Figure 3.2 shows
the particular parts, which have to be realized.

3.1. Network Stack. The network stack, responsible for the right addressing and the way of exchanging
data, is the first module, which have to be realized and meet the resource requirements. Dunkels has developed
ulP and IwIP, two standard compliant TCP/IP stacks for 8 Bit controller architectures ( [15, 16, 17]). ulP
fulfills all minimum requirements for TCP/IP data transmissions. The major focuses are minimal code size,
memory and computing power usage on the controller, without losing standard conformance. lwIP also fulfills
non mandatory features of TCP/IP. Both implementations are designed to run on 8-bit architectures with and
without an operating system. The differences between both stacks are shown in the following Table 3.1.

DPWS bases on WS-Discovery for automatic discovery of devices and is based on IP Multicast. Multicast
applications use the connectionless and unreliable User Datagram Protocol (UDP) in order to achieve multicast
communications. ulP is able to send UDP Multicast messages, but is not able to join multicast groups and
receive multicast messages [17]. In contrast to ulP, the IwIP implementation supports all necessary UDP and
Multicast features. The above mentioned FreeRTOS can use the lwIP stack for networking. This combines
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TaBLE 3.1
ulP vs. lwIP
Feature ulP IwIP
IP and TCP checksums X
IP fragment reassembly
IP options
Multiple Interfaces

UDP
Multiple TCP connections
Variable TCP MSS
RTT estimation
TCP flow control
Sliding TCP window
TCP congestion control Not needed
Out-of-sequence TCP data
TCP urgent data X
Data buffered for rexmit

slisltaslls
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the advantages of a compatible, lightweight network stack and the usage of an embedded real-time operating
system.

3.2. SOAP. Upon the network stack, HTTP communication protocol is used for transport of unicast
messages. The payload is embedded in XML structures and sent via HTTP. All messages utilize the POST
method of HTTP for SOAP envelope delivery. Most addressing information in the HTTP header is redundant
because they are included in the SOAP message itself with a higher service abstraction. Significant HTTP
header information is the Content-Length filed to identify ending of messages in the TCP data stream. Because
DPWS requires a small part of the HTTP functionality only, it is not necessary to implement a full functional
HTTP stack.

In contrast, the XML processing and parsing draws more attention. On deeply embedded devices, with only
few kB of memory, the code size and the RAM usage have to be reduced. The WS-Discovery and WS-Metadata
messages exceed the Maximum Transmission Unit (MTU) of most network technologies, including Ethernet.
This supports the decision for IwIP in favour of ulP. The ulP implementation only uses one single global buffer
for sending and receiving messages. The application first has to process the message in the buffer, before it can
be overwritten [17]. In case of a complete XML message, the whole file has to be available before a useful parsing
can be processed. Additional, computing power is restricted to resource constrained devices. With respect to
the overall performance of the communication task, it is difficult to work through and parse the whole message
as a nested XML file. Therefore, our research group has developed and implemented a new approach to handle
HTTP and XML analysis. This new approach is described in the next section.

4. New Table Driven Approach. A complete implementation of SODA for deeply embedded systems,
like wireless sensor network nodes with limited processing power and memory, is a significant challenge. All
modules that are mentioned in section III like network stack, SOAP, HTTP and DPWS have to be implemented.

Due to dedicated characteristics and functionalities of sensors and actors in resource constraint environ-
ments, most of the exchanged information are discovery messages for the lose coupling of the devices during
run-time and basic service invocations with non-complex data types. We have analyzed different setups with
DPWS compliant implementations to identify which parts of DPWS could be omitted or adopted to reduce
necessary resources. In most scenarios, only few types of messages have to be processed. After discovery and
metadata exchange, the devices and their addresses are known and the services can be invoked. Only a few
parts change within the exchanged messages. Major parts of the messages stay unchanged. Every time a service
is called, almost the same message has to be parsed and almost the same message has to be build.

With all exchanged messages from the analysis of different scenarios, tables can be generated. The tables
contain all appropriated incoming and outgoing messages. The new implemented table driven approach is able
to response every request by referring to these tables.

This new table driven implementation is not based on SOAP and HTTP. Instead, we are using an approach
basing on a simple string comparison of incoming messages in this new implementation. The SOAP-Envelope
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containing the service invocations are simple structured and there is no need for complex parsing of messaging
including e.g. heavy weight XML namespace support. The messages are interpreted as simple text messages
and not as SOAP Envelopes being embedded in HTTP. The relevance of the received strings from HTTP and
SOAP protocols are unknown for the table driven device. Certainly, the table driven device can analyze the
incoming requests and filter required information. The device is able to send specific response with the correctly
adapted dynamic changing sections. The overhead for parsing and building always the same message is reduced
by this approach. Thereby memory usage and computation time are decreased in comparison to a traditional
implementation.

