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t. High-performan
e platforms are required by modern appli
ations that make use of massive 
al
ulations. A
tually,low-
ost and high-performan
e spe
i�
 hardware (e.g. GPU) 
an be a good alternative along with CPUs, whi
h turned to multiple
ores, forming powerful heterogeneous desktop exe
ution platforms. Therefore, self-adaptive 
omputing is a promising paradigmas it 
an provide �exibility to explore di�erent 
omputing resour
es, on whi
h heterogeneous 
luster 
an be 
reated to improveperforman
e on di�erent exe
ution s
enarios. One approa
h is to explore run-time tasks migration among node's hardware towardsan optimal system load-balan
ing aiming at performan
e gains. This way, time requirements and its 
ross
utting behavior playan important role for task (re)allo
ation de
isions. This paper presents a self-res
heduling task strategy that makes use of aspe
t-oriented paradigms to address non-fun
tional appli
ation timing 
onstraints from earlier design phases. A 
ase study exploringRadar Image Pro
essing tasks is presented to demonstrate the proposed approa
h. Simulations results for this 
ase study areprovided in the 
ontext of a surveillan
e system based on Unmanned Aerial Vehi
les (UAVs).Key words: re
on�gurable 
omputing, dynami
 s
heduling, aspe
t-oriented paradigm, unmanned aerial vehi
les1. Introdu
tion. In addition to timing 
onstraints, modern appli
ations usually require high performan
eplatforms to deal with distin
t algorithms and massive 
al
ulations. The development of low-
ost powerful andappli
ation spe
i�
 hardware (e.g., GPU�Graphi
s Pro
essing Unit, the Cell pro
essor, PPU�Physi
s Pro-
essing Unit, DSP�Digital Signal Pro
essor, PCICC�PCI Cryptographi
 Co-pro
essor, FPGA�Field Pro-grammable Gate Array, among others) o�ers several alternatives for exe
ution platforms and appli
ation im-plementation, aiming at better performan
e, programmability and data 
ontrol. The resulting heterogeneity inthe exe
ution platform 
an be 
onsidered as an asymmetri
 multi-
ore 
luster. This 
luster's pro
essing poweris intensi�ed with the new generation of multi-
ore CPUs, being a 
hallenge to program appli
ations that usee�
iently all available resour
es and Pro
essing Units (PU).In this sense, low-
ost hybrid hardware ar
hite
tures are be
oming attra
tive to 
ompose adaptable exe-
ution platforms. Thus software appli
ations must bene�t from that powerfulness. This leads to the 
reationof new strategies to distribute appli
ations' workload (tasks, algorithms, or even full appli
ations that mustrun 
on
urrently) to exe
ute in asymmetri
 PUs in order to better meet appli
ation's requirements, su
h asperforman
e and timeliness, without loosing �exibility. Dynami
 and re
on�gurable load-balan
ing 
omputing(by means of task allo
ation re
on�guration, i. e., res
heduling) is a potential paradigm for those s
enarios,providing �exibility, improving e�
ien
y, and o�ering simpli
ity to program an (balan
ed) appli
ation on het-erogeneous and multi-
ore ar
hite
tures. Fig. 1.1 shows su
h a theoreti
al s
enario of a desktop-based platform
omposed of several devi
es.An important step towards the usage of the above mentioned hybrid platforms is to 
reate a real-time work-load self-res
heduling framework to balan
e the resour
e usage by appli
ations 
omposed of di�erent algorithms(graphi
s, massive mathemati
al 
al
ulations, sensor data pro
essing, arti�
ial intelligen
e, 
ryptography, et
.),exe
uting on top of su
h hybrid platforms under time 
onstraints, in order to a
hieve a minimal Quality ofServi
e. In addition, it has to be predi
ted that during exe
ution time, new tasks 
an arise and in�uen
e thewhole system. In this manner, su
h framework must keep monitoring the tasks' performan
e to provide onlineinformation for a possible new allo
ation balan
e, indi
ating that task res
heduling may be ne
essary to promotea better performan
e for the overall 
urrent s
enario.In this paper, the fo
us is on the very �rst step in the re
on�guration framework: appli
ation requirementshandling (res
heduling) in a high-level design phase. The approa
h is based on appli
ation requirements, like
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DSP 1Fig. 1.1. System overview.task/appli
ation deadlines, in order to �nd the 
urrent allo
ation balan
e that minimizes the whole appli
ation(s)exe
ution time. This information is used by the framework to balan
e the 
omputation over the exe
utionplatform. For its a

omplishment, 
ross
utting 
on
erns related to real-time non-fun
tional requirements aretaken into a

