ScALABLE COMPUTING: PRACTICE AND EXPERIENCE ISSN 1895-1767
Volume 10, Number 3, pp. 325-336. http://www.scpe.org (© 2009 SCPE

OPEN ENVIRONMENT FOR PROGRAMMING SMALL CONTROLLERS ACCORDING
TO IEC 61131-3 STANDARD

DARIUSZ RZONCA, JAN SADOLEWSKI, ANDRZEJ STEC, ZBIGNIEW SWIDER, BARTOSZ TRYBUS, AND
LESZEK TRYBUS*

Abstract. A control engineering environment called CPDev for programming small controllers in ST, FBD and IL languages
of IEC 61131-3 standard is presented. The environment consists of a compiler, simulator and hardware configurer. It is open in the
sense that: (1) code generated by the compiler can be executed by different processors, (2) low-level components of the controller
runtime program are developed by hardware designers, (3) control programmers can define libraries with functions, function blocks
and programs.

Of the three TEC languages, ST Structured Text is a basis for CPDev. FBD diagrams are translated to ST. IL compiler uses
the same code generator. The runtime program has the form of virtual machine which executes universal code generated by the
compiler. The machine is an ANSI C program with some platform-dependent components. The machines for AVR, ARM, MCS51
and x86 processors have been developed so far. Applications include two controllers for small DCS systems and PC equipped with
1/0 boards. CPDev may be downloaded from http://cpdev.prz-rzeszow.pl/demo.

Key words: control engineering tool, IEC 61131-3 standard, ST language compiler, multi-platform virtual processor

1. Introduction. Remarkable number of small-and-medium-scale companies in Europe manufacture tran-
smitters, actuators, drives, PID and PLC controllers, and other control-and-measurement equipment. Engi-
neering tools for programming such devices are often fairly simple and do not correspond to IEC 61131-3
standard [4], required by growing number of customers. The problem may be solved to some extent by devel-
oping open engineering environments for programming small control devices based on AVR, ARM, MCS51 or
other microcontrollers according to TEC languages (61131-3 will be dropped for brevity). Development of such
environment called CPDev (Control Program Developer) was initiated by the authors at the end of 2006.

The CPDev is open in the following sense:

e code generated by the compiler can be executed by different processors,

e low-level components of runtime program are provided by hardware designers,

e control programmers create their own libraries with reusable program units.
The CPDev compiler generates an intermediate, universal code executed by runtime interpreter at the controller
side. Different processors require different interpreters. This resembles somewhat the concept of Java virtual
machines [7] capable of executing programs on different platforms. Hence the interpreters of the CPDev universal
code are also called virtual machines.

The same approach was adapted earlier in ISAGRAF package from ISC Triplex [5] (now in Rockwell). IS-
aGRAF universal code is called TIC (Target Independent Code) and may be executed on platforms supporting
Windows, Linux, VxWorks, QNX and RTX. Much simpler CPDev does not impose such requirements, how-
ever. Another open environment called Beremiz [11] compiles IEC language code into C/C++ program, to be
translated further into processor code. In this case commercial restrictions on the use of C/C++ compilers may
matter sometimes.

This paper follows a few earlier publications, e.g. [9, 10], which reported on CPDev development. The
content, is organized as follows. For the reader not familiar with IEC standard, Sec. 2 provides some information
on programming in high-level ST language. Components of CPDev, user interface, standard functions and
libraries with function blocks are described in Sec. 3. Section 4 characterizes scanner, parser and code generator
of ST compiler, written in C# at Ms .NET platform. Some instructions of the universal code called VMASM
(Virtual Machine Assembler) are also presented. Section 5 describes operation and structure of the virtual
machine. The machine is written in industry standard C and consists of universal and platform-dependent
modules. Platform-dependent modules are written by hardware designers. Section 6 characterizes development
of user function blocks, both in ST and C languages. Blocks written in C become components of the virtual
machine. Programming in graphical FBD and textual IL languages is described in Sec. 7. FBD diagram is
translated to ST and then compiled. Applications of CPDev for programming a small control-and-measurement,

*Department of Computer and Control Engineering, Faculty of Electrical and Computer Engineering, Rzeszow University of
Technology, 35-959 Rzeszow, ul. W. Pola 2, Poland, ({drzonca, js, astec, swiderzb, btrybus, ltrybus}Qprz-rzeszow.pl).

