
S
alable Computing: Pra
ti
e and Experien
eVolume 10, Number 3, pp. 325�336. http://www.s
pe.org ISSN 1895-1767
© 2009 SCPEOPEN ENVIRONMENT FOR PROGRAMMING SMALL CONTROLLERS ACCORDINGTO IEC 61131-3 STANDARDDARIUSZ RZO�CA, JAN SADOLEWSKI, ANDRZEJ STEC, ZBIGNIEW �WIDER, BARTOSZ TRYBUS, ANDLESZEK TRYBUS∗Abstra
t. A
ontrol engineering environment
alled CPDev for programming small
ontrollers in ST, FBD and IL languagesof IEC 61131-3 standard is presented. The environment
onsists of a
ompiler, simulator and hardware
on�gurer. It is open in thesense that: (1)
ode generated by the
ompiler
an be exe
uted by di�erent pro
essors, (2) low-level
omponents of the
ontrollerruntime program are developed by hardware designers, (3)
ontrol programmers
an de�ne libraries with fun
tions, fun
tion blo
ksand programs.Of the three IEC languages, ST Stru
tured Text is a basis for CPDev. FBD diagrams are translated to ST. IL
ompiler usesthe same
ode generator. The runtime program has the form of virtual ma
hine whi
h exe
utes universal
ode generated by the
ompiler. The ma
hine is an ANSI C program with some platform-dependent
omponents. The ma
hines for AVR, ARM, MCS51and x86 pro
essors have been developed so far. Appli
ations in
lude two
ontrollers for small DCS systems and PC equipped withI/O boards. CPDev may be downloaded from http://
pdev.prz-rzeszow.pl/demo.Key words:
ontrol engineering tool, IEC 61131-3 standard, ST language
ompiler, multi-platform virtual pro
essor1. Introdu
tion. Remarkable number of small-and-medium-s
ale
ompanies in Europe manufa
ture tran-smitters, a
tuators, drives, PID and PLC
ontrollers, and other
ontrol-and-measurement equipment. Engi-neering tools for programming su
h devi
es are often fairly simple and do not
orrespond to IEC 61131-3standard [4℄, required by growing number of
ustomers. The problem may be solved to some extent by devel-oping open engineering environments for programming small
ontrol devi
es based on AVR, ARM, MCS51 orother mi
ro
ontrollers a

ording to IEC languages (61131-3 will be dropped for brevity). Development of su
henvironment
alled CPDev (Control Program Developer) was initiated by the authors at the end of 2006.The CPDev is open in the following sense:
•
ode generated by the
ompiler
an be exe
uted by di�erent pro
essors,
• low-level
omponents of runtime program are provided by hardware designers,
•
ontrol programmers
reate their own libraries with reusable program units.The CPDev
ompiler generates an intermediate, universal
ode exe
uted by runtime interpreter at the
ontrollerside. Di�erent pro
essors require di�erent interpreters. This resembles somewhat the
on
ept of Java virtualma
hines [7℄
apable of exe
uting programs on di�erent platforms. Hen
e the interpreters of the CPDev universal
ode are also
alled virtual ma
hines.The same approa
h was adapted earlier in ISaGRAF pa
kage from ISC Triplex [5℄ (now in Ro
kwell). IS-aGRAF universal
ode is
alled TIC (Target Independent Code) and may be exe
uted on platforms supportingWindows, Linux, VxWorks, QNX and RTX. Mu
h simpler CPDev does not impose su
h requirements, how-ever. Another open environment
alled Beremiz [11℄
ompiles IEC language
ode into C/C++ program, to betranslated further into pro
essor
ode. In this
ase
ommer
ial restri
tions on the use of C/C++
ompilers maymatter sometimes.This paper follows a few earlier publi
ations, e.g. [9, 10℄, whi
h reported on CPDev development. The
ontent is organized as follows. For the reader not familiar with IEC standard, Se
. 2 provides some informationon programming in high-level ST language. Components of CPDev, user interfa
e, standard fun
tions andlibraries with fun
tion blo
ks are des
ribed in Se
. 3. Se
tion 4
hara
terizes s
anner, parser and
ode generatorof ST
ompiler, written in C# at Ms .NET platform. Some instru
tions of the universal
ode
alled VMASM(Virtual Ma
hine Assembler) are also presented. Se
tion 5 des
ribes operation and stru
ture of the virtualma
hine. The ma
hine is written in industry standard C and
onsists of universal and platform-dependentmodules. Platform-dependent modules are written by hardware designers. Se
tion 6
hara
terizes developmentof user fun
tion blo
ks, both in ST and C languages. Blo
ks written in C be
ome
omponents of the virtualma
hine. Programming in graphi
al FBD and textual IL languages is des
ribed in Se
. 7. FBD diagram istranslated to ST and then
ompiled. Appli
ations of CPDev for programming a small
ontrol-and-measurement