ount. Handling these 
on
erns by spe
i�
 design elements 
alled �aspe
ts� (from aspe
t-orientedparadigm [11℄) plays an important role for understandability and maintainability of the system design, as those
on
erns may in�uen
e di�erent parts of the system in di�erent ways. Then, based on the support o�eredby the aspe
ts to monitor and 
ontrol the resour
e usage (pro�ling), a strategy to assign tasks dynami
ally ispresented, whi
h is submitted to a run-time res
heduling when it is needed.The paper is organized as follows. Se
tion 2 starts with a previous work on aspe
ts and requirementsidenti�
ation, modeled using UML. Se
tion 3 follows with the dynami
 workload strategy implemented by the
reated aspe
ts. Composing these two 
on
epts, Se
tion 4 outlines an UAV surveillan
e system as 
ase study,fo
using on RIP (Radar Image Pro
essing) tasks, whi
h are dynami
ally 
reated at run-time. Finalizing, relatedwork, 
on
lusions and future dire
tions are exposed.2. Handling Timing Con
erns Using Aspe
ts. In order to a
hieve dynami
 res
heduling to improvetasks load-balan
ing, we investigate the use of aspe
t-oriented paradigms to 
ope with the modern system's
ross
utting 
on
erns, whi
h are usually related to Non-Fun
tional Requirements (NFR). Su
h requirementsmust be e�e
tively handled already from requirements analysis to implementation phases to enhan
e systemunderstandability during design. The 
ontext addressed by this work is similar to the one presented in the designof Distributed Real-time Embedded (DRE) systems, i. e. performan
e and timing NFR are very importantduring all appli
ation development phases. In this sense, we have adopted the taxonomy published in [6℄.Traditional approa
hes, su
h as obje
t-orientation, do not provide adequate means to deal with NFR han-dling. It o

urs due to the ine�
ient modularization for NFR handling elements (timing requirements probes,serialization me
hanisms, task migration me
hanisms, among others), i. e. they are not modularized in a singleor few system elements, but spread allover the system. Any 
hange in one of these elements requires 
hanges indi�erent parts of the system, leading to a tedious and error-prone task that does not s
ale in the developmentof large and 
omplex appli
ations. The observation of these drawba
ks motivates the use of an aspe
t-orientedapproa
h, whi
h makes possible to address su
h 
on
erns in a modularized way. It separates the handling ofthe non-fun
tional 
on
erns in spe
i�
 elements, in
reasing the system modularity, diminishing the 
ouplingamong elements, and though a�e
ting positively the system maintainability, reuse and evolution [19℄. Moreoverspe
i�
ally, the advantages of an aspe
t-oriented approa
h be
ame 
learer when applied to the task allo
ationstrategies using heterogeneous platforms due to the need of pro�ling ea
h task in di�erent hardware, a�e
tingseveral elements of the appli
ation. The use of aspe
ts to address this 
on
ern represents an improvement sin
eit helps to 
ope with the 
omplexity in managing this 
on
ern spread through the whole system.
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 Computing Platforms. 279The next subse
tion presents a brief des
ription of the NFR taxonomy presented in [6℄. Following, a briefdes
ription of some aspe
ts from an aspe
t framework, 
alled DERAF [7℄, are presented to demonstrate how todeal with time-related NFR. Afterwards, an extension to DERAF, in terms of new aspe
ts to deal with dynami
re
on�gurable load-balan
ing, are is presented.2.1. Non-fun
tional Requirements. DRE systems domain presents a large set of NFR. Depending onthe appli
ation domain, some requirements are more important than others. The same 
an be said aboutNFR handling: some of NFR are mandatory handled, while others are not. In this sense, Fig. 2.1 shows NFRtaxonomy presented in [6℄, whi
h fo
us on some of these very important requirements of DRE systems domain.
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Memory AllocationFig. 2.1. NFR requirements for DRE systems.The real-time 
on
erns are 
aptured by the requirements within the T ime 
lassi�
ation, whi
h is dividedin T iming and Precision requirements. The former presents time-related 
hara
teristi
s of system's tasks,a
tivities, and/or a
tion, e.g. deadlines or periodi
 exe
utions. The later denotes 
onstraints that a�e
t thetemporal behavior of the system in a ��ne-grained� way, determining whether a system has hard or soft time
onstraints. An example is the Freshness requirement, whi
h denotes the time interval within whi
h a valueof a sampled data is 
onsidered updated. Another key requirement is the Jitter, whi
h dire
tly a�e
ts systempredi
tability sin
e large varian
e in timing 
hara
teristi
s a�e
ts system determinism.
Performance requirements are not only tightly related to those presented in the T ime 
lassi�
ation, butalso to those 
on
entrated in the Distribution 
lassi�
ation. They usually represent requirements employed toexpress a global need of performan
e, like the end-to-end response time for a 
ertain a
tivity performed by thesystem, or the required throughput rate in term of sending/re
eiving messages.
Distribution 
lassi�
ation presents requirements related to the distribution of DRE system's a
tivities,whi
h usually exe
ute 
on
urrently. For instan
e, these 
on
erns address problems su
h as task allo
ation overdi�erent PUs, as well as the syn
hronization and 
ommuni
ation needs and 
onstraints. Con
erns related toembedded systems generally present requirements related to memory usage, energy 
onsumption, and requiredhardware area size. Embedded 
lassi�
ation gathers these 
on
erns.



