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t. A pre
ise lo
alization is required in order to maximize the usage of Mobile Sensor Network. As well, mobile robotsalso need a pre
ise lo
alization me
hanism for the same reason. In this paper, we showed a 
ombination of various lo
alizationme
hanisms for pre
ise lo
alization in three di�erent levels. Lo
alization 
an be 
lassi�ed in three big 
ategories: wide area andlong distan
e lo
alization with low a

ura
y, medium area and distan
e lo
alization with medium a

ura
y, and small area shortdistan
e lo
alization with high a

ura
y. In order to present lo
alization methods, traditional map building te
hnologies su
h asgrid maps or topologi
al maps 
an be used. We implemented mobile sensor vehi
les and 
omposed mobile sensor network with threelevels of lo
alization te
hniques. Ea
h mobile sensor vehi
les a
t as a mobile sensor node with the fa
ilities su
h as autonomousdriving, obsta
le dete
tion and avoidan
e, map building, 
ommuni
ation via wireless network, image pro
essing, extensibility ofmultiple heterogeneous sensors, and so on. For lo
alization, ea
h mobile sensor vehi
le has abilities of the lo
ation awareness bymobility traje
tory based lo
alization, RSSI based lo
alization and 
omputer vision based lo
alization. With this set of mobilesensor network, we have the possibility to demonstrate various lo
alization me
hanisms and their e�e
tiveness. In this paper, theresult of 
omputer vision based lo
alization, sensor mobility trail based lo
alization and RSSI based lo
alization will be presented.Key words: lo
alization, mobile sensor network, RSSI, dead-re
koning, 
omputer vision1. Introdu
tion. The resear
hes on Mobile Sensor Network (MSN) have been plenty worldwide. For MSN,there 
ould be a lot of valuable appli
ation with atta
hed sensors as well as 
apabilities su
h as lo
omotion,environmental information sensing, dead-re
koning, and so on. For su
h appli
ations, usual requirements havebeen a
knowledged with lo
alization of ea
h sensor node and formation of the whole sensor network. In thisresear
h we are going to dis
uss about lo
alization te
hniques for Mobile Sensor Vehi
le (MSV) whi
h 
an
ompose MSN. In addition, we will dis
uss a 
onstru
tion of MSN as well as required fun
tionalities of ea
hMSN. For the pre
ise lo
alization we may analyze human a
tions for lo
alization. For long distan
e and huge arealo
alization, humans 
all to their 
ounterpart and identify 
ounterpart's lo
ation by talking ea
h other. Fromthe 
onversation, only a rough lo
ation 
an be identi�ed. Thus we guess long distan
e lo
alization only allowsrough, ina

urate information of lo
ation but it is su�
ient to 
on�ne a region for more pre
ise lo
alization.For medium distan
e and medium area lo
alization, human moves by transportation methods but eventuallywalks in order to lo
alize. While walking, humans build a 
on
eptual map for the lo
al geographi
 informationor they already have knowledge around the area, i. e. they already built maps. This sort of medium distan
elo
alization requires relatively more pre
ise lo
alization information than long distan
e lo
alization as pre
iseas, at least, for walking, i. e. autonomous driving.For short distan
e and small area lo
alization, humans dete
t 
ounterparts by use of visual or aural infor-mation, i. e. they �nd their friends by their eyes. This sort of lo
alization dedu
es pre
ise information thanother two sort of lo
alization.Thus, we 
an 
on
lude and mimi
 the human lo
alization with mobile sensor networks. Even though itdepends on te
hniques and environments of the usage of MSN, we 
an 
ategorize the lo
alization te
hniquea

ording to its area or distan
e.There have been variety forms of Mobile Sensor Nodes whi
h utilizes various te
hniques of lo
alizationssu
h as RSSI, GPS, Raider, Laser, Camera, and so on [1℄ [2℄. One of the most prominent one, an RSSI basedlo
alization, usually measures radio signal strength and it works well with popular network devi
es. Moreover,an 802.11 devi
e based software approa
h 
an be realize easily as we did in this paper. However, RSSI methodis prone to be fragile with a presen
e of obsta
les or so whi
h will diminish or attenuate radio signal strength.In a short distan
e, RSSI signals usually is too high that nullify a

urate lo
alization thus it is good for longdistan
e, low a

urate lo
alization.By mimi
king human a
tions for lo
alization we 
an 
hoose RSSI for mobile sensors while wireless telephonesfor human and traje
tory based tra
king, so 
alled INS (Inertial Nauti
al System), as human walking. Of 
ourse,map building te
hniques are required for MSV as well as humans. For human visual lo
alization, we 
an 
hoose
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Fig. 1.1. Categorization of Lo
alization Te
hniques