∗Department of Computer and Control Engineering, Fa
ulty of Ele
tri
al and Computer Engineering, Rzeszow University ofTe
hnology, 35-959 Rzeszow, ul. W. Pola 2, Poland, ({drzon
a, js, aste
, swiderzb, btrybus, ltrybus}�prz-rzeszow.pl).325

326 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. Trybusdistributed system,
ontrollers of ship
ontrol-and-positioning system and a soft
ontroller based on PC withI/O boards are presented in Se
. 8.2. A few notes on IEC 61131-3. The IEC 61131-3 standard [4℄ de�nes �ve programming languages,LD, IL, FBD, ST and SFC, allowing the user to
hoose the one suitable for parti
ular appli
ation. Instru
tionlist IL and Stru
tured Text ST are text languages, whereas Ladder Diagram LD, Fun
tion Blo
k DiagramFBD and Sequential Fun
tion Chart SFC are graphi
al ones (SFC is not an independent language, sin
e itrequires
omponents written in the other languages). Relatively simple languages LD and IL are used forsmall appli
ations. FBD, ST and SFC are appropriate for medium-s
ale and large appli
ations. John andTiegelkamp's book [6℄ is a good sour
e to learn IEC programming.ST is a high-level language originated from Pas
al, espe
ially suitable for
ompli
ated algorithms. Equivalent
ode for a program written in any of the other four languages
an be developed in ST, but not vi
e versa. Hen
emost of engineering pa
kages use ST as a default language for programming user fun
tion blo
ks. Due to su
hreasons, ST has been sele
ted as a base language for the CPDev environment.2.1. Data types. Data types, literals (
onstants) and variables are
ommon
omponents of IEC languages.Names (identi�ers) are typi
al, although there is no distin
tion between
apital and small
hara
ters. Thestandard de�nes twenty elementary data types, several of whi
h are listed in Table 2.1 together with memorysizes and ranges (in CPDev). BOOL, INT, REAL and TIME are most
ommon. FALSE, 13, -4.1415 and T#1m25sare examples of
orresponding
onstants. Table 2.1Several elementary IEC data typesType Size (range) Type Size (range)BOOL 1B (0, 1) LREAL 8B IEEE-754 formatBYTE 1B (0 . . . 255) TIME 4B (-T#24d20h31m23s648ms . . .WORD 2B (0 . . . 65535) T#24d20h31m23s647ms)INT 2B (−32768 . . . 32767) TIME_OF_DAY 4B (00:00:00.00 . . .REAL 4B IEEE-754 format 23:59:59.99)The standard de�nes three levels for a

essing variables, LOCAL, GLOBAL and ACCESS. LOCALs are availablein the program, fun
tion blo
k or fun
tion. GLOBALs
an be used in the whole proje
t, but programs, fun
tionblo
ks or fun
tions must de
lare them as EXTERNAL. ACCESS variables ex
hange data between di�erent systems.2.2. POU units. Programs, fun
tion blo
ks and fun
tions,
alled jointly Program Organization Units(POUs), are
omponents of IEC proje
ts. Fun
tion blo
ks, designed for reuse in di�erent parts of program,are of
ru
ial importan
e. A blo
k involves inputs, outputs and memory for data from previous exe
utions.Therefore the blo
ks must be de
lared as instan
es. The IEC de�nes small set of standard blo
ks, su
h as�ip-�ops, edge dete
tors, timers and
ounters. Three of them are shown in Fig. 2.1.
Fig. 2.1. Examples of standard fun
tion blo
ks: RS �ip-�op, R_TRIG rising edge dete
tor, TON on-delay timer2.3. Programming. Programs written in ST or other languages begin with de
larations of variables andinstan
es of fun
tion blo
ks pla
ed between VAR_EXTERNAL or VAR and END_VAR keywords. GLOBAL variables arede
lared before programs or separately. The de
larations are followed by list of statements. The statementsinvolve expressions whi
h, when evaluated, yield results in one of de�ned data types, i. e. elementary (Table 2.1)or derived, su
h as alias, array or stru
ture. The following operators are available (in des
ending priority):parenthesis, fun
tion evaluation, negation, power, arithmeti
 operators, Boolean operators.

Open environment for programming small
ontrollers 327ST language provides �ve types of statements:
• assignment := (Pas
al symbol),
• sele
tions IF, CASE,
• loops FOR, WHILE, REPEAT,
• early exits RETURN, EXIT,
• fun
tion and fun
tion blo
k invo
ations.Simple examples are presented in the following se
tions. Typi
al program looks like a sequen
e of fun
tion andfun
tion blo
k invo
ations (
alls).3. CPDev environment. The CPDev
onsists of three programs exe
uted by PC and one by the
on-troller (Fig 3.1). The PC programs are as follows:
• CPDev
ompiler of ST language,
• CPSim simulator,
• CPCon
on�gurer of hardware resour
es.The programs have dedi
ated interfa
es and ex
hange data through �les in appropriate formats. The CPDev
ompiler (the same name as the pa
kage) generates universal
ode exe
uted by virtual ma
hine (VM) run by the
ontroller. The VM operates as an interpreter. The universal
ode is a list of instru
tions of VM language
alledVMASM assembler. VMASM is not related to any parti
ular pro
essor, but
lose to typi
al assemblers. The
ompiler employs ST syntax rules, list of VMASM instru
tions and POUs from libraries. Besides the universal
ode the
ompiler generates some information for debugging and simulation by CPSim.