280 A. Binotto, E. Pignaton, M. Wehrmeister, C. Pereira, A. Stork, and T. LarssonIn this paper, the interest is to provide a runtime re
on�gurable solution aiming at meeting time-relatedrequirements. All me
hanisms related to tasks migration among di�erent PUs are non-fun
tional 
ross
utting
on
erns, whi
h are tightly related to system re
on�guration. In this sense, tasks migration is not only anexpe
ted �nal behavior of any system, but it also a�e
ts several fun
tional elements in di�erent ways and indi�erent parts of the system.2.2. Time-related Aspe
ts. In order to address the mentioned T ime and Precision requirements, thiswork (re)uses aspe
ts from the Distributed Embedded Real-time Aspe
ts Framework (DERAF) [7℄. DERAF'sTiming and Pre
ision pa
kages are presented in Fig. 2.2. A short des
ription of ea
h aspe
t is provided in thefollowing paragraphs. Interested readers are pointed also to [7℄ for more details about DERAF.TimingAttributes: adds timing attributes to a
tive obje
ts (e.g. deadline, priority, WCET, start/endtime, among others), and also the 
orresponding behavior to initialize these attributes.Periodi
Timing: 
ontrols exe
ution of a
tive obje
ts by means of a periodi
 a
tivation me
hanism. Thisimprovement requires the addition of an attribute representing the a
tivation period and a way to 
ontrol theexe
ution frequen
y a

ording to this period.S
hedulingSupport: inserts a s
heduling me
hanism to 
ontrol the exe
ution of a
tive obje
ts. Addition-ally, this aspe
t handles the in
lusion of a
tive obje
ts into the s
heduling list, as well as the exe
ution of thefeasibility test to verify if the a
tive obje
ts list is s
hedulable.TimeBoundedA
tivity: limits the exe
ution of an a
tivity in terms of a deadline for �nishing this a
tivity,i. e. it adds a me
hanism to restri
t the maximum exe
ution time for an a
tivity, e.g. it limits the time whi
h ashared resour
e 
an be lo
ked by an a
tive task. Jitter: measures the varian
e of a
tivities' timing 
hara
teristi
sby means of measuring their start/end time, and 
al
ulating the variation of these metri
s. If the toleratedvarian
e was overran, 
orre
tive a
tions 
an be performed.ToleratedDelay: restri
ts maximum laten
y for the beginning of an a
tivity exe
ution, e.g. limits themaximal duration in whi
h a task 
an wait to a
quire a lo
k on a shared resour
e.DataFreshness: 
ontrols system data's expiration by means of asso
iating timestamps to them, and alsoby verifying data validity before using them. Every time 
ontrolled data are written, their asso
iated timestampsmust be updated. Similarly, before reading these data, their timestamps must be 
he
ked [2℄.Clo
kDrift: 
ontrols deviation of 
lo
k referen
es in di�erent PUs. It measures the time at whi
h ana
tivity starts, 
omparing it with the expe
ted time for the beginning of this a
tivity; it also 
he
ks if thea

umulated di�eren
e among su

essive 
he
ks ex
eeds the maximum tolerated 
lo
k drift. If this is the 
ase,some 
orre
tive a
tion is performed.
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Fig. 2.2. Timing and Pre
ision pa
kages from DERAF.2.3. Aspe
ts to Support Tasks Self-Res
heduling. As mentioned before, task migration support
hara
terizes a non-fun
tional 
ross
utting 
on
ern in dynami
 tasks res
heduling, spreading its handlingme
hanisms over several system's elements in a non-standard way. Therefore, we propose to use aspe
ts todeal with this 
on
ern, and hen
e, two new aspe
ts have been in
orporated in DERAF: T imingV erifier,
TaskAllocationSolver.
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T imingV erifier and TaskAllocationSolver aspe
ts use time parameters inserted by Timing pa
kage'saspe
ts, and also servi
es provided by aspe
ts from the Pre
ision pa
kage. To keep DERAF logi
al organization,both aspe
ts have been in
luded in an additional pa
kage, named TaskAllo
ation pa
kage, is in
luded. Fig. 2.3depi
ts the res
heduling-related pa
kage.
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Fig. 2.3. Aspe
ts for Re
on�guration in
luded in DERAF.
T imingV erifier aspe
t is responsible for 
he
king if PUs are being able to ful�ll with timing require-ments spe
i�ed by T imingAttributes, PeriodicT iming, ToleratedDelay and T imeBoundedActivity aspe
ts.In addition, T imingV erifier uses servi
es provided by Jitter and ClockDrift.To perform this 
he
king, a me
hanism, whi
h 
ontrols if timing attributes are being respe
ted, is insertedin the beginning and in the end of ea
h task. More spe
i�
ally, this me
hanism 
onsists in measuring the
urrent time, 
omparing it with requirements spe
i�ed by the 
orrespondent attributes. For example, tasksdeadlines' a

omplishment 
an be 
he
ked by measuring the time in whi
h a task a
tually �nishes its 
om-putation, 
omparing this value with the time in whi
h this task was supposed to �nish. T imingV erifieruses the servi
e of the Jitter aspe
ts to gather information about the jitter related to analyzed require-ment (in the mentioned example, the task's deadline). Moreover, 
onsidering the deadline again as example,