Fig. 1.2. Relative Te
hniques for Lo
alizationa lo
alization te
hnique based on 
omputer vision. Thus we 
on
lude and 
ategorize lo
alization te
hniques inthree big 
ategories as shown in �gure 1.1 so that we 
an 
hoose proper lo
alization me
hanisms for its usage.And in order to ful�ll the lo
alization, not only lo
alization te
hniques but also te
hniques of 
ognition,motion 
ontrol, and per
eption are tightly related as shown in �gure 1.2. We must express idea of this paper interms of these 
on
epts of 
ognition, motion 
ontrol, per
eption and lo
alization.This paper is organized as follows. In se
tion 2 we will dis
uss lo
alization method that have been resear
hed.The following se
tion 3 we will analyze the requirement for MSV, the hardware design of MSV, and equipmentsfor lo
alization, and we will dis
uss software 
apabilities of MSV software and will show software 
omponentsto fully 
ontrol our MSV in
luding software for MSN itself, monitoring program, map building features, andother related topi
s. Then se
tion 4 will shows the approa
hes of 
omputer vision based lo
alization for smallarea, short distan
e pre
ise lo
alization. In se
tion 5, our approa
h and methodology for mobility traje
torybased lo
alization for medium distan
e lo
alization will be dis
ussed. In Se
tion 6 RSSI (Radio Signal StrengthIdenti�
ation) based lo
alization will be presented based on 802.11 devi
es with software modi�
ation. Finallyse
tion 7 will 
on
lude this paper with possible future resear
h topi
s.2. Related Works. There have been a lot of resear
hes regarding mobile sensor lo
alization. In thisse
tion, we will dis
uss past resear
hes and our idea 
on
entrating te
hniques with RSSI, vision and traje
tory-tra
king. This works are not restri
ted on mobile sensors only but also related to robot te
hnology.
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Fig. 2.1. Cal
ulation of distan
e from Camera Lens to Vertex of triangle ABC2.1. RSSI based Lo
alization. Radio Signal Strength Identi�
ation is one of the known solutions fordistan
e measure. It requires wireless network devi
e for mobile sensors and extra features.We use 802. 11 network devi
es whi
h have wide popularity. In addition we need 
ommuni
ation betweenmobile sensors thus 802.11 networking devi
es are popular solutions for us. RSSI features for 802.11 devi
enetworks are required features in order to implement physi
al layer of CSMA/CA networking [14℄. HoweverRSSI based distan
e measure is very prone to radio signal attenuation and thus has low a

ura
y. And it hassome restri
tion that on
e it is a data transfer modes, it 
annot swit
hed to API mode instantly. It impliesthe restri
ted realtimeness for RSSI based lo
alization. Manufa
tures of 802.11 devi
es usually provide theirarbitrary method for RSSI [11℄. In this paper, we will demonstrate our MSV su

essfully does long distan
e,low a

urate lo
alization only with 
ommer
ial 802.11 devi
es and networking software embedded on MSVs.2.2. Computer Vision based Approa
h. There are very few resear
hes on lo
alizations by use of
omputer vision te
hnology. There have been the previous results regarding mobile sensor vehi
le 
ontrol,obsta
le dete
tion and so on.Matsummoto et al. [15℄ used multiple 
ameras in order to 
ontrol mobile robots. In their resear
h, 
amerasare installed on their working spa
e instead of mobile vehi
le itself. Their whole system is 
onsisted of mobilerobots and multiple 
ameras and this helps the sear
h of proper path of robots. Keyes et al. [16℄ resear
hedvarious 
amera options su
h as lens type, 
amera type, 
amera lo
ations and so on. They also used multiple
ameras to obtain more pre
ise information.In this paper we will provide MSV with multiple 
ameras in order to a

omplish short distan
e, higha

urate lo
alization. However, a single MSV 
annot lo
ate its lo
ation pre
isely. The ultimate lo
alization 
anonly be done with the 
ooperation of nodes in MSN.The �rst requirement for lo
alization is to identify the lo
ation of 
olleague MSV as a base point. For thispurpose, we prepared three fa
ilities for ea
h MSV. Ea
h MSV 
an estimate its lo
ation by traje
tory trail.Moreover, ea
h MSV 
an identify other 
olleague MSV with their infrared LED signal. In addition, this lo
ationinformation 
an be 
ommuni
ated by wireless network devi
e equipped with ea
h MSV.Of 
ourse, a 
amera or a set of 
ameras are installed on an MSV in order to identify 
olleague MSVs. Thisset of 
ameras has infrared �lters in order to diminish the e�e
t of extra light noise in operating environment.2.2.1. Lo
ation Determination Problem. With a set of 
amera, the required information for lo
al-ization is 
olle
ted from the view of 
ameras. For example, an infrared LED light 
an be a parameter to
al
ulate the 
olleague's lo
ation. In this resear
h, we applied two previous results. The �rst one is SampleConsensus(RANSAC) Method [5℄ and the se
ond one is PnP Method [6℄ [7℄.For RANSAC method, be
ause of least square method, there is no possibility of wrong 
omputation withgross error value. This is the major reason why we applied RANSAC method. In order to solve the problemof 
onverting 3-dimensional view to 2-dimensional 
amera image, whi
h has lost distan
e problem, we appliedperspe
tive-3-point (P3P) problem.Figure 2.1 shows the basi
 prin
iple of P3P problem. The gray triangle is 
omposed by infrared LEDinstalled on ea
h MSV. Points A, B, C stand for ea
h infrared LEDs and these verti
es 
ompose a triangle.The distan
e Rab, Rbc, Rac is known 
onstants. From �gure 2.1 we 
an drive the following very well-known
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Fig. 3.1. Driving Me
hanism Outlookmathemati
al equation as shown in equation 2.1. The equation 2.1 is in 
losed form. The number of solutionsfrom these equations will be up to eight. However, there are up to four positive roots.
Rab