325

326 D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

distributed system, controllers of ship control-and-positioning system and a softcontroller based on PC with
I/0 boards are presented in Sec. 8.

2. A few notes on IEC 61131-3. The IEC 61131-3 standard [4] defines five programming languages,
LD, IL, FBD, ST and SFC, allowing the user to choose the one suitable for particular application. Instruction
list IL and Structured Text ST are text languages, whereas Ladder Diagram LD, Function Block Diagram
FBD and Sequential Function Chart SFC are graphical ones (SFC is not an independent language, since it
requires components written in the other languages). Relatively simple languages LD and IL are used for
small applications. FBD, ST and SFC are appropriate for medium-scale and large applications. John and
Tiegelkamp’s book [6] is a good source to learn IEC programming.

ST is a high-level language originated from Pascal, especially suitable for complicated algorithms. Equivalent
code for a program written in any of the other four languages can be developed in ST, but not vice versa. Hence
most of engineering packages use ST as a default language for programming user function blocks. Due to such
reasons, ST has been selected as a base language for the CPDev environment.

2.1. Data types. Data types, literals (constants) and variables are common components of IEC languages.
Names (identifiers) are typical, although there is no distinction between capital and small characters. The
standard defines twenty elementary data types, several of which are listed in Table 2.1 together with memory
sizes and ranges (in CPDev). BOOL, INT, REAL and TIME are most common. FALSE, 13, -4.1415 and T#1m25s
are examples of corresponding constants.

TaBLE 2.1

Several elementary IEC data types
Type Size (range) Type Size (range)
BOOL 1B (0, 1) LREAL 8B IEEE-754 format
BYTE 1B (0 ... 255) TIME 4B (-T#24d20h31m23s648ms ...
WORD 2B (0 ... 65535) T#24d20h31m23s647ms)
INT 2B (—32768 ... 32767) 4B (00:00:00.00 ...
REAL 4B IEEE-754 format TIME_OF_DAY 23:59:59.99)

The standard defines three levels for accessing variables, LOCAL, GLOBAL and ACCESS. LOCALs are available
in the program, function block or function. GLOBALS can be used in the whole project, but programs, function
blocks or functions must declare them as EXTERNAL. ACCESS variables exchange data between different systems.

2.2. POU units. Programs, function blocks and functions, called jointly Program Organization Units
(POUs), are components of IEC projects. Function blocks, designed for reuse in different parts of program,
are of crucial importance. A block involves inputs, outputs and memory for data from previous executions.
Therefore the blocks must be declared as instances. The IEC defines small set of standard blocks, such as
flip-flops, edge detectors, timers and counters. Three of them are shown in Fig. 2.1.

RS R_TRIG TON
BOOL— S Q1+—BooL BOOL— IN Q—BOOL
BOOL— CLK Ql—BOOL
BOOL —| R1 TIME — PT ET— TIME
S CLK i Li IN_|
R [L Q_ QP
a1 L 1 cycle ET—1 L1

Fic. 2.1. Examples of standard function blocks: RS flip-flop, R_TRIG rising edge detector, TON on-delay timer

2.3. Programming. Programs written in ST or other languages begin with declarations of variables and
instances of function blocks placed between VAR_EXTERNAL or VAR and END_VAR keywords. GLOBAL variables are
declared before programs or separately. The declarations are followed by list of statements. The statements
involve expressions which, when evaluated, yield results in one of defined data types, i. e. elementary (Table 2.1)
or derived, such as alias, array or structure. The following operators are available (in descending priority):
parenthesis, function evaluation, negation, power, arithmetic operators, Boolean operators.