T imingV erifier 
he
ks if the non-a

omplishment of a task's deadline is 
onstant, or if it varies in di�erentexe
utions or in the 
hanging the platform s
enario. In this sense, T imingV erifier 
an be used as base infor-mation, for instan
e, to know if the intera
tion among task is the responsible for the varian
e in tasks exe
utiontime.
ClockDrift aspe
t is used by T imingV erifier to gather information about syn
hronization among thedi�erent PUs, whi
h is used, in addition to the time spent for task migration between PUs, to 
al
ulate theoverall migration 
ost. To illustrate this idea, let's 
onsider a task that has been migrated from a PU �A� to aPU �B", whi
h is faster than PU �A� and potentially more 
apable of exe
uting this task. The di�eren
e in the
lo
k referen
e between these PUs 
ould lead to an additional delay for this task's out
ome (
oming from PU�B") that would not be worth in 
omparison with letting the task to run in the PU �A".The se
ond key aspe
t for tasks dynami
 res
heduling is the TaskAllocationSolver. It is responsible forde
iding if a task will be migrated or not, and also for sele
ting to whi
h PU this task is migrated. Forthat, TaskAllocationSolver 
he
ks the overload status of all destination PUs and the time spend for taskmigration, in order to de
ide if it is worthwhile to perform the migration. Hen
e, TaskAllocationSolveruses the measurements provided by T imingV erifier aspe
t. Based on these data, the reasoning about taskre
on�guration feasibility is performed, as explained in the next se
tion.
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on�guration itself and the retrieval of PUs status are performed by two other aspe
ts from DERAF:
TaskMigration and NodeStatusRetrieval. This way, reasoning and exe
ution of tasks re
on�guration arede
oupled, allowing that 
hanges performed by one aspe
t do not a�e
t the other one. A brief summary of the
TaskMigration and NodeStatusRetrieval aspe
ts is provided in the following.TaskMigration: provides a me
hanism to migrate a
tive obje
ts (tasks) from one PU to another one. Itwas originally used by aspe
ts that 
ontrol embedded 
on
erns and, in the present work, is extended to provideservi
es needed by TaskAllocationSolver aspe
t.NodeStatusRetrieval: inserts a me
hanism to retrieve information about pro
essing load, send/re
eivemessages rate, and/or the PU availability (i. e. �I'm alive� message). Before/after every exe
ution of a�e
teda
tive obje
ts (tasks), the pro
essing load is 
al
ulated. Before/after every sent/re
eived message, the messagerate is 
omputed. Additionally, PU availability message is sent at every �n� message or periodi
ally with aninterval of �n� time units. All of these information are taken into a

ount by TaskAllocationSolver during thetasks migration de
ision pro
ess.3. Dynami
 Tasks Self-S
heduling. A task-based approa
h is then used, in whi
h ea
h task is designedto be an independent algorithm. They are grouped a

ording derivation of the same high-level 
lass, simplifyingthe managing of possible dependen
ies. Besides, it is 
oherent to assume that a group of tasks will have similar
hara
teristi
s and hen
e would be desirable to exe
ute in the same PU. However, this 
an lead to a non-optimalexe
ution performan
e and must also be 
onsidered in the dynami
 strategy dis
ussed in the next sub-se
tions.3.1. First Assignment of Tasks. For the �rst assignment of tasks, we do not use the modeled aspe
ts,sin
e tasks' real time measurements are unknown on �rst exe
ution. One possibility is to perform the �rsts
hedule as a 
ommon assignment problem using Integer Linear Programming (ILP) and appli
ation timingrequirements, similar to the approa
h used by [9℄. This way, a set of tasks i = 1 to n have an implementation
x and an exe
ution 
ost estimation c on ea
h PU j; and the allo
ation was following designed: the task i is notallo
ated on the pro
essor j when xi,j = 0 and the task i is allo
ated on the pro
essor j when the xi,j = 1. The
onstraints for the model were the maximum workload for the PUs. Bellow, the 
onstraint of ea
h pro
essingunit j (U max), based on [9℄:

Uj =

n
∑

i=1

xi,jci,j ≤ Ujmax
(3.1)The best allo
ation was, then, found using the obje
tive fun
tion that minimizes the resour
e utilization(per
entage of o

upan
y for the PUs), de�ned as:

{

n
∑

j=1

n
∑

i=1

xi,jci,j

} (3.2)being the assignment variables xi,j the solution for the modeled ILP, m the number of 
omputing units and nthe number of 
onsidered tasks.The mentioned ILP problem is of NP-hard 
omplexity and be
ome more 
omplex in the s
ope of this workwhen dealing with more than two 
omputing units and several tasks. To optimize the assignment 
al
ulation,some approa
hes 
on
entrate on heuristi
s, as presented on [13℄.However, this dire
tion of estimating 
osts neither 
onsiders real exe
ution times nor 
ould represent thebest assignment sin
e a great number of estimations is used. This way, a se
ond step of assignment allows takinginto a