2
= a2

+ b2 − 2ab · cos θab

Rac
2

= a2
+ c2 − 2ac · cos θac (2.1)

Rbc
2

= b2
+ c2 − 2bc · cos θbcWith this P3P based method, we 
an only measure distan
es between observer and observed. For pre
iselo
alization, we must identify angle of MSVs as well. Our MSV is equipped with digital 
ompass in order toidentify the angle of MSV based on magneti
 poles. As predi
ted, digital 
ompass also has its own error inangle measurement but is tolerable.2.3. Autonomous Driving Robot and Dead-Re
koning. This sort of lo
alization is usually due tomilitary area. For example DARPA, USA invests on unmanned vehi
le, and their aim is about 30% of armyvehi
le without human on board 
ontroller. Stanley by Stanford university [17℄, whi
h earned �rst prize in
ompetitions, are equipped with GPS, 6 DOF gyros
ope and 
an 
al
ulate the speed of driving wheels. Thosesensors information 
an be 
ombined to lo
ate the position of their unmanned vehi
le. They used 
omputervision system with stereo 
amera and single 
amera, and laser distan
e meter, radar in order to get environmentalinformation. Sandstorm from CMU [18℄ is equipped with laser distan
e meter as a major sensor. Topographi
almodel 
an be obtained by laser lines and the speed of 
ar 
an be 
al
ulated by the density of laser line. Gimbalon their vehi
le 
an install long distan
e laser s
anner with seven laser sensors. Shoulder-mounted sensors 
an
al
ulate height information of topography. Two s
anners on bumpers 
an obtain obsta
le information. Longdistan
e obsta
les 
an be identi�ed by radar.Our MSV are equipped with RSSI devi
es, stereo 
ameras and other sensors for dead-re
koning. Apartfrom the examples of lo
omotive robots, these equipments are for a

urate lo
alization.3. Mobile Sensor Vehi
le. We developed MSV in order to experiment our lo
alization method in realenvironment. Various versions of MSV are designed and implemented. The lo
alization fun
tions implementedon MSV are as follows:

• Long distan
e low a

ura
y lo
alization by RSSI
• Medium distan
e medium a

ura
y lo
alization by dead-re
koning tra
king
• Short distan
e high a

ura
y lo
alization by Stereo 
amera with 
omputer vision.In the following subse
tion we will dis
uss hardware and software of MSV respe
tively.3.1. Hardware. MSV is a
tually a mobile sensor node for MSN. Ea
h MSV 
an move autonomouslyand 
an identify obsta
les. They 
an 
ommuni
ate ea
h other by 802.11 networking devi
es. The 
hassis ofMSV are 
omposed of aluminum 
omposite with high durability and lightweight. The main driving me
hanism
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Fig. 3.2. Obsta
le Dete
tion Me
hanism

Fig. 3.3. Stereo Eye Systemis 
aterpillar 
omposed of three wheels, L-type rubber belt, gears as shown in �gure 3.1. The adoption of
aterpillar is for minimization of driving errors. There are a lot of rooms to install additional sensor hardware.With digital 
ompass equipped on the top of MSV, the a

urate vehi
le lo
ation 
an be sensed. This angularinformation 
an help exa
t lo
alization of MSVs. The design 
on
epts of MSV are as follows.
• Autonomous mobility
• Extensibility of equipped sensors
• Pre
ise movement and mobility trailAnd MSV 
hara
teristi
s as a node of mobile sensor network are as follows:
• Self identi�
ation and 
olleague identi�
ation with various methods
• Wireless 
ommuni
ation
• Digital CompassFor autonomous driving, MSV must identify obsta
les and avoid them. We use an infrared laser and 
ameraswith infrared �lter. IR laser is 
onstantly lighting in parallel to round. Camera looks down grounds in a degreeof 30 whi
h is determined by experiments. The 
on
ept of this obsta
le dete
tion is depi
ted in �gure 3.2.Obsta
le re�e
ts IR laser and sensed by 
amera [5, 7℄. The obsta
les with re�e
ted IR will be dete
ted as whitelines. This obsta
le dete
tion will be used by lo
al map building as shown in se
tion 5.1.For short distan
e obsta
les within the dead angle of 
amera, ultrasoni
 sensors are lo
ated under the MSVand in front of MSV. For 
omputer vision based lo
alization, MSVs are equipped with stereo eyes as shown in�gure 3.3. Three servo motors 
an 
ontrol two 
ameras independently. This stereo 
amera system 
an be usednot only for lo
alization but also for obsta
le dete
tion with diminished dead angle. There are three infraredLEDs mounted in the front of MSV. These LEDs are for 
omputer vision based lo
alization.
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Fig. 3.4. Hardware Stru
ture