With respect to a real-time capable communication, the treatment of the messages as strings and not as
specific protocols is significant. The parsing as a string is independent of the depth of the nesting of XML
structures and defined by the length of the SOAP-Envelope only. The necessary time, to parse the message as
a string, is predictable. XML Schema, which is required by DPWS, cannot fulfill these requirements by default.

5. Mobile Robot Scenario. We verified our solution in a real world scenario. An external PC and an
overhead camera control a team of five autonomous robots. The robots are coordinated via DPWS interfaces.
The robots receive commands from a central server. The commands have to be executed in predicted timeslots
to prevent collisions and enable accurate movement of the robots. The whole setup is shown in Figure 5.1.

The team behavior of the robots is controlled by a central server which uses one or more cameras mounted
above the ground. Image processing software on the PC extracts the position of all robots in the field. On
the PC even the commands for the robots are calculated. These commands consist of global coordinates of the
robot positions and the target positions. These commands are sent with a high transmission rate to the robots.
The robots use global coordinates to update their own local and imprecise coordinate tracking. The robots
need this global updates in regular periods, otherwise a correct controlling cannot be granted. These real-time
requirements for controlling the robots with a parallel running communication system make the robot scenario
an ideal test bench for our implementations.

5.1. Robot Hardware. To control the robots we use two controller boards alternatively: an embedded
Linux board and an ARMY7 controller board. The embedded Linux board is the Cool Mote Master (CMM) from
LiPPERT. It is equipped with an AMD Alchemy AU 1550 processor [19]. This board is designed as a gateway
node for sensor networks. The CMM is already equipped with an 802.15.4 compliant transceiver. We have
extended the board with additional Bluetooth and Wi-Fi (IEEE 802.11) interfaces [20]. Thereby, the board has
three different radio technologies for networking beside Ethernet.

The ARM7 board is a SAM7-EX256 evaluation board from Olimex [23]. This board is applied with an Atmel
ARMYT controller with 256 kB memory and 64 kB RAM. The board already provides an Ethernet interface,
which was used for testing. The controller is running with a clock rate of 55MHz. It is possible to schedule the
IwIP stack and the implemented table driven device in different prioritized tasks with the help of FreeRTOS.

The implementations are evaluated on a standard PC and on these boards. An overview of used hardware
is provided in Table 5.1. The network devices are configured in a way, that all of them can handle IP traffic.

6. Implementation. Our research group has implemented the WS4D-gSOAP toolkit [8]. This is a soft-
ware solution, which includes a DPWS stack and software tools for creating of own Web services based on
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TABLE 5.1
Used hardware for testing the new table driven approach

x86 PC CMM SAM-7
CPU Intel Pentium 4 Alchemy AU 1550 Atmel ARM7

Clock Rate 3,4 GHz 500 MHz 55 MHz

ROM 500 GB 512 MB 256 kB

RAM 1024 MB 256 MB 64 kB
Operating System | Linux (2.6.24/Ubuntu) | Linux (2.6.17/Debian) | FreeRTOS 5.0

Network interfaces Ethernet Ethernet, 802.11g, Ethernet

802.15.4, Bluetooth

DPWS. This toolkit uses gSOAP [22] for SOAP functionalities and extends gSOAP with an implementation of
the DPWS specification. This traditional implementation will be used as benchmark for the new table driven
approach.

In the first step a service is created with the existing WS4D toolkit that provides all necessary commands
for the robots in our mobile robot scenario. The external PC calls a hosted service on the robots. The service
is called every time when new commands have to be send to the robots. The new commands are embedded in
the request. The service answers with a response, including a performance parameter of the robot.