ount real exe
ution measurements extra
ted from the pro
essors as well as dealing with the 
onstraintspresented by the NFRs. Based on that, the following dynami
 module deals with real performan
e exe
utionvariables and possibly leads to a further better task assignment.3.2. Task S
heduling Re
on�guration. After the �rst assignment, information provided by the pro-�ling aspe
ts is 
onsidered
onsidered. Based on involved estimated 
osts (previously 
al
ulated using the pre-pro
essing approa
h of the �rst guess) and possible �interferen
es� of runtime 
onditions and new loaded tasks,one task 
an be res
heduled to run in other pro
essing unit just if the estimated time to be exe
uted in the newhardware will be less than the time in the a
tual unit, i. e., just if there is a gain. Simply, this relationship 
anbe modeled in terms of the 
osts:
TreconfigPUnew < TremainingPUold − TestimatedPUnew − Toverhead (3.3)
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al
ulated, respe
-tively, for the 
urrent PU and for the 
andidate unit based on previous measurements (or on the �rst assignmentin the 
ase of �rst res
heduling invo
ation). An overhead (Toverhead) is 
onsidered to 
al
ulate the exe
utiontime of the re
on�guration itself. The relationship between TremainingPUold and TestimatedPUnew is, then, thepartial gain.The information to 
al
ulate the res
heduling will be then provided by the TimingVeri�er aspe
t and 
anbe modeled as:
TreconfigPUnew = TsetupReconfigPUnew + TtemporaryStorage +

TtransferRate + TexecutionPUnew + L
(3.4)where TsetupReconfigPUnew represents the time for setting up a new 
on�guration on the new pro
essor;TtemporaryStorage is the time spent to save temporal data (
onsidering shared and global memory a

ess);TtransferRate measures the 
ost for sending/re
eiving data from/to the CPU to/from the new pro
essing unit,whi
h 
an be a bottlene
k on the whole 
al
ulation; TexecutionPUnew symbolizes the measured or estimated 
ostof the task pro
essed in the new unit; and L denotes a 
onstant to represent possible system laten
y.Reinfor
ing the 
on
epts, this approa
h deals with runtime 
onditions, like input emphdata type and amountto be pro
essed, tasks assignment, and instantiation of new tasks �on the �y�. All these runtime parametersthat 
ould not be known a priori 
an in�uen
e the exe
ution of the system and must be evaluated periodi
ally,leading to a large number of re
on�guration analysis and de
isions. Then, supposing that a determined task isgoing to be exe
uted n times in a determined time window, the strategy bellow res
hedules the formed queueof task instantiations, giving a new relation of gain, just if the following assumption o

urs:

TreconfigPUnew <

n
∑

i=1

(

TtaskPUoldi
+ TtransferPUoldi

− TtaskPUnewi
− TtransferPUnewi

) (3.5)where Tre
on�gPUnew is the time to perform the re
on�guration (mainly data transfer from the 
urrentpro
essing unit to the new one if the task needs the 
al
ulated data done until the time of res
heduling),TtaskPUold is the time performan
e of the task in the 
urrent unit, TtransferPUold is the time for trans-ferring data from CPU to the 
urrent 
omputing unit (via bus), TtaskPUnew is the assumed time performan
eof the task in the 
andidate pro
essing unit, and TtransferPUnew is the time for transferring data from CPUto the 
andidate unit (via bus).Algorithm 1, bellow, des
ribes the task reallo
ation module. It is also important to mention that theheuristi
 needs improvements along future works.Algorithm 1 Task Reallo
ation Heuristi
.1: A
quire Timing Data (Performan
e) about Previous Tasks Exe
ution, storing them in a performan
eDatabase (Initialized a

ording to First Assignment Phase and Regularly Updated);2: A
quire information about PUs;3: if Task has never been not exe
uted then4: Allo
ate it to a PUs a

ording to First Assignment, storing it on the Database;5: end if6: Cal
ulate Equation 3.5 a

ording to Performan
e Data;7: Exe
ute Load-Balan
ing Algorithm;8: Perform Re
on�guration De
ision;9: Res
hedule Task to perform the Re
on�guration when appli
able;10: Store Performan
e Data in the Database;4. Case Study: UAV-based Area Surveillan
e System. The use of the presented ideas is illustratedby a 
ase study that 
onsists of a �eet of Unmanned Aerial Vehi
les (UAVs) in the 
ontext of area surveillan
emissions. This kind of system has several kinds of appli
ations, su
h as military surveillan
e, borderline pa-trolling, and 
ivilian res
ue support in 
ases of natural disasters, among others. Fig. 4.1 illustrates a militarysurveillan
e usage s
enario where the UAVs 
an also 
ommuni
ate with ea
h other.Su
h UAVs 
an be equipped with di�erent kinds of sensors that 
an be applied, depending on the weather
onditions, time of the day and goals of the surveillan
e mission [16℄. In this 
ase study, it is 
onsidered a �eet
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Fig. 4.1. UAV-based Area Surveillan
e System.of UAVs that might a

omplish missions during all the day and under whatever weather 
ondition. UAVs mustbe able to provide di�erent levels of information de�nition and detail, depending on the required data.The UAVs re
eive a mission to survey a 
ertain area, providing required data a