Fig. 3.5. Software Stru
tureFor hardware 
onstru
tion, we need mi
ro 
ontroller unit, a serial 
ommuni
ation port, a PWM port, aninterrupt port in order to 
ontrol motors and 
ommuni
ate with sensors. Figure 3.4 shows the 
on
eptualstru
ture of MSV hardware.3.2. Software. Software for MSV operations is required in a form of embedded software. Figure 3.5 showsrequired fa
ility and their stru
ture for MSV software.Total part of software 
an be divided into �ve 
ategories. One of the roles of software is to 
onvert sensorinformation into driving information. Information for driving 
an be obtained via serial 
ommuni
ation fromT-board (MCU) with driving information and angular information.The lo
ation of MSV is 
onstantly updated with the moving distan
e and updated angle. Camera 
lassprovides obsta
le information as well as basi
 information for map building. Map building 
lass builds a mapwith the information from T-board 
lass and 
amera 
lass. These maps are required for autonomous lo
omotionand lo
alization. Network 
lass provides networking fun
tionalities between MSVs.We implement 
ore software based on multi threads. There is do
ument 
lass, whi
h provides organi
 data�ow between 
lasses. Thus the major role of MSV software is as follows.
• Autonomous driving
• Motor 
ontrol and driving distan
e identi�
ation
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Fig. 4.1. Correlation of LED pattern interval and measurable minimum distan
e

Fig. 4.2. Frond view of MSV
• Communi
ation with MCU (T-board)
• Obsta
le dete
tion
• Map building
• Internetworking
• User interfa
e dialog (Monitoring Program)Monitoring program is a user interfa
e between MSV and user. Monitoring program shows MSV 
ondition,
amera view, driving information, map built, and other sensor information. It also provides manual operationfun
tionality of MSV.4. Computer Vision based A

urate Lo
alization.4.1. Sensor Equipment and Experimental Environment. Ea
h MSV has a set of Infrared LED (IR-LED) in a form of triangle and the lengths of edges are all 30 
entimeters. The IR lights from these LEDs 
anbe viewed by stereo 
amera system from other 
olleague MSV. The stereo eye system as shown in �gure 3.3 hastwo 
ameras. Three servo motors 
ontrols two stereo eyes verti
ally and horizontally.



314 Ha Yoon SongTable 4.1IR-LED spe
i�
ationsMODEL NO. Half Angle Peak WavelegnthSI5315-H ±30◦ 950nmOPE5685 ±22◦ 850nmOPE5194WK ±10◦ 940nmTLN201 ±7◦ 880nmEL-1KL5 ±5◦ 940nmThe stereo 
ameras are equipped with IR �lters. The front view of MSV for these equipments is as shownin �gure 4.2. Three IR-LEDs forms a triangle and a stereo 
amera system are also presented.With �xed length of triangle edges, i. e. interval between IR-LED, is �xed by 30 
entimeters. Therefore byusing P3P method, the distan
e between 
amera and MSVs with IR-LED triangle 
an be 
al
ulated. Embeddedsoftware for ea
h MSV has a realtime part for P3P solution. The software also shows the image from stereo
amera as a part of P3P solution.The ideal situation starts by estimating the angle between two 
ameras. On
e 
amera dire
tion is �xed, we
an estimate angles between tra
ked obje
t and 
ameras, however, MSV 
an move every dire
tion whi
h 
ausesdi�
ulties to measure that angle. Moreover, if these 
ameras have pan-tilt fun
tionalities, it is impossible tomeasure su
h an angle in real time.Another method with P3P te
hnique is to assume the distan
e to the obje
t. The distan
e to obje
t andthe s
ale of triangle in 
amera view is proportional inversely thus the size of LED triangle 
an be a startingpoint to estimate the distan
e to obsta
les. We de
ided to standardize the redu
ed s
ale of LED triangle inorder to estimate distan
e to obje
ts. The basi
 