In the second step, the exchanged messages are analyzed according to the DPWS specification. All possible
outgoing and incoming messages for the mobile robot scenario are generated. In the third step, a completely
new DPWS device is implemented. The structures and contents of the possible messages are deposited in the
new implemented device as strings. This device does not support any dynamic SOAP or HTTP functionalities.
The new table driven approach does not parse the whole incoming message as XML file. Every received
message is analyzed with an elementary string compare. Thereby the type of the message is figured out. If the
message type is known, the device answers with the related message. The answer is already deposited in the
implemented device as a string also. In the answer, only parts required by the DPWS specification and the
payload are changed. With respect to available resources of the target hardware platform, the implementation
can be optimized concerning the Flash and RAM memory usage. On the one hand, the generated tables can be
loaded in RAM at start time of the binary. This requires more available main memory, but can fasten the data
access during run time. On the other hand, the generated tables can also be stored in non-volatile memory like
Flash. This reduces footprint of the binary but may cause higher execution times during service invocation and
message processing. To meet real-time requirements, the choice between both options correlates to real-time
features of the underlying management of volatile and non-volatile memory access.

During the implementation of the table driven device, we have taken care that system functions are not
called in critical sections. For example, the main memory management is provided by the task itself. The task
allocates a pool of main memory when it is started and then organizes the main memory itself. Furthermore,
the different threads for the network stack and the threads handling the messages are analyzed to be scheduled
in the right order and with correct priorities.

6.1. Message Exchange. Figure 6.1 gives an overview of exchanged messages in the mobile robot sce-
nario. When starting the device, it announces itself with a Hello SOAP Envelope. Within this message only
the MessagelD and the transport specific address, are dynamically and has to be adapted. Furthermore, the
MessageNumber and the InstancelD has to be correct.

When a client was not started, as the device announces itself with a Hello, the client asks with a Probe
for available devices. The answer is a Probe Match, where the RelatesTo has to fit to the MessageID of the
Probe and the MessageID has to be dynamic. Here, also the MessageNumber and the InstanceID has to be
incremented.

When the devices and their addresses are known, the client will ask for the hosted services on the device in
the next step. Therefore, a GetMetadata Device is send to the hosting service, which is at least a hosted service
that announces representative the available hosted services. The GetMetadata message is the first one that is
sent via HTTP. Within the HTTP header, the Content-Length header field, the length of the message, and the TP
address has to be adopted. The address only has to be changed, if it was not known at compile time. This applies
to all IP addresses in the scenario. In the GetMetadata Device message SOAP-Envelope, the To XML tag has to
match to the address of the device, detected through the Probe. The device answers with a GetMetadata Device
Response message. In this message the RelatesTo has to match the MessageID of the GetMetadata Device.



Deployment of Embedded Web Services in Real-Time Systems 271

UDP Multicast
239.255.255.250

UDP Unicast Probe Match:

UDP Multicast
UDP Unicast Resolve Match:

HTTP/TCP - GetMetadata Devic
HTTP/TCP - GetMetadata Device Response:

HTTP/TCP - GetMetadata Service
HTTP/TCP - GetMetadata Service Response:

-
c
2
O
=
=
@
7]
3
[
L2
>
=
@
n

Service Provider / Device

HTTP/TCP - Service Usage Request:

UDP Multicast Bye

Fic. 6.1. Message Ezxchange

When the client knows available hosted services, the specific hosted service, that the client is looking for,
is asked for the usage interface with a GetMetadata Service. The GetMetadata Service Response refers to the
GetMetadata Service through the RelatesTo XML tag.

After the metadata exchange is complete, the client knows how to interact with the specific service and the
service usage starts. The client invokes the service with a message, where To and MessagelD has to be correct.
In the Service Usage Request, the coordinates of the mobile robot scenario are integrated. The service answers
with the Service Usage Response. Therein, the reference to the request is given through the RelatesTo tag.
In our special mobile robot scenario, the response also contains the ProcessingTime tag. In this section, the
service informs the service user about the time, the application needs to process the new coordinates and is a
performance parameter for the mobile robot.

An overview about the dynamic parts of the different messages is given in Table 6.1. The overall size for
the exchanged messages is 12.839 Bytes. The overall number of Bytes that can change is 588. Only 4.6% of the
overall exchanged bytes are dynamic in the mobile robot scenario.

6.2. Devices Footprint. The memory optimized WS4D toolkit implementation of the DPWS device
needs 360 kB of disk space when compiled for Linux on a x86 architecture. The table driven device implemen-
tation has a 16 kB footprint when compiled for a standard x86 PC running with Linux. Both versions do not
contain networking stacks in these x86 implementations. Both implementations for an x86 PC running with
Linux are using the BSD Socket API and corresponding network stacks included in Linux to handle the network
traffic. The same implementation of the new table driven approach ported to the SAM7-EX256 board running
with FreeRTOS 5.0 has a 13 kB footprint without network stack and interface drivers. As network stack the
independent IwIP stack in Version 1.3 is applied to the board. Therefore, the stack was ported to FreeRTOS 5.0.