Fig. 3.1. Components of CPDev environmentCon�guration of hardware resour
es by means of CPCon involves memory, input/output and
ommuni
ationinterfa
es. User spe
i�
ations de�ne memory types and sizes, numbers and types of I/Os and
ommuni
ation
hannels, validity �ags, et
. Allo
ation of hardware resour
es has the form of a map that assigns symboli
addresses from ST programs to physi
al ones. By using it, the
ompiled
ode
an be assembled for a parti
ularplatform to
reate �nal, universal exe
utable
ode. From CPDev viewpoint, hardware platforms di�er only inhardware allo
ation maps, whereas the
ompiled
ode is identi
al.The CPDev environment has been re
ently extended by graphi
 editor of FBD diagrams and
ompiler ofIL language. FBD diagram is automati
ally
onverted into ST
ode and
ompiled as above. Compilers of STand IL di�er in details only.3.1. User interfa
e. Main window of CPDev ST
ompiler is shown in Fig. 3.2. The window
onsists ofthree areas:
• tree of proje
t stru
ture, on the left,
• program in ST language,
enter,
• message list, bottom.Frames of the areas
an be adjusted and the
ontents s
rolled.Tree of the START_STOP proje
t shown in the �gure in
ludes POU unit with the program PRG_START_STOP,�ve global variables from START to PUMP, task TSK_START_STOP, and two standard fun
tion blo
ks TON andTOF from IEC_61131 library. The program is written a

ording to ST language rules. The �rst part involvesde
larations VAR_EXTERNAL of the use of global variables. Lo
al de
larations of the instan
es ON_DELAY andOFF_DELAY of the blo
ks TON, TOF are the se
ond part. Program body
onsists of four statements. The �rst oneturns a MOTOR on if START is pressed, provided that STOP or ALARM are not. Next three statements turn a PUMPon and o� �ve se
onds after the MOTOR (FBD diagram
orresponding to this proje
t is shown in Fig 7.1).Global variables and the task are de�ned using separate windows (not shown). A

ording to IEC standardthe variables
an be assigned CONSTANT and RETAIN attributes, and logi
al addresses. Task
an be exe
utedon
e,
y
li
ally with a given period, or as soon as previous exe
ution is
ompleted. There is no limit on thenumber of programs assigned to a task.Text of the proje
t represented by the tree is kept in an XML �le. Compilation is exe
uted by
allingProje
t->Build from the main menu. Messages appear in the lower area of the interfa
e window. If there

328 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. Trybus

Fig. 3.2. User interfa
e of ST
ompiler (START_STOP proje
t)are no mistakes, the
ompiled proje
t is stored in two �les. The �rst one
ontains universal exe
utable
ode inbinary format for the virtual ma
hine. The se
ond one stores mnemoni

ode, together with some informationfor simulator and hardware
on�gurer (variable names, et
.).3.2. Fun
tions and fun
tion blo
ks. The CPDev
ompiler provides most of standard fun
tions de�nedin IEC. Five groups of them followed by examples are listed below:
• type
onversions: INT_TO_REAL, TIME_TO_DINT, TRUNC,
• numeri
al fun
tions: ADD, SUB, MUL, DIV, SQRT, ABS, LN,
• Boolean and bit shift fun
tions: AND, OR, NOT, SHL, ROR,
• sele
tion and
omparison fun
tions: SEL, MAX, LIMIT, MUX, GE, EQ, LT,
• fun
tions of time data types: ADD, SUB, MUL, DIV (IEC uses the same names as for numeri
al fun
tions).Sele
tor SEL, limiter LIMIT and multiplexer MUX from sele
tion and
omparision group are parti
ularly useful.Variables of any numeri
al type, i. e. INT, DINT, REAL and LREAL are arguments in most of relevant fun
tions.Two libraries of fun
tion blo
k are available, namely:
• IEC_61131 standard library,

Open environment for programming small
ontrollers 329
• Basi
_blo
ks library with simple blo
ks supplementing the standard.The �rst one involves: (1) �ip-�ops and semaphore RS, SR, SEMA, (2) rising and falling edge dete
tors R_TRIG,F_TRIG, (3) up, down, up-down
ounters CTU, CTD, CTUD, (4) pulse, on-delay, o�-delay timers TP, TON, TOF.Blo
ks typi
al for small multifun
tion
ontrollers are in the se
ond library, i. e. integrator, �lters, max/min overtime, memories, time measurement, et
.4. ST language
ompiler. The task of the
ompiler is to
onvert XML sour
e �le with the proje
t in STlanguage into a �le with universal
ode in binary format. General diagram of the
ompiler operation involvings
anner, parser and
ode generator is shown in Fig. 4.1.