on
ept of this method is depi
ted in �gure 4.1 and will bedis
ussed further in the subse
tion 4.3.This approa
h has limits of 
amera visibility, i. e. obje
ts beyond visibility 
annot be identi�ed. However,two other lo
alization methods will be presented in the following se
tions for beyond sight lo
alization. Inaddition with the help of digital 
ompass, we 
an measure the dire
tion of ea
h MSV. The 
ombination of thisinformation 
an a
hieve short distan
e a

ura
y for lo
alization.4.2. Preliminary Experiment for Equipment Setup. We 
ondu
t preliminary experiment in orderto 
hoose optimal devi
e for 
omputer vision based lo
alization. The �rst purpose of this experiment is tosele
t the best LED in order to in
rease the range of lo
alization. Our past result showed 250 
entimeter oflo
alization range however our aim is to enlarge the range to 400 
entimeters or farther.We 
hoose �ve infrared light emitting diodes with typi
al 
hara
teristi
s. We �rst 
on
entrated on thevisible angle of LED lights sin
e we assumed wider visible angle guarantees the 
learer identi�
ation of LEDlight and more pre
ise lo
alization.Table 4.1 shows the spe
i�
ations of various IR-LEDs with visible angle and peak wavelength. The majorreason why we 
hoose those IR-LEDs are as follows:
• Smaller half angle of LED enables long distan
e tra
king however in
reases invisibility from the side.
• Larger half angle of LED enables tra
king from the side however de
reases tra
king distan
e.With infrared �lter equipped 
ameras we planned experiments to evaluate the LEDs for vision based lo
al-ization. Table 4.2 show the result of visible distan
e and visibility of IR-LEDs. Twelve experiments have beenmade and average values are shown. From the spe
i�
ations of IR-LEDs, 5 volts DC voltage is supplied for theexperiment.Among �ve IR-LEDs, two showed stable visibility and a

eptable visibility distan
e. Between these two
andidates, we �nally 
hoose the best LED of MODEL NO.SI5313-H sin
e it has the widest half angle as wellwith reasonable visibility distan
e.4.3. Main Experiments for Computer Vision based Lo
alization. Figure 4.1 shows the relationshipbetween LED triangle size (d) and distan
e from 
amera to LED triangle (h). The relation between d and h
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Fig. 4.3. Relative size of triangle 
al
ulated by P3P on a
tual distan
e
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Fig. 4.4. A
tual distan
e 
al
ulated from measured relative distan
e
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alization 317Table 4.2IR-LED Visibility ExperimentsMODEL NO. Max Length Visible Angle VisibilitySI5315-H 500
m ±60◦ StableOPE5685 490
m ±45◦ Somewhat UnstableOPE5194WK 520
m ±35◦ Most StableTLN201 510
m ±20◦ UnstableEL-1KL5 450
m ±10◦ Indis
riminable
an be dire
tly drawn from the following equation 4.1
tan θ =

d

2h (4.1)
θ = arctan

d

2hMost of 
ameras has angle of view in 54◦ ∼ 60◦. Sin
e we used 
amera with angle of view in 60◦, from theequation 4.1 we 
an solve ratio about h : d = 1 : 1.08. The a
tual value of d is 30 
entimeter for our experiment.Thus we 
an summarize the following:
• High angle of view 
amera 
an in
rease minimum measure distan
e.
• With narrow LED pattern interval, we 
an de
rease a
tual distan
e h but pra
ti
ally meaningless.
• With wider LED pattern interval, we 
an in
rease a
tual distan
e but dependent on MSV size.From the experiments, we 
an identify the vision based lo
alization is e�e
tive within the range from 30
entimeters to 520 
entimeters with our LogiTe
h CAM 
amera. The 30 
entimeter lower bound is due tothe 30 
entimeter interval of LED triangle edges. The 520 
entimeter upper bound is due to the visible sight
apability of LogiTe
h CAM 
amera. Thus 520 
entimeter would be a maximum distan
e of 
omputer visionbased lo
alization. However it is still meaningful sin
e we 
an a
hieve very high a

ura
y in lo
alization withthese 
heap, low grade 
ameras. The other idea for more lo
alization distan
e is to use 
ameras with higherresolution.From our experiments, we identi�ed the 
orrelation between a
tual distan
e from 
amera to 
olleague MSVand size of LED triangles in 
amera view. The results 
an be translated into graphi
al form as shown in�gure 4.3.From �gure 4.3 the result shows the �u
tuation of results with more than 500 
entimeters whi
h makeslo
alization unstable. For appli
ations whi
h require the error range of 20 
entimeters, we 
an use the resultsto 520 
entimeters. Sin
e our aim is to keep lo
alization errors within the range of 10 
entimeters, we de
idedto dis
ard results more than 400 
entimeters.4.4. Experimental Result. From our experiment in the previous subse
tions we will provide the �nalresult of 
omputer vision based lo
alization in this subse
tion. Figure 4.4 shows graphi
al version of �nal result.Apart from the results in previous se
tion, this �gure shows a
tual distan
e up to 500 
entimeters. From�gure 4.3 we 
an observe errors in 
al
ulated values of P3P for more than 500 
entimeter distan
e. These errorsis due to the resolution limit of CAM 
amera whi
h is 640 × 480. Even a small noise 
an vary a
tual distan
eof ten 
entimeters in the distan
e more than 500 
entimeters.Thus we 
on
lude the a