Open environment for programming small controllers 327

ST language provides five types of statements:

e assignment := (Pascal symbol),

e selections IF, CASE,

e loops FOR, WHILE, REPEAT,

e carly exits RETURN, EXIT,

e function and function block invocations.
Simple examples are presented in the following sections. Typical program looks like a sequence of function and
function block invocations (calls).

3. CPDev environment. The CPDev consists of three programs executed by PC and one by the con-

troller (Fig 3.1). The PC programs are as follows:

e CPDev compiler of ST language,

e CPSim simulator,

e CPCon configurer of hardware resources.
The programs have dedicated interfaces and exchange data through files in appropriate formats. The CPDev
compiler (the same name as the package) generates universal code executed by virtual machine (VM) run by the
controller. The VM operates as an interpreter. The universal code is a list of instructions of VM language called
VMASM assembler. VMASM is not related to any particular processor, but close to typical assemblers. The
compiler employs ST syntax rules, list of VMASM instructions and POUs from libraries. Besides the universal
code the compiler generates some information for debugging and simulation by CPSim.

Configurer of
hardware resources
CPCon

Virtual machine
VM

Simulator
CPSim

Compiler
CPDev

Fic. 3.1. Components of CPDev environment

Configuration of hardware resources by means of CPCon involves memory, input/output and communication
interfaces. User specifications define memory types and sizes, numbers and types of I/Os and communication
channels, validity flags, etc. Allocation of hardware resources has the form of a map that assigns symbolic
addresses from ST programs to physical ones. By using it, the compiled code can be assembled for a particular
platform to create final, universal executable code. From CPDev viewpoint, hardware platforms differ only in
hardware allocation maps, whereas the compiled code is identical.

The CPDev environment has been recently extended by graphic editor of FBD diagrams and compiler of
IL language. FBD diagram is automatically converted into ST code and compiled as above. Compilers of ST
and IL differ in details only.

3.1. User interface. Main window of CPDev ST compiler is shown in Fig. 3.2. The window consists of
three areas:
e tree of project structure, on the left,
e program in ST language, center,
e message list, bottom.
Frames of the areas can be adjusted and the contents scrolled.

Tree of the START_STOP project shown in the figure includes POU unit with the program PRG_START_STOP,
five global variables from START to PUMP, task TSK_START_STOP, and two standard function blocks TON and
TOF from IEC_61131 library. The program is written according to ST language rules. The first part involves
declarations VAR_EXTERNAL of the use of global variables. Local declarations of the instances ON_DELAY and
OFF _DELAY of the blocks TON, TOF are the second part. Program body consists of four statements. The first one
turns a MOTOR on if START is pressed, provided that STOP or ALARM are not. Next three statements turn a PUMP
on and off five seconds after the MOTOR (FBD diagram corresponding to this project is shown in Fig 7.1).

Global variables and the task are defined using separate windows (not shown). According to IEC standard
the variables can be assigned CONSTANT and RETAIN attributes, and logical addresses. Task can be executed
once, cyclically with a given period, or as soon as previous execution is completed. There is no limit on the
number of programs assigned to a task.

Text of the project represented by the tree is kept in an XML file. Compilation is executed by calling
Project->Build from the main menu. Messages appear in the lower area of the interface window. If there