Fig. 4.1. ST
ompiler
omponents4.1. S
anner, parser and
ode generator. The s
anner (lexi
al analyser) analyses
hara
ter streamfrom ST sour
e �le and de
omposes it into lexi
al units, i. e. tokens. The tokens are
lassi�ed into
ategoriessu
h as identi�ers, keywords, operators,
onstants (a few
ategories), delimiters, dire
tives,
omments, whitespa
es and invalid
hara
ters. The tokens with
ategories are
olle
ted on a list passed to the parser.The parser operates a

ording to top-down s
heme with syntax dire
ted translation [3℄. By employingthe ST syntax the parser re
ognizes
onse
utive token
onstru
tions from the s
anner list. White spa
es and
omments are dropped. When
orre
t
onstru
tion is re
ognized the parser repla
es it by a set of mnemoni
instru
tions of the VMASM assembler. To do so, the parser employs built in elementary data types (Table 2.1)and list of VMASM instru
tions. Examples of these instru
tions are presented in Table 4.1.Table 4.1Examples of VMASM assembler instru
tionsInstru
tion Meaning Instru
tion MeaningMCD Constant initialization GE Greater or equalMEMCP Assignment SHL Bit shift to the leftADD Addition JMP Un
onditional jumpSUB Subtra
tion JZ Conditional jumpAND Logi
 produ
t MEMCP Memory
opyNOT Negation RETURN Return from fun
tionNormally a single ST statement is translated into several VMASM instru
tions. Some translations requireintrodu
tion of auxiliary variables and labels. Derived data types and POUs from libraries (fun
tions, fun
tionblo
ks and programs) are also parsed. The mnemoni

ode is written in a spe
ial text format. The
ode
an be
onsolidated with other mnemoni

odes.In the third step the
ode generator
onverts the
onsolidated mnemoni

ode into universal exe
utable
ode in binary format. Mnemoni
s of the VMASM instru
tions, names of the variables and labels are repla
edby
orresponding number identi�ers. To do so, the generator employs a Library Con�guration File (LCF)with the identi�ers of the instru
tions, numbers and types of the operands, and information how the operandsare a
quired (operand identi�er may be an index to variable or a dire
t value). Ea
h implementation ofvirtual ma
hine is de�ned by spe
i�
 LCF
on�guration �le. Besides binary �le with the exe
utable
odethe
ompiler generates a text �le with mnemoni

ode, some additional information for CPSim simulator andCPCon
on�gurer (variable names, et
.) and
ompilation report (HTML).4.2. Parser and
ode generator
lasses. Essential
omponents of the
ompiler are designed as
lassesin C# language [1, 2℄. Ea
h token of ST language is en
apsulated into an obje
t of
orresponding
lass. The
lasses inherit from an abstra
t STIdentifi
ator
lass. During
ompilation, identi�ers are
olle
ted into lists.The lists employ predi
ates for �nding appropriate identi�ers, what eliminates the need for hash tables. Thereis a list of global identi�ers and lo
al lists whi
h store identi�ers of fun
tions, fun
tion blo
ks, programs, et
.

330 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. TrybusIdenti�ers in a list are
he
ked for uniqueness. When identi
al names are found
ompilation is stopped anderror reported. If lo
al identi�er hides a global one, the
ompiler produ
es a warning.The parser generates text sequen
e of VMASM instru
tions for the
ode generator. Ea
h instru
tion isrepresented by a mnemoni
 followed by operand names. Code generator repla
es mnemoni
s and variablenames with appropriate number identi�ers (indexes). While pro
essing an instru
tion, the generator extra
tssome information from libraries, e.g. operand size, type and passing method. The number identi�er
anbe interpreted as a pointer to variable or as immediate value. Instru
tions resulting from
ompilation arerepresented by instan
es of VMInstru
tion
lass. The operand list VMOperand is also stored as a member ofthis
lass. By using lists of operands typi
al problems with �xed-size operand tables are avoided.5. Multi-platform virtual ma
hine. Binary �le with the universal
ode and hardware allo
ation mapfrom the CPCon
on�gurer are downloaded into the
ontroller, to be pro
essed by virtual ma
hine. Mainfeatures of the pro
essing are
hara
terized below.