urate lo
alization by 
omputer vision 
an be done in the range of 70 
entimetersto 500 
entimeters with our 
amera equipments. For the lo
alization in more than 500 
entimeters, lo
alizationbased on MSV traje
tory tra
king will be e�e
tive. In addition, for the lo
alization in more than 30 meters,lo
alization based on RSSI will be e�e
tive 6. Of 
ourse, the lo
ation information 
an be broad
asted and beused by the members of MSN in order to build maps, to 
orre
t lo
ation errors and so on.5. Mobility Trail based Lo
alization.5.1. Map Building. Map building is one of the 
ore parts of medium distan
e lo
alization as well asfor other distan
es and areas. The result of lo
alization must be presented on lo
al map and therefore be
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Fig. 5.1. Relative Coordinate

Fig. 5.2. Absolute Coordinatetransferred to global map. MSVs 
ommuni
ate with ea
h other in order to 
ombine lo
al maps into globalmaps. The following information will be shown on a map.
• Untapped territory
• Territory with obsta
le
• Territory with MSV
• Tapped territory
• Totally unknown territoryFor map building we must 
onsider relative 
oordinate and absolute 
oordinate. For example, obsta
leinformation identi�ed by MSV is in a form of relative 
oordinate. In relative 
oordinates, the very front of MSVis in angle 0 as shown in �gure 5.1. This 
oordinate must be transformed into absolute 
oordinate as shown in�gure 5.2 and therefore 
an be a part of map.
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Fig. 5.3. Result of UMBmarkTable 5.1COMPARISON BETWEEN GRID MAP AND TOPOLOGICAL MAPMAPS Grid MAP Topologi
al MAPAdvs. Pre
ise presentation of geography ofenvironmentEase of algorithm design: environ-mental modeling, path �nding, lo
al-ization by map-mat
hing Simple presentation of environmentand simple path planningToleran
e of low a

ura
y mobilesensorsNatural interfa
e to usersDisadvs. Di�
ulty in path planningRequirement of large memory and
omputationPoor interfa
e to symboli
 problemsolver Impossibility of large map buildingwith ina

urate, partial informationDi�
ulties in map-mat
hing: di�-
ulties in 
al
ulation of pivot sensorvalueDi�
ulties in dealing 
omplex envi-ronmentLo
al map is usually in a form of grid map. However in 
ase of global map with huge 
apa
ities, grid mapis very ine�
ient. Therefore we will use topologi
al map for global map as presented by Kuipers and Bynn [6℄.Thrun [8℄ presented a hybrid approa
h of both maps and we will 
onsider it as our ultimate format of globalmap. Table 5.1 
ompares advantages and disadvantages of grid and topologi
al map.With mobility traje
tory tra
king, medium range lo
alization 
an be implemented by use of lo
al map.Ea
h MSV moves autonomously and build its own lo
al map. In the following subse
tion, we will dis
uss error
orre
tions of mobility tra
king based approa
h whi
h is essential to guarantee the a

ura
y of lo
alization.5.2. Dead-Re
koning. For the medium distan
e lo
alization, we de
ided to utilize mobility trail. Wede�ne the range of medium distan
e between 4 meters and 40 meters sin
e our vision based short distan
elo
alization 
overs within the range of 5 meters and RSSI based long distan
e lo
alization is e�e
tive outsidethe range of 30 meters. Our aim is to trail the mobility of MSV and to re
ord the trail on the lo
al map withreasonable a

ura
y for medium distan
e lo
alization. Every driving me
hanism for mobile sensors or evenmobile robots has me
hani
al errors and it is impossible to avoid su
h errors pra
ti
ally. We 
an summarizethe 
ause of driving errors as followings:
• The di�eren
e between the sizes of two (left and right) wheels
• The distortion of wheel radius, i. e. the distan
e between average radius and nominal radius
• The wheel misalignment
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• The un
ertainty about the e�e
tive wheelbase
• The restri
ted resolution of driving motors (usually step motors)Usually those errors are 
umulated and �nal result will be void without proper error 
orre
tion te
hnique.However, in order to 
ope with those lo
ation errors due to me
hani
al errors, a method of dead-re
koning havebeen widely used and we also adopt su
h te
hnique as well. Dead-re
koning is a methodology that 
al
ulatesthe moving distan
e of two wheels of MSV and derives the relative lo
ation from the origin of MSV.Among the various versions of Dead-re
koning te
hniques, we used UMBmark te
hnique from Universityof Mi
higan [4℄. UMBmark analyzes driving me
hanism errors and minimized the e�e
t of driving errors.UMBmark analyzes the result of MSV driving in a 
ertain distan
e and 
ompensates me
hani
al errors ofMSV driving me
hanism. The driving results of re
tangular 
ourse, both in 
lo
kwise(CW) and 
ounter-
lo
kwise(CCW), and then analyzed.Two error 
hara
teristi
s are 
lassi�ed in Rotation angle error and Wheel mismat
h error. Rotational angleerrors are for the di�eren
e between a
tual wheel sizes and theoreti
al design sizes of wheels. Due to rotationalangle errors, CCW driving after CW driving shows larger errors as usual. For example, a
tual wheel size biggerthan designed wheel size results in insu�
ient rotation at 
orners and then rotational angle errors are 
umulatedfor the whole driving. The following equation summarizes the rotational angle error whi
h is depi
ted in [4℄.