ording to mission dire
tions.Their movements are 
oordinated with the other UAVs in the �eet to avoid 
ollisions and also to provide optimum
overage of the target area.Ea
h UAV is 
omposed by six subsystems, making it 
apable to a

omplish its mission and alto to 
oordi-nate with the others UAVs. These subsystems are: Collision Avoidan
e, Movement Control, Communi
ation,Navigation, Image Pro
essing, and Mission Management.At this point, it is important to highlight the trade-o� regarding 
ost, weight and size, and e�e
tivenessof ea
h UAV. The devi
e, as a whole, may not be too big nor too heavy, in order to avoid unne
essary fuel
onsumption, as well as to be less sus
eptible of dete
tion by 
ounter for
es sensors. Additionally, it may nothave an enormous 
ost that 
ould forbids the proje
t. However, the UAV must be e�e
tive enough to providethe required data within an a�ordable 
ost and time budget. For more details about this trade-o� dis
ussionwe address the readers to [16℄.Another UAV's interesting feature is the possibility to apply di�erent poli
ies to missions, depending on user�nal intentions and spe
i�
 requirements. There are two extremes for these poli
ies: (i) Devi
e PreservationAnyhow and (ii) Mission A

omplishment Anyhow. The �rst one 
onsists of preserving UAVs even if themission is not a

omplished. It is espe
ially applied in 
ases in whi
h the devi
es 
an be destroyed and theinformation gathered by it is not worth 
ompared to the 
ost of its destru
tion. On the other hand, in MissionA

omplishment Anyhow poli
y, the information gathered by the UAVs (and transmitted to the base station)is highly 
riti
al and over
omes the value of devi
e loss. Within these poli
ies, there are a variety of otherfa
tors that imposes di�erent 
onstraints to mission a

omplishment and devi
e preservation. Depending onthe mission poli
y adopted, more resour
es 
an be (re)dire
ted to tasks related to the movement 
ontrol (whenthe UAV is es
aping from a dangerous situation) or data gathering and pro
essing (when information gatheringhas the highest priority).In order to run the tasks des
ribed above, meeting the highlighted requirements and 
onstrains modeled onthe previous se
tions, we 
onsider UAVs equipped with the following sensors: Visible Light Camera (VLC); SARRadar (SARR) and Infra-Red Camera (IRC). To support the movement 
ontrol and devi
es 
ommuni
ation,ea
h UAV is equipped with a hybrid �desktop�-based target platform whi
h is used a

ording to spe
i�
 needsduring the a

omplishment of a 
ertain mission, as detailed on se
tion 4.2.In this sense, ea
h mentioned subsystem has a number of tasks to perform spe
ialized a
tivities related toa spe
i�
 fun
tionality, as depi
ted in the use 
ases diagram presented in Fig. 4.2. Based on the analyses of the
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tionalities, a summary of these tasks is provided in the following paragraphs.
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Fig. 4.2. UAV Use Cases Diagram.Navigation guides the UAV movements, sending 
ontrol information to the Movement Control subsystem.It is 
omposed by the RouteControl and TargetPersuit tasks. The �rst task makes the ne
essary 
omputationto guide the UAV through established waypoints, while the se
ond one performs the same, but for dynami
waypoints that 
an be modi�ed a

ording to a moving obje
t.Image Pro
essing gathers analog images, digitalizing them for further pro
essing. It is 
omposed by�ve tasks: (i) CameraController, whi
h is responsible for 
amera movement, zoom and fo
us 
ontrol of IRCand VLC, and antenna dire
tion of SARR; (ii) Coder, whi
h 
odi�es the analog input into digital data; (iii)Compressor, whi
h 
ompresses the digital images; (iv) Re�e
ti�
ator, whi
h is responsible for the re�e
tion inX and Y axis of radar image, as well as the re
ti�
ation, that are ne
essary to avoid distortions in gatheredimages; (v) Filter, whi
h �lters radar images to eliminate the noise due to spe
kle e�e
t [14℄.Communi
ation it has two main tasks: LongRangeCom and ShortRangeCom. The �rst task provides
onne
tivity with pair 
ommuni
ation nodes in long distan
es (of the order of kilometers), while the se
ond oneprovides 
onne
tivity in short range distan
es (of the order of meters). These two tasks uses a third one, 
alledCode
, whi
h 
ode and de
ode data transmissions.Mission Management has also two tasks: MissionManager and Coordinator. The �rst one managesthe information about the mission, su
h as required data, mission poli
y and resour
e autonomy 
ontrol (e.g.remaining fuel). On the other hand, the se
ond one drives the 
oordination with the other UAVs to avoidoverlapping in the surveillan
e area.Collision Avoidan
e is 
omposed by two tasks: CollisionDete
tor, whi
h dete
ts possible 
ollisions withother UAVs of the �eet or non 
ooperative �ying obje
ts; and CollisionAvoider, whi
h 
al
ulates UAV's 
ollisiones
ape dire
tions, sending them to the Movement Control subsystem.4.1. Exe
ution Platform. The target ar
hite
ture of ea
h UAV is 
omposed of a four heterogeneousPUs platform: one host (the CPU), two GPUs, a PPU, and a PCICC. Fig. 4.3 shows the desired platform,where the Profiling gathers information from PUs (tasks performan
e) and the Reconfiguration distributesthe tasks along them (intra allo
ation) a