a) Operation of VM b) Memory organizationFig. 5.1. Virtual Ma
hine5.1. Operation
y
le. Virtual ma
hine is an automaton operating a

ording to Fig. 5.1a. As indi
atedbefore, the ma
hine is spe
i�
 for a parti
ular pro
essor and works as an interpreter. The task
onsists ofprograms exe
uted
onse
utively. The binary
ode involves number identi�ers of the instru
tions and addressesof operands. The ma
hine, similarly as a real pro
essor, maintains program
ounter with the address of in-stru
tion to be exe
uted, and base address of the data area with operands (spe
i�ed for ea
h POU). Giventhe instru
tion address, the ma
hine fet
hes the identi�er, de
odes it, fet
hes the operands, and exe
utes theinstru
tion. Sta
k emulation and update of the base addresses permit multiple,
on
urrent
alls of fun
tionsand fun
tion blo
ks. The ma
hine monitors time
y
le of the task and sets alarm �ag if timeout appears. Italso triggers input/output pro
edures responsible for external variables.Allo
ation of software to memory segments is shown in Fig. 5.1b. The instru
tions and their operands arein the
ode segment (read only). Data segment
ontains global, lo
al and auxiliary variables, some of themwith
onstant values. The data segment
an be a

essed dire
tly or indire
tly by spe
ial virtual registers. Thema
hine's internal memory keeps
ode of the interpreter, sta
ks and registers. There is no way of a

essinginternal memory from the program level. The ma
hine is able to exe
ute multiple instan
es of programs.As shown in Fig. 5.2, the virtual ma
hine
onsists of a few universal and platform-dependent modules tosimplify implementation. The universal modules remain un
hanged (if one negle
ts
ompilation of the sour
e
ode for a given pro
essor). The platform-dependent modules interfa
e the ma
hine to parti
ular hardware,exe
uting VM requests to low-level pro
edures. For instan
e, the module Time&Clo
k is asso
iated with hard-ware, as it employs time interrupts to handle TIME data. DATE_AND_TIME data require real-time
lo
k (RTC) onboard. I/O fun
tions provide interfa
e to analog and binary inputs and outputs, and to
ommuni
ation �eldbusor network. The multitasking module is optional (not implemented yet), sin
e it employs me
hanisms of thehost operating system.

Open environment for programming small
ontrollers 331
Fig. 5.2. Universal and platform-dependent VM software modulesThe universal part of the virtual ma
hine has been written in ANSI C, so it
an be dire
tly applied todi�erent pro
essors. As indi
ated in Se
. 4.1, the number of data types and the way in whi
h the ma
hineinstru
tions are exe
uted are de�ned by the LCF
on�guration �le. For example, one
an limit the numberof elementary data types or de�ne a subset of VMASM instru
tion to be used. A set of general spe
i�
ationshas been developed in CPDev for handling pro
essor
omponents (interrupt system, RTC) and external in-terfa
es (I/O,
ommuni
ations). The spe
i�
ations are in the form of prototypes of
orresponding pro
edures(names, types of inputs and returned outputs). The prototypes do not depend on pro
essor and hardwaresolutions.The �le with the prototypes is
ompiled together with the universal modules of the virtual ma
hine. The
ontents (bodies) of the spe
i�
ation pro
edures
an be prepared by hardware designers and, as a binary �le,
onsolidated with the
ompiled universal modules. This gives the
omplete
ode of the virtual ma
hine for givenplatform. Till now, the ma
hines for AVR, ARM, MCS-51 and PC platforms have been developed.We stress that the
ontents of low-level pro
edures dependent on hardware solutions may be written bydesigners themselves. This makes the CPDev pa
kage open in the hardware sense.6. User de�ned fun
tion blo
ks. The CPDev environment allows the user to de�ne fun
tion blo
ksboth at PC side and at
ontroller side, i. e. as
omponents of virtual ma
hine. The PC side blo
ks are writtenin ST, whereas the VM side ones are in C. However, the C blo
ks are still invoked in the main ST program
ompiled and downloaded from PC. So, as far as invo
ations are
on
erned, there is no di�eren
e between STand C blo
ks.6.1. ST blo
ks. User libraries are
reated in CPDev as typi
al proje
ts whi
h may in
lude all kindsof POU units of IEC standard, i. e. programs, fun
tions and fun
tion blo
ks. De
larations VAR_INPUT andVAR_OUTPUT determine input/output stru
ture of fun
tions and fun
tion blo
ks. There is no di�eren
e betweenprogramming of a proje
t dire
tly for
ontroller implementation and programming a library. However, thelibrary proje
t is semi-
ompiled to VMASM mnemoni
s and not to binary form. So the last
omponent of ST
ompiler,
ode generator (Fig. 4.1), is not needed. The �le with mnemoni
s be
omes user-de�ned library andis exported to Libraries folder.Example of user fun
tion blo
k FB_PULSE is shown in Fig. 6.1. The blo
k generates single pulse at theoutput Q after time T, sin
e rising edge has appeared at the input IN. The program of the blo
k may implementFBD diagram of Fig. 6.1b, with standard blo
ks R_TRIG, RS and TON from CPDev IEC_61131 library (Fig. 2.1).Corresponding ST
ode is shown in Fig. 6.1
, with FB_PULSE belonging to the proje
t PROJ_MY_BLOCK (top ofFig. 6.1
). XML �le with PROJ_MY_BLOCKS sour
e
ode should be saved for future extensions and modi�
ations.Semi-
ompilation of the proje
t yields a �le with VMASM mnemoni
s,
alled, for instan
e, My_Library. This�le must be exported to Libraries. If FB_PULSE is needed in a new proje
t, both My_Library and IEC_61131must be imported (the latter to support the former).6.2. C-language blo
ks. Su
h blo
ks are needed at hardware level to handle I/O and
ommuni
ation
hannels. Inputs and outputs are de
lared in ST, but the blo
k body is implemented in C, at virtual ma
hineside (de
larations are also repeated). Dire
tive (*$HARDWARE_BODY_CALL...*) informs CPDev
ompiler thatthe blo
k is a
omponent of VM.Table 6.1 presents initial parts of the
ode of GPS_GGA blo
k whi
h provides serial
ommuni
ation with a GPSdevi
e a