The required disk space for the different parts on the SAMY7 board is shown in Table 6.2. The overall
memory being used on the board, including FreeRTOS, IwIP and the device needs 146 kB.

The heap and stack usages of both implementations are given in Table 6.3. The maximum stack and
heap usage of the table driven approach is much lower, because exchanged messages and their sizes are known
at compile-time and no non-required memory has to be allocated during run-time. Due to the soft resource
requirements of the used hardware platforms, the implementation of the table driven approach is still not full
optimized concerning heap and sack usage. It depends on the specific scenario, if the message tables are kept
into RAM during run-time or are loaded separately into RAM from non-volatile memory like flash on demand.
Keeping the contents of the tables in flash reduces heap and stack usage, but may cause a gain in responds time
due to higher access time to flash compared to RAM. For highly energy constrained devices with flash memory
for data storage on external hardware modules, swapping the tables to flash can have an influence on the overall
power consumption also. The flash hardware component can be switched of while keeping the tables without
consuming any energy, but have to be switched on every time when access to the tables is required. Thus,
depending on the specific scenario, a hybrid solution for table storage might be optimal. Often required tables
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TaBLE 6.1

Overview Exchanged Messages

Message Type

Changing parts

Dynamic Bytes

Hello MessagelD 36
XAddrs (IP) max. 17
AppSequence MessageNumber approx. 2
AppSequence Instanceld 10
Probe MessagelD 36
Probe Match MessageID 36
RelatesTo 36
AppSequence MessageNumber approx. 2
AppSequence Instanceld 10
GetMetada Device HTTP Content-Length max. b
HTTP Host 175, max. c.f. [10]
MessageID 36
To 36
GetMetadata Device Response HTTP Content-Length max. b
RelatesTo 36
Address 175, max. c.f. [10]
GetMetadata Service HTTP Content-Length max. 5
HTTP Host 175, max. c.f. [10]
MessageID 36
To 175, max. c.f. [10]
GetMetadata Service Response HTTP Content-Length max. 5
RelatesTo 36
Service Invocation Request HTTP Content-Length max. b
HTTP Host 175, max. c.f. [10]
MessagelD 36
To 36
Payload 16
Service Invocation Response HTTP Content-Length max. 5
RelatesTo 36
Payload 3
TABLE 6.2
Footprint of SAM7 Implementation with FreeRTOS and lwIP
Module Footprint
static DPWS device 13 kB
lwIP 1.3 77 kB
FreeRTOS including Debug Tasks 56 kB

used tables are kept into flash to reduce heap and stack usage while run-time.

6.3. Time Responds. Also some timing measurements have been done in order to have an objective
comparison for the new static approach. Therefore, the round trip time was measured that is required from
sending the message to receiving the response on the client side. Through this method the overall performance
and the maximum number of service invocations per second can be determined which can be served.

These measurements are done for a standard x86 PC and the SAM7 board. On both devices a 100 MB/s
Ethernet interface is applied, which has been used for the measurements. On the SAMT boards, an independent
thread simulated an additional CPU load. This CPU load thread was scheduled with different priorities. As

requesting client a standard PC (2x3,5 GHz with 1 GB RAM) was used in all cases.

The values are the average over 1000 requests, send back-to-back.

The following Table 6.3 shows the times measured for the different implementations of DPWS server/device.
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Device Round Trip Time | Requests per sec | Max Heap Usage | Max Stack usage
x86 PC 1,05 ms 952 112,76 Bytes 97,64 Bytes
WS4D toolkit
x86 PC 0,9 ms 1111 8,928 Bytes 15,324 Bytes
Table Driven DPWS
SAMT7-EX256 18,6 ms 53 N.A. N.A.
Table Driven DPWS
SAMT7-EX256 18,6 ms 53 N.A. N.A.
Table Driven DPWS
SAMT7-EX256 30,2 ms 33 N.A. N.A.
Table Driven DPWS

On the PC, the new implemented approach provides a faster overall processing. The time responds on the
real-time operating system of the SAMT7 board, depend on given priorities for the different competing tasks. As
long as the CPU load task has a lower priority than the DPWS and the lwIP tasks, no effect to the average
times could be measured.

7. Message structure optimizations. All messages in DPWS make use of XML for data representa-
tion. The application of XML in DPWS and Web Services has multiple advantages considering independency
of programming language, operating system, communication channel, data representation, and character set.
Certainly, XML implies a message overhead. Hence, this subsection describes several concepts for optimized
data encodings of SOAP messages.