328 D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

%% CPDev

File Edit Wew Insert Project Tools window Help

4

FRNE=A" M= REN ey 2B ha e

@ START STOP START_STOP.PRG_START_STOP :: program (ST) [= |[B][X]
=-£% POU 0ol PROGRAM FRG START STOF
b PRG_STARAT STOP || ooz B -
(=l Global variables 002 VAR EXTERHAL
= wm START 004 START : BOOL [ERRSaNkal:
T BOOL 00s STOP : BOOL [EE3IVER:
ﬁiE' . o0& ALARM : BOOL [EEIadVEM:
ﬁ%é #0000 007 MOTOR : BOOL:
0P oos FUMF : BooL [ERRrRvial:
: ALARM 003 END VAR
wa MOTOR 0
v FUMP UL VAR
OB Tasks o1z ON DELAY : TON:
‘-i T5K_START_STOF 013 OFF_DELAY: TOF:
=% Libraries 0l4 END VAR
=l 1EC_E11 als
T TOF 016 MOTOR := (START OR MOTOR) AND
=% oM 017 NoT STOP AND MOT ALARM;
N a1s
P 013 OM DELAY [IN:=MOTOR, PT:=t#5s):
Oy o 020 OFF DELAY (IN:=0M DELAY.Q, PT:=t#i=):
Bp ET 0zl PUMP := OFF DELAY.Q:
azz
0z3 EHD PROGRAM
< | i -
a0 ¥

FOL |F|esu:uurces Types

@ Building the iterm "START_STOP'. Started at 1:2:06:23
@ Campiliation of "START_STOP" completed at 12:06:23.
@ Linking "START_STOP" completed at 12:06:23.
@Statistics: Erars: 0, Warnings: O, Hints: 0

Fia. 3.2. User interface of ST compiler (START_STOP project)

are no mistakes, the compiled project is stored in two files. The first one contains universal executable code in
binary format for the virtual machine. The second one stores mnemonic code, together with some information
for simulator and hardware configurer (variable names, etc.).

3.2. Functions and function blocks. The CPDev compiler provides most of standard functions defined
in IEC. Five groups of them followed by examples are listed below:
type conversions: INT_TO_REAL, TIME_TO_DINT, TRUNC,
numerical functions: ADD, SUB, MUL, DIV, SQRT, ABS, LN,
Boolean and bit shift functions: AND, OR, NOT, SHL, ROR,
selection and comparison functions: SEL, MAX, LIMIT, MUX, GE, EQ, LT,

e functions of time data types: ADD, SUB, MUL, DIV (IEC uses the same names as for numerical functions).

Selector SEL, limiter LIMIT and multiplexer MUX from selection and comparision group are particularly useful.
Variables of any numerical type, i. e. INT, DINT, REAL and LREAL are arguments in most of relevant functions.

Two libraries of function block are available, namely:
e IEC_61131 standard library,

Open environment for programming small controllers 329
e Basic_blocks library with simple blocks supplementing the standard.

The first one involves: (1) flip-flops and semaphore RS, SR, SEMA, (2) rising and falling edge detectors R_TRIG,

F_TRIG, (3) up, down, up-down counters CTU, CTD, CTUD, (4) pulse, on-delay, off-delay timers TP, TON, TOF.

Blocks typical for small multifunction controllers are in the second library, i. e. integrator, filters, max/min over

time, memories, time measurement, etc.

4. ST language compiler. The task of the compiler is to convert XML source file with the project in ST
language into a file with universal code in binary format. General diagram of the compiler operation involving
scanner, parser and code generator is shown in Fig. 4.1.

Character SCANNER . PARSER) CODE Executable
Token list Mnemonic code | —————>
stream GENERATOR format
Sequence of ST Sequence of .
. Portable b
S;I'Ofrr;%ufige tokens and their VMASM ULt fi(lee Lk=Ly7
categories instructions

Fia. 4.1. ST compiler components

4.1. Scanner, parser and code generator. The scanner (lexical analyser) analyses character stream
from ST source file and decomposes it into lexical units, i. e. tokens. The tokens are classified into categories
such as identifiers, keywords, operators, constants (a few categories), delimiters, directives, comments, white
spaces and invalid characters. The tokens with categories are collected on a list passed to the parser.