ording to NMEA proto
ol (GGA is a
ommand in NMEA). Identi�er ID:0003 in the (*$HARDWARE...)dire
tive means that GPS_GGA is the third of C language blo
ks at VM side. Align:4 tells the
ompiler to lo
atethe variables at addresses divided by 4.

332 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. Trybus
a) Time diagram

) ST
odeb) FBD realization Fig. 6.1. Fun
tion blo
k FB_PULSETable 6.1De
laration of C language blo
k for GPS interfa
ingST de
laration C de
laration in VMFUNCTION_BLOCK GPS_GGA typedef stru
t(*$HARDWARE_BODY_CALL __de
lspe
(align(4))ID:0003; Align:4 *) tagIO_GPS_GGAVAR_INPUT {PORT : BYTE; END_VAR /*inputs*/ VM_BYTE Port;VAR_OUTPUT /*outputs*/UTC : TIME_OF_DAY; VM_TIME_OF_DAY Ut
;LAT : LREAL; VM_LREAL Lat;LON : LREAL; VM_LREAL Lon;ALT : LREAL; VM_LREAL Alt;QUALITY : BYTE; END_VAR VM_BYTE Quality;END_FUNCTION_BLOCK } IO_GPS_GGA, *PIO_GPS_GGA;Stru
ture of the bodyswit
h(ID) {...
ase 0x0003: {PIO_GPS_GGA arg = (PIO_GPS_GGA)GET_PARAM_POINTER();...}...}The blo
k's PORT input spe
i�es
ommuni
ation
hannel. The outputs determine UTC time, LATitude,LONgitude and ALTitude of a
tual position, together with QUALITY of GPS reading. We stress that besides thede
larations there is no body in ST
omponent of the blo
k.Stru
ture tagIO_GPS_GGA de�ned at VM side repeats ST de
larations with alignment, spe
i�es type nameand pointer type. Exe
utions of C blo
ks are implemented by swit
h(ID) statement with bodies entered atsu

essive
ases. So the body of GPS_GGA is entered at
ase 0x0003. Fun
tion GET_PARAM_POINTER() returnspointer to the stru
ture determined for the blo
ks instan
e in de
laration VAR ... END_VAR in the main STprogram. The pointer is of general type void*, so must be
onverted to the type PIO_GPS_GGA. The resulting

Open environment for programming small
ontrollers 333pointer is saved in arg variable, su�
ient for further pro
essing. Other C language blo
ks are implemented inthe same way. Given su
h template, hardware designers
an prepare C blo
ks themselves.7. FBD and IL
ompiler. The CPDev environment has been extended re
ently with simple graphi
editor of FBD diagrams and
ompiler of IL textual language, mainly for tea
hing purposes. ST
ompilerremains basi
 platform of the environment.7.1. Programming in FBD. The graphi
 editor,
alled Blo
kers (Fig. 7.1), provides basi
 editing fun
-tions, i. e. inserting blo
ks into diagram,
onne
ting inputs and outputs of the blo
ks, sele
ting and removingobje
ts, zooming, et
. The blo
ks are
hosen from CPDev libraries. Global input/output variables and
onstantvalues are also pla
ed in the diagram. Built-in syntax
he
ker veri�es
orre
tness. Resulting FBD diagram issaved in XML text �le whose stru
ture follows re
ommendations of PLCopen [13℄. The XML �le is then
on-verted into ST language by means of FBD2CPDev translator. Conne
tions between the blo
ks and instan
esof the blo
ks are represented by automati
ally
reated lo
al variables of
orresponding types. Convention ofvariable names is based on types of blo
ks in the diagram and on exe
ution order.