ording to the presented algorithms. It also 
onsider sending data tobe pro
essed by other UAVs (inter allo
ation).4.2. Re
on�guration Approa
h. Starting the mission, the UAVs have an initial task allo
ation through-out the CPU and the PU devi
es a

ording to sub-se
tion 3.1. In the 
urrent experimentation, it was 
onsideredto use the ILP approa
h for the �rst distribution using the GLPK toolkit [8℄. Table 1 exhibits estimated 
osts(based on [3℄) and �rst tasks' priorities that feed the GLPK-based simulation of task s
heduling.During exe
ution, the me
hanisms inje
ted by TimingVeri�er and the aspe
ts Jitter and Clo
kDrift willstart to generate information related to timing measurements. The TimingVeri�er aspe
t will provide data toTaskAllo
ationSolver, whi
h will get data from NodeStatusRetrieval. With the reasoning me
hanisms, it willperiodi
ally analyze the provided information a

ording to the algorithm introdu
ed in 3.2.
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Intra/Inter-UAV Run-Time Reconfigurable Load-Balancing
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Reconfiguration
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Fig. 4.3. Exe
ution platform.Table 4.1Task Estimation Costs.Task Estimated Cost (s
ale: 1 to 6) First PriorityGPU PPU CPU PCICC (s
ale: 1 to 6)Image Pro
essing 1 4 6 � 1Collision Avoidan
e 3 2 5 � 2Movement Control 2 2 3 � 1Navigation 1 1 2 � 3Communi
ationShort/Long range 4/6 � 3/5 1/2 4Mission Manage-ment 5 � 1 � 6Emphasis is given to the RIP subsystem, whi
h is 
onsidered to be the group that requires more pro
essingdue to the handling of large data and new instantiations 
reated dynami
ally. The RIP work�ow is depi
tedon Fig. 4.4. Theoreti
ally, tasks asso
iated to RIP should exe
ute with better performan
e on a GPU devi
ewhen the appli
ation is not aware about the 
ontext of the whole exe
ution s
enario, i. e. exe
uting standalone. Thus, initial demands of all tasks should be exe
uted in the GPU. Shortly, the 
aptured data (raws
alar image) must be �adjusted� regarding the SAR position parameters (range and azimuth), followed by FastFourier Transform (FFT), image rotation, and other 
orre
tions to produ
e the �nal image. This pro
ess 
anbe performed individually in the range and azimuth dire
tions and it 
onsists basi
ally in a data 
ompression onboth dire
tions using �lters that maximize the relation between the signal and the noisy. Readers are addressedto [5℄ to get re�ned explanations about the work�ow.Afterwards, in the explored surveillan
e system, the �nal image is submitted to a pos-pro
essing in orderto identify regions of interest that 
ould 
ontain obje
ts spe
i�ed in the mission dire
tions as a �pattern tobe found� or a �target�. In this 
ase, more resolution on spe
i�
 areas will be needed and new data will begenerated, demanding more pro
essing from the assigned PU(s) in order to produ
e new images and extra
trelevant information (patterns).Based on that des
ription, this dynami
 s
enario 
learly in�uen
es the tasks' priority sin
e, at a moment, thenew high-resolution images will have higher priorities if 
ompared to others that be
ame more �generi
". Theseevents 
annot be predi
ted a priory and the veri�
ation of su
h situation require a smart, 
ontext-aware, anddynami
 re
on�guration support to balan
e the workload, a

omplishing the timing requirements and budget.4.3. Results. Considering 2 UAVs in the 
ase study, Table 4.2 denotes the behavior of the dynami
res
hedule load-balan
er simulator. The ��rst guess� represents one instantiation of ea
h group of tasks assignedto a PU; and with dynami
 
reation of new groups (4, 8, and 12) of RIP tasks, the assignment is 
hanged andoptimized to minimize the total exe
ution time. Note that these values 
annot represent the best assignmentsin
e the version of the simulator did not 
onsider all parameters that in�uen
e the whole system. As it is an
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IFFTFig. 4.4. SAR Image Pro
essing (based on the notes of [5℄).Table 4.2Task Assignment.Task 1st Gess Dynami
 Image Pro
essingCreated Tasks4 8 12Image Pro
essing GPU1 GPU1 GPU1 GPU1GPU2 GPU2 GPU2PPU UAV2-GPU1Collision Avoidan
e GPU2 PPU CPU CPUMovement Control PPU PPU CPU CPUNavigation PPU PPU PPU CPUCommuni
ation CPU CPU CPU PCICCMission Management CPU CPU CPU CPUongoing work, more a