The parser operates according to top-down scheme with syntax directed translation [3]. By employing
the ST syntax the parser recognizes consecutive token constructions from the scanner list. White spaces and
comments are dropped. When correct construction is recognized the parser replaces it by a set of mnemonic
instructions of the VMASM assembler. To do so, the parser employs built in elementary data types (Table 2.1)
and list of VMASM instructions. Examples of these instructions are presented in Table 4.1.

TABLE 4.1
Ezamples of VMASM assembler instructions
Instruction Meaning Instruction Meaning

MCD Constant initialization GE Greater or equal

MEMCP Assignment SHL Bit shift to the left
ADD Addition JMP Unconditional jump
SUB Subtraction JZ Conditional jump
AND Logic product MEMCP Memory copy
NOT Negation RETURN Return from function

Normally a single ST statement is translated into several VMASM instructions. Some translations require
introduction of auxiliary variables and labels. Derived data types and POUs from libraries (functions, function
blocks and programs) are also parsed. The mnemonic code is written in a special text format. The code can be
consolidated with other mnemonic codes.

In the third step the code generator converts the consolidated mnemonic code into universal executable
code in binary format. Mnemonics of the VMASM instructions, names of the variables and labels are replaced
by corresponding number identifiers. To do so, the generator employs a Library Configuration File (LCF)
with the identifiers of the instructions, numbers and types of the operands, and information how the operands
are acquired (operand identifier may be an index to variable or a direct value). Each implementation of
virtual machine is defined by specific LCF configuration file. Besides binary file with the executable code
the compiler generates a text file with mnemonic code, some additional information for CPSim simulator and
CPCon configurer (variable names, etc.) and compilation report (HTML).

4.2. Parser and code generator classes. Essential components of the compiler are designed as classes
in C# language [1, 2]. Each token of ST language is encapsulated into an object of corresponding class. The
classes inherit from an abstract STIdentificator class. During compilation, identifiers are collected into lists.
The lists employ predicates for finding appropriate identifiers, what eliminates the need for hash tables. There
is a list of global identifiers and local lists which store identifiers of functions, function blocks, programs, etc.

330 D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

Identifiers in a list are checked for uniqueness. When identical names are found compilation is stopped and
error reported. If local identifier hides a global one, the compiler produces a warning.

The parser generates text sequence of VMASM instructions for the code generator. Each instruction is
represented by a mnemonic followed by operand names. Code generator replaces mnemonics and variable
names with appropriate number identifiers (indexes). While processing an instruction, the generator extracts
some information from libraries, e.g. operand size, type and passing method. The number identifier can
be interpreted as a pointer to variable or as immediate value. Instructions resulting from compilation are
represented by instances of VMInstruction class. The operand list VMOperand is also stored as a member of
this class. By using lists of operands typical problems with fixed-size operand tables are avoided.

5. Multi-platform virtual machine. Binary file with the universal code and hardware allocation map
from the CPCon configurer are downloaded into the controller, to be processed by virtual machine. Main
features of the processing are characterized below.

A

RUN mode ?
NO
Controller memory
YES
Internal memory Code segment Data segment
Read inputs
r Instruction .00e8
selection 0510 0700 0700
_ 1C1F OE00 0C00 €0020
Execution Cycle 0100 0095 9809 0000 803E 0000
Task time 0800 1€00 2000 0000 0000 0000
- program 1 . 1009 1A00 1000 0000
- program 2 >-Comparison ey #2040 cpcc ce3p
R Greater 2a01] 0329 2C00 0000 803E 0000

(Real, Real):Bool 0800
3000
020

2400 0129
1000 2c00
1400 3000

0000 0000 0000
@0044

Update outputs 1C00 4201
Next cycle \/ Address register.
a) Operation of VM b) Memory organization

Fic. 5.1. Virtual Machine

5.1. Operation cycle. Virtual machine is an automaton operating according to Fig. 5.1a. As indicated
before, the machine is specific for a particular processor and works as an interpreter. The task consists of
programs executed consecutively. The binary code involves number identifiers of the instructions and addresses
of operands. The machine, similarly as a real processor, maintains program counter with the address of in-
struction to be executed, and base address of the data area with operands (specified for each POU). Given
the instruction address, the machine fetches the identifier, decodes it, fetches the operands, and executes the
instruction. Stack emulation and update of the base addresses permit multiple, concurrent calls of functions
and function blocks. The machine monitors time cycle of the task and sets alarm flag if timeout appears. It
also triggers input/output procedures responsible for external variables.