Fig. 7.1. FBD diagram of the START_STOP systemFigure 7.1 shows FBD diagram of the START_STOP system drawn using the Blo
kers editor. Numbers in theupper left
orners of the blo
ks indi
ate exe
ution order. Noti
e that in
ase of the fun
tion blo
ks TON, TOFthe numbers may be used to distinguish instan
es. The variables pla
ed in narrow re
tangles on the left andright are interpreted as global. Equivalent ST
ode generated by FBD2CPDev translator is shown in Table 7.1(
ompare Fig. 3.2). Table 7.1ST program
onverted from FBDPROGRAM START_STOP TON10 : TON;VAR_EXTERNAL TOF11 : TOF;START : BOOL; END_VARSTOP : BOOL;ALARM : BOOL; var_AND6_0 := AND(var_OR7_0,var_NOT9_0,var_NOT8_0);MOTOR : BOOL; var_OR7_0 := OR(var_AND6_0,START);PUMP : BOOL; var_NOT8_0 := NOT(ALARM);END_VAR var_NOT9_0 := NOT(STOP);TON10(IN := var_AND6_0, PT := t#5s);VAR TOF11(IN := TON10.Q, PT := t#5s);var_OR7_0 : BOOL; MOTOR := var_AND6_0;var_NOT9_0 : BOOL; PUMP := TOF11.Q;var_NOT8_0 : BOOL;var_AND6_0 : BOOL; END_PROGRAM

334 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. TrybusIt is seen that:
•
onne
tions between the blo
ks are represented by lo
al variables var_OR7_0 to var_AND6_0; name ofa variable indi
ates sour
e blo
k of that variable,
• two instan
es TON10, TOF11 are
reated, with names involving the blo
k type and exe
ution order.Outputs of the instan
es, i. e. TON10.Q and TOF11.Q, are denoted in the standard way (
ompare Fig. 3.2).7.2. Programming in IL. Sin
e de
laration parts of programs written in ST and IL are the same, andout
ome of ea
h
ompilation is a �le with VMASM
ode, the
ompiler of IL language has been developed byextending the original ST
ompiler. The ST
ompiler generates the VMASM
ode from expression trees builtof tokens a
quired from ST
ode. By analysing a sequen
e of IL instru
tions one
an
reate similar trees andemploy them in su

esive stages of
ompilation, in the same way as while
ompiling ST. This gives more e�
ientVMASM
ode than dire
t translation of IL instru
tions into VMASM, sin
e VMASM, unlike IL, does not relyon the notion of a

umulator. A

umulator is not needed in expression trees, typi
al for high-level languages.Table 7.2IL program for START_STOP proje
tPROGRAM PRG_START_STOP LD STARTVAR_EXTERNAL OR MOTORSTART : BOOL; ANDN STOPSTOP : BOOL; ANDN ALARMALARM : BOOL; ST MOTORMOTOR : BOOL;PUMP : BOOL; CAL ON_DELAY(IN:=MOTOR, PT:=t#5s)END_VAR CAL OFF_DELAY(IN:=ON_DELAY.Q, PT:=t#5s)VAR LD OFF_DELAY.QON_DELAY : TON; ST PUMPOFF_DELAY: TOF;END_VAR END_PROGRAMThe PRG_START_STOP program of Fig 3.2 is rewritten in IL in Table 7.2. The instru
tion LD START loadsCR register (Current Result; a

umulator in IEC) with the value of START. Next the CR is ORed with MOTOR, withthe result in CR. The following ANDN negates STOP, ANDs it with CR, always with the result in CR. Similarly foranother ANDN. ST MOTOR saves CR in the variable MOTOR. CAL instru
tions invoke fun
tion blo
ks.8. CPDev appli
ations. The CPDev pa
kage is
urrently applied for programming new SMC
ontrollerfrom LUMEL, Zielona Góra, Poland. SMC operates as a
entral unit in small DCS systems involving dis-tributed I/O modules, intelligent transmitters, PID
ontrollers, et
. [12℄. Development of another appli
ation inforth
oming version of MINI-GUARD Ship Control & Positioning System from Praxis Automation Te
hnology,Leiden, The Netherlands, is in progress [8℄. For lab and tea
hing appli
ations PC-based soft
ontrollers
an beused.8.1. SMC
ontroller. The SMC shown in Fig. 8.1a is based on Atmel AVR 8-bit mi
ro
ontroller.Platform-dependent modules of virtual ma
hine, i. e. interrupts, RTC and
ommuni
ation interfa
es, havebeen written by LUMEL engineers, and sent to the authors in binary format. Consolidation of universal andLUMEL modules has resulted in a VM-SMC ma
hine whi
h, as SMC �rmware, exe
utes ST program
ompiledand downloaded from PC. The
ontroller is equipped with two serial ports, one (master) for distributed I/Os and�eld devi
es, another (slave) for host PC or HMI panel. Modbus RTU proto
ol is applied (up to 230.4 kbaud).Third Complex_blo
ks library to implement self-tuning PID
ontrol loops is provided.8.2. MINI-GUARD
ontrollers. The MINI-GUARD system
onsists of seven types of
ontrollers(Fig. 8.1b) involving NXP ARM7 16/32-bit mi
ro
ontrollers. The
ontrollers have appli
ation dedi
ated fa
e-plates. Virtual ma
hine for Atmel ARM7 has been sent to Praxis A.T., to be adapted for the NXP ARM7. Thesoftware to handle C language blo
ks des
ribed in Se
 6.2 has been developed espe
ially for MINI-GUARD. The
ontrollers
ommuni
ate over Ethernet, external devi
es are
onne
ted via universal serial interfa
e or OPC.8.3. Soft
ontrollers with NI and InTeCo boards. A PC equipped with I/O board and exe
utinga
ontrol program is
alled soft
ontroller. Two su
h boards
an be used so far, namely NI-DAQ USB 6008from National Instruments and RT-DAC/USB from InTeCo, Cra
ow, Poland (Fig. 8.1
,d). A
ommon interfa
e