urate data about the res
hedule must be provided along the simulator's re�nement inorder to represent the s
enario as realisti
 as possible.5. Related Work. VEST (Virginia Embedded System Toolkit) [15℄ is a set of tools that uses aspe
ts to
ompose a distributed embedded system based on a 
omponent library. Those aspe
ts 
he
k the possibilityof 
omposing 
omponents with the information taken from system models. It provides analysis su
h as tasks
hedule feasibility. However, it performs stati
ally analysis at 
ompiling time. In our proposal, aspe
ts are useddynami
ally to 
hange the system 
on�guration at runtime, adapting its behavior to new operating 
onditions.
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on
erning dynami
 re
on�guration in 
luster 
omputing, like forexample ( [18℄; [12℄; [1℄), our approa
h 
on
entrates on single desktop platforms 
omposed by di�erent pro
ess-ing units where the re
on�guration is performed within these devi
es. In this way, the work presented by [9℄implements dynami
 re
on�guration methods for Real-Time Operating System servi
es running on a Re
on�g-urable System-on-Chip platform based on CPU and FPGA. The method, based on heuristi
s, take into a

ountthe idleness per
entage of the 
omputing units and unused FPGA area (
al
ulated as pre-pro
essing) to per-form the load-balan
ing and to de
ide about a re
on�guration of tasks in runtime by means of task migration.Our approa
h 
omplements this related work, developing generi
ally methods that 
omprise more than twopro
essing units and that work with dynami
 performan
e data.Targeting GPUs, the work of [17℄ presented a programming framework to a
hieve energy-aware 
omputing.On the proposed strategy, the 
ompiler translates the framework 
ode to a C++ 
ode for CPU and a CUDA
ode for GPU. Then, a runtime module dynami
ally sele
ts the appropriate pro
essor to run the 
ode takinginto a

ount the di�eren
e in energy e�
ien
y between CPU and GPU based on energy 
onsumption estimationmodels. However, it does not take into a

ount runtime energy measurements (runtime pro�ling), whi
h is animportant module of our work.Another approa
h, fo
using performan
e improvement of spheres 
ollision dete
tion simulation, was pro-posed by [10℄, in whi
h some strategies have been presented to perform data balan
ing over CPU and GPU,both in an automati
ally and manually options. That work takes into a

ount the performan
e of a kernelimplemented on the CPU and GPU. After the exe
ution starts, both versions of the programs are exe
utedwith equally input data and time performan
e is veri�ed. More data are then dynami
ally assigned to thepro
essor that exe
uted faster the previous data, indi
ating that the approa
h uses data de
omposition insteadof task de
omposition. Our work 
on
entrates on task de
omposition and its dynami
 assignment a

ording toestimated or pro�led performan
e.The work presented in [4℄ published a study to a

elerate 
ompute-intensive appli
ations using GPUs andFPGAs, listing some of their pros and 
ons. The work performed a qualitative 
omparison of appli
ation behav-ior on both 
omputing units taking into a

ount hardware features, appli
ation performan
e, 
ode 
omplexity,and overhead. Although GPUs 
an o�er a 
onsiderable performan
e gain for 
ertain appli
ation, that work'sresults showed that FPGAs 
an be an interesting 
omputing unit and 
ould promote a higher performan
e
ompared to GPU when appli
ations require �exibility to deal with large input data sets. However, using FP-GAs 
omes with 
ost of hardware 
on�guration before using it as a 
omputing unit, a task usually oriented toexperien
ed users. Thus, task re
on�guration frameworks, as the one presented in this work, 
ould provide ahigher abstra
tion layer to assist developers during system design.6. Con
lusions and Future Work. This paper presents a methodology to address the problem of e�
ienttask assignment in runtime targeting hybrid 
omputing platforms. It allows the use of resour
es o�ered byan asymmetri
 
omputer platform, providing 
omplian
e with dynami
 
hanges in timing requirements and
onstraints, and also runtime 
onditions. In order to a
hieve the proposed goals, our proposal uses an aspe
t-oriented framework in 
onjun
tion with a dynami
 task self-res
heduling strategy, in order to address thedynami
 runtime s
enarios under 
on
ern.A UAV-based surveillan
e system simulation has been used to show the need for workload adaptationrequired by sophisti
ated appli
ations, running on top of hybrid 
omputers, whi
h fa
e dynami
 exe
ution s
e-narios. Real-time task res
heduling was applied on UAV PUs, fo
using on RIP. Results indi
ate that res
hedul-ing 
ontributes to a more appropriate system resour
e usage, and hen
e towards performan
e improvement.Sending/re
eiving data between UAVs was also 
onsidered, but details about spe
i�
 problems related to theseintera
tions, su
h as delays in the 
ommuni
ation between the UAVs, have not been fo
used by this text.Future dire
tions lead to re�ne the s
heduling strategy to provide 
omplete simulations, 
onsidering alarger range of runtime parameters, in
luding the re
on�guration 
osts itself; and real algorithms for UAV'ssubsystems, emphasizing RIP dynami
ity. Heuristi
s to predi
t the future allo
ation of tasks based on its re
entuse seems to be a good strategy, and will possibly avoid unne
essary re
on�gurations in a spe
i�
 time-window.A
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