Allocation of software to memory segments is shown in Fig. 5.1b. The instructions and their operands are
in the code segment (read only). Data segment contains global, local and auxiliary variables, some of them
with constant values. The data segment can be accessed directly or indirectly by special virtual registers. The
machine’s internal memory keeps code of the interpreter, stacks and registers. There is no way of accessing
internal memory from the program level. The machine is able to execute multiple instances of programs.

As shown in Fig. 5.2, the virtual machine consists of a few universal and platform-dependent modules to
simplify implementation. The universal modules remain unchanged (if one neglects compilation of the source
code for a given processor). The platform-dependent modules interface the machine to particular hardware,
executing VM requests to low-level procedures. For instance, the module Time&Clock is associated with hard-
ware, as it employs time interrupts to handle TIME data. DATE_AND_TIME data require real-time clock (RTC) on
board. I/0 functions provide interface to analog and binary inputs and outputs, and to communication fieldbus
or network. The multitasking module is optional (not implemented yet), since it employs mechanisms of the
host operating system.

Open environment for programming small controllers 331

Instruction interpreter

Stack Data type | Universal
emulation handler
I/0 functions Memory

access

Platform-dependent

Time & clock | Multitasking

Fia. 5.2. Universal and platform-dependent VM software modules

The universal part of the virtual machine has been written in ANSI C, so it can be directly applied to
different processors. As indicated in Sec. 4.1, the number of data types and the way in which the machine
instructions are executed are defined by the LCF configuration file. For example, one can limit the number
of elementary data types or define a subset of VMASM instruction to be used. A set of general specifications
has been developed in CPDev for handling processor components (interrupt system, RTC) and external in-
terfaces (I/O, communications). The specifications are in the form of prototypes of corresponding procedures
(names, types of inputs and returned outputs). The prototypes do not depend on processor and hardware
solutions.

The file with the prototypes is compiled together with the universal modules of the virtual machine. The
contents (bodies) of the specification procedures can be prepared by hardware designers and, as a binary file,
consolidated with the compiled universal modules. This gives the complete code of the virtual machine for given
platform. Till now, the machines for AVR, ARM, MCS-51 and PC platforms have been developed.

We stress that the contents of low-level procedures dependent on hardware solutions may be written by
designers themselves. This makes the CPDev package open in the hardware sense.

6. User defined function blocks. The CPDev environment allows the user to define function blocks
both at PC side and at controller side, i. e. as components of virtual machine. The PC side blocks are written
in ST, whereas the VM side ones are in C. However, the C blocks are still invoked in the main ST program
compiled and downloaded from PC. So, as far as invocations are concerned, there is no difference between ST
and C blocks.

6.1. ST blocks. User libraries are created in CPDev as typical projects which may include all kinds
of POU units of IEC standard, i. e. programs, functions and function blocks. Declarations VAR_INPUT and
VAR_OUTPUT determine input/output structure of functions and function blocks. There is no difference between
programming of a project directly for controller implementation and programming a library. However, the
library project is semi-compiled to VMASM mnemonics and not to binary form. So the last component of ST
compiler, code generator (Fig. 4.1), is not needed. The file with mnemonics becomes user-defined library and
is exported to Libraries folder.

Example of user function block FB_PULSE is shown in Fig. 6.1. The block generates single pulse at the
output Q after time T, since rising edge has appeared at the input IN. The program of the block may implement
FBD diagram of Fig. 6.1b, with standard blocks R_TRIG, RS and TON from CPDev IEC_61131 library (Fig. 2.