Open environment for programming small
ontrollers 335

a) SMC
ontroller b) Alarm Panel of MINI-GUARD

) NI-DAQ I/O board d) RT-DAC I/O boardFig. 8.1. Appli
ations of CPDev pa
kageCPDev.CPCom.ICommDev has been developed, with provision for other types. Soft
ontroller is
on�gured in twosteps. First a board is sele
ted from menu and I/O
hannels de�ned. Then global variables of the proje
t arelinked to the
hannels. Binary
hannels be
ome BOOLs and analog one REALs. Soft
ontrollers
an be
onne
tedinto DCS system by means of Modbus TCP proto
ol.9. Con
lusions and future work. CPDev environment for programming small
ontrollers in ST, FBDand IL languages of IEC 61131-3 standard has been presented. The environment is
onsidered open be
ause
ompiled
ode
an be exe
uted by di�erent pro
essors, low-level software
omponents are provided by hardwaredesigners, and
ontrol programmers
an
reate their own libraries with reusable program units. The
ompilerprodu
es universal exe
utable
ode pro
essed by runtime virtual ma
hine operating as interpreter. The ma
hineis an ANSI C program
omposed of universal and platform-dependent modules. The ma
hines for AVR, ARM,MCS51 (
ore) and x86 pro
essors have been developed so far. User fun
tion blo
ks
an be programmed in STand C. The ST blo
ks are kept in CPDev libraries, whereas C blo
ks be
ome
omponents of virtual ma
hine.FBD diagram is translated to ST and then
ompiled. CPDev has been used for programming
ontrollers in twosmall DCS systems and for PC-based soft
ontroller with I/O boards.Future work on CPDev will be motivated primarily by needs of the users. Next version will in
ludestru
tured data types and global arrays, at least two-dimensional (lo
al arrays are available now). Current

336 D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, and L. Trybussimple FBD editor should be upgraded to more professional level. Depending on ST statements the
ompiled
ode is longer or shorter, as in the expression x1 AND x2 vs. fun
tion AND(x1, x2). Templates indi
ating moree�
ient solutions are important for the users. Virtual ma
hine for FPGA platform with simple multitaskingme
hanism is
urrently under development. REFERENCES[1℄ A. Appel, J. Palsberg, Modern
ompiler implementation in Java, Cambridge University Press, Se
ond edition, (2002).[2℄ C# Language Spe
ifi
ation, http://msdn2.mi
rosoft.
om/en-us/v
sharp/aa336809.aspx, (2007).[3℄ K. Cooper, L. Tor
zon, Engineering a Compiler, Morgan Kaufmann, San Fran
is
o, (2003).[4℄ IEC 61131-3 standard: Programmable Controllers�Part 3, Programming Languages, IEC, (2003).[5℄ ISaGRAF User's Guide, ICS Triplex In
., (2005).[6℄ K. H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems Berlin�Heidelberg, Springer-Verlag, (2001).[7℄ T. Lindholm, F. Yellim, Java Virtual Ma
hine Spe
i�
ation - Se
ond Edition, Java Software, Sun Mi
rosystems In
,(2004).[8℄ Mini-Guard Ship System, Praxis Automation Te
hnology B. V., http://www.praxis-automation.
om, (2009).[9℄ D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, L. Trybus, Mini-DCS System Programming in IEC 61131-3Stru
tured Text, Journal of Automation, Mobile Roboti
s & Intelligent Systems, Vol. 2, No 3, (2008).[10℄ D. Rzo«
a, J. Sadolewski, A. Ste
, Z. �wider, B. Trybus, L. Trybus, Programming
ontrollers in Stru
tured Textlanguage of IEC 61131-3 standard, Journal of Applied Computer S
ien
e, Vol. 16, No 1, (2008).[11℄ E. Tisserant, L. Bessard, M. de Sousa, An Open Sour
e IEC 61131-3 Integrated Development Environment, 5th Int.Conf. Industrial Informati
s, Pis
ataway, NJ, USA, (2007).[12℄ SMC, Lumel S.A., http://www.lumel.
om.pl/en, (2009).[13℄ XML Formats for IEC 61131-3 ver. 1.01 O�
ial Release, http://www.pl
open.org, (2007).Edited by: Janusz ZalewskiRe
eived: September 30, 2009A

epted: O
tober 19, 2009