Ed =
DR

DLwhere DR is diameter of left wheel and DR is diameter of right wheel. In short, Ed is a ration between diametersof left wheel and right wheel.Wheel mismat
h errors are from wheelbase mismat
h. This error 
auses skews in straight driving. Withwheel mismat
h error, the error 
hara
teristi
 of CW driving is opposite to CCW driving. The following equationsummarizes the wheel size error whi
h is depi
ted in [4℄.
Eb =

90◦

90◦ − αwhere α is a value of rotational angle error. Eb stands for a ration between ideal and pra
ti
al errors in rotation,i. e. wheel base error.Me
hani
al errors are systemati
al errors and therefore 
an be predi
ted and analyzed, while non-me
hani
alerrors 
annot be predi
ted be
ause non-me
hani
al errors are due to the driving environment. Non-me
hani
alerrors are 
lassi�ed as follows:
• Uneven driving �oor or ground
• Unpredi
ted obsta
le on driving 
ourse
• Slipping while drivingWe applied UMBmark to our MSV and the following subse
tion shows the result.5.3. Driving Error Corre
tion of MSV. We 
omposed a set of experiment for MSV driving in orderto apply UMBmark. The driving experiments have been made on the �at and usual �oor with the re
tangulardriving 
ourse of 4 × 4 meters. As shown in [4℄ both CW and CCW driving have been made and error valueshave been measured. These error values are in
orporated in our software system and MPU 
ontrollers.With the following equations from [4℄ we 
an �nd the error value for error 
orre
tion.

bactual = Eb × bnominalwhere bactual is an a
tual wheelbase and bnominal is a measured wheelbase.
∆UL,R = cL,R × cm × NL,RWhere U is a
tual driving distan
e, N is the number of pulses of the en
oder, and cm is the 
oe�
ient to 
onvertpulse per 
entimeters.Our experimental result with driving lo
ation 
orre
tion by UMBmark dead-re
koning me
hanism is shownin �gure 5.3. Cir
led dotes are result from CCW driving and re
tangular dotes are from CW driving. Empty
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Fig. 5.4. Triangulation With RSSI Measurement

Fig. 5.5. RSSI values A

ording To Distan
edotes are of un
orre
ted driving results while �lled dotes are of driving results with UMBmark in 16 meterdriving experiment. Note that the origin of MSV (starting point) at the 
oordinate (0,0) are at the upper rightpart of the �gure. Without dead-re
koning te
hnology, MSV returns to erroneous point than the origin point,at the left part of the �gure. This MSV tends to show more errors with CW driving. With the appli
ationof UMBmark te
hnique, we a
hieved faithful result within 10 
entimeters of error range in total. Dire
tionalerrors are within the range of 3 
entimeters from the origin. Sin
e our approa
h is for me
hani
al driving errors,non-me
hani
al errors 
an be avoided and thus we will introdu
e real-time 
orre
tion of driving with the help ofdigital 
ompass for the future resear
hes. Thus it is possible to mention that the trail of MSV is in the 
orre
tlo
ation within the errors of 10
m in our experimental environments.6. RSSI based Long Distan
e and Wide Area Lo
alization. Our MSV are equipped with homoge-neous 802.11 networking devi
es with RSSI fa
ilities. With distan
e information we 
an do triangulation withat least three nodes and one an
hor. Our monitoring station with monitoring program 
an a
t as an an
hor.The 802.11 networking devi
es 
an be swit
hed to AP (A