Fast Web Services [30] are using ASN to compress the XML files into a resource optimized binary represen-
tation and to overcome performance issues for complex string operations in message processing. Sandoz et al.
developed a solution to convert Web Services specific XML Schema into ASN. The proposed approach reduces
the size of the XML data by more than factor four and “performance is nearly 10 times that of XML literal.
In other words, Fast Web Services will perform better as the size of the content increases." Nevertheless, this
approach leads to isolated applications and is incompatible with DPWS devices and clients that do not support
the ASN data representation.

The Efficient XML Interchange Working Group [29] develops an encoding format for XML, “that allows
efficient interchange of the XML Information Set and allows effective processor implementations". The main
focus is high data compression even of big and deep structures completely compliant to XML. Analyses have
shown that the binary documents can be up to 90% smaller than the original XML document.

In comparison to Efficient XML and Fast Web Services, A-SOAP [31] describes concepts for XML encod-
ing, which can be easily implemented in hardware and thereby much more energy efficient then in software.
Additionally, this approach provides real-time parsing characteristics.

A-SOAP (Adaptive SOAP) uses hash functions, to encapsulate complex XML structures. Constantly re-
current XML structures are represented by hash values (see example in Figure 7.1). For the transmission only
changing parts of the XML files are transmitted as proper XML tags. All tags known by sender and receiver
are transmitted by using hash values. Especially A-SOAP can be integrated in DPWS and assure compliance
to clients and devices which not support A-SOAP. An endpoint that cannot understand a SOAP message,
responds with a SOAP Fault message. In the case when an endpoint is not A-SOAP enabled, the overhead is
one additional request and one additional SOAP Fault. The sender then has to retransmit the message as a
compliant XML message. Certainly, this generic A-SOAP support detection mechanism is completely DPWS
compliant.

A-SOAP is a proper addition to the table driven approach. The contents of the generated tables can be
attached to hash values for identification. Not the contents have to be transmitted but only the dedicated hash
values. On the one hand, this reduces parsing efforts as hash values can be parsed in hardware and in software
fast and easily. On the other hand, the integration of the A-SOAP approach in toolkits for the implementation of
the table driven approach reduces footprints and memory consumption significantly. If possible communication
partners are already known at compile-time and thus all clients invoking the table driven device comply the
DPWS extended with A-SOAP functionalities, the tables might be omitted completely in the binaries. Only
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Device A
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Vs

Hash Table:
1:<soapenv:Envelope...>
2:<soapenv:Body>
21:<ns1:add...>
22:<ns1:in0>

-4— VALUE A
19:</ns1:in0>
0:<nst:in1>

-4+— VALUE B
20:</ns1:in1>
3:</ns1:add>
4:</soapenv:Body>
5:</soapenv:Envelope>

-

Device B

Vs

Hash Table:
1:<soapenv:Envelope...>
2:<soapenv:Body>
21:<ns1:add...>
22:<ns1:in0>

—» VALUE A
19:</ns1:in0>
0:<nst:in1>

—» VALUEB
20:</nst:in1>
3:</ns1:add>
4:</soapenv:Body>
5:</soapenv:Envelope>

-

*

Fig. 7.1. A-SOAP

the associated hash values have to be included. This results in real-time DPWS based communication even for
highly resource constrained platforms.

The disadvantage of A-SAOP is that it recently was granted as patent. Hence, there is no proposal for a
data compression to apply DPWS in WSNW.

8. Conclusion. The new table driven approach allows the usage of Web services on deeply embedded
devices. Furthermore, the implemented services can grant real-time capabilities. Thus, the deeply embedded
devices can be integrated in enterprise service structures. The created service interfaces can be reused in different
application. The connectivity between such large numbers of embedded devices normally needs proxy concepts
with static structures. Now, these proxies are no longer required. The devices can be directly accessed by
a high level process logic. Furthermore, the validation and certification become cheaper because of the slim
implementation and reusability of the interfaces.

The measurements show that the binary size of a device can be reduced by the factor of more than 20. At
the same time, the time responds can be improved. Heap and stack usages do not depend on specific dependent
values but on specific message exchange patterns of dedicated scenarios Through the implementation in different
threads, the time responds of the new implemented static approach is independent from other competing tasks.
However, this assumes an underlying real-time operating system.

Further optimization of the footprint and dynamic memory usage are a main focuses for the future work.
Future work will also research on a completely specification compliant implementation including optimized
message structuring for real-time parsing.
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