ess Point) mode so that ea
h MSN 
an a
t as AP.With software modi�
ation that utilizes 802.11 devi
e RSSI features, we 
an a
hieve RSSI based lo
alizationfor our MSN.
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Fig. 5.6. Relation Between One Fixed An
hor And Mobile Sensor Vehi
lesThe unit of RSSI is in dBm (-50dBm ∼ -100dBm) and it designates distan
es between spe
i�ed MSVs. Asalready mentioned, the RSSI value is very a�e
tive by environments, and we obtain error rate of 10 ∼ 15%in spe
i�
 distan
e. The RSSI value is very sensitive with hardware vendor and the dire
tion of AP [9℄. Ourexperimental environment is as follows.
• Wide open area
• Intel Wireless LAN 2100 3B Mini PC Adapter
• WRAPI software model [11℄
• One �xed an
hor as monitoring stationFor the 
alibration of our RSSI devi
e, a set of experiment has been 
ondu
ted and the results are shownin �gure 5.5.We 
an �nd within the distan
e of 20 meter, RSSI is no more useful for distan
e measure sin
e the signalstrength is too high. Our experiments shows RSSI based lo
alization is useful more than 35m distan
e. Thevalues are within error range of 15% by experiment. This is the main reason why we 
hoose RSSI basedlo
alization for long distan
e, low a

ura
y lo
alization.From the distan
e information from RSSI sensing, we 
an do triangulation as shown in �gure 5.4. For a
tualimplementation, we have one �xed an
hor and 
an do more pre
ise lo
alization with a known an
hor 
oordinateas shown in �gure 5.6. The �gures show three mobile nodes one an
hor node. The distan
e obtained from 
ir
le

r1, r2, r3 
an be obtained from RSSI values. Thus with this environment we 
an triangulate the 
oordinatenode X from the interse
tion of 
ir
les drawn by node 1, node 2, and node 3 [12℄ [13℄.Thus from the distan
e whi
h 
an be obtained from RSSI values, let the distan
e be di from radius of
ir
le ri The following algorithm 2 shows a pro
edure to �nd 
oordinates of ea
h MSV with provided distan
einformation by RSSI.Figure 6.1 shows a �nal result in RSSI based lo
alization. The x-axis stands for a
tual distan
e betweenMSVs and y-axis shows a distan
e 
al
ulated by algorithm 2. As we predi
ted the RSSI based lo
alization isuseful with the distan
e more than 30 meters. On the range where RSSI based lo
alization is e�e
tive, we 
ansee errors between a
tual distan
e and 
al
ulated distan
e. We believe it is tolerable sin
e we have anothermethod of lo
alization with more a

ura
y within the distan
e of 30 meters. Of 
ourse, the distan
e informationis not a su�
ient 
ondition for lo
alization. The other information of dire
tion of MSV 
an be obtained bydigital 
ompass on ea
h MSV. Thus we implemented long distan
e, low a

ura
y lo
alization.
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alization 323Algorithm 2 Lo
alization of Sensor Nodes with RSSI MeasurementInput : d1 , d2 , d3 , r1 , r2 , r3//Distan
e d1 , d2 , d3// C i r 
 l e r1 , r2 , r3Output : So l u t i onL i s tL inkedLis t So l u t i onL i s t//Mobile Sensor Node Coordinatesfor ( ea
h ( x1 , y1 ) on C i r 
 l e r1 ){ for ( ea
h ( x2 , y2 ) on C i r 
 l e r2 ){ i f ( d1 ==di s tan
e between ( x1 , y1 ) and ( x2 , y2 ) ){ for ( ea
h (x3 , y3 ) on C i r 
 l e r3 ){ i f ( d2 ==di s tan
e between (x2 , y2 ) and ( x3 , x3 ) ){ i f ( d3 ==di s tan
e between (x3 , y3 ) and ( x1 , y1 ) ){ So l u t i onL i s t =Coordinate ( x1 , y1 ) , ( x2 , y2 ) , ( x3 , y3 )}}}}}}

Fig. 6.1. A
tual and RSSI based Distan
e7. Con
lusions. Of the lo
alization methodologies for mobile sensor network, we 
ombined three di�erent
ategories of lo
alization methodology. In addition for the experiment, we implemented mobile sensor vehi
le asa node of mobile sensor network. We showed brief des
ription of our mobile sensor vehi
le in
luding hardwareand software fun
tionalities. A 
omputer vision based approa
h has been presented for the small area lo
alizationwith a 
onsiderable range of pre
iseness. The driving me
hanism hardware and software 
ooperate with ea
hother and naturally a
hieve lo
alization based on traje
tory-tra
king with the help of lo
al map building, whi
his a medium distan
e and medium a

ura
y lo
alization. The result of lo
alization 
an be presented on lo
al



324 Ha Yoon Songmaps and eventually be merger into global maps. In addition we showed RSSI based lo
alization. The longdistan
e, low a

ura
y lo
alization 
an be implemented by 
ommer
ial 802.11 networking devi
es only withsoftware but without any other spe
i�
 hardware devi
e..From these three levels of lo
alization, we believe that we implemented useful lo
alization system and will domore resear
h using this platform. For example multiple MSV 
an 
ooperate and 
ommuni
ate ea
h other andthen a formation based on lo
alization 
an be made. A smooth transition between these lo
alization informationfor spe
i�
 environment or appli
ation with probability model is our next goal to a
hieve.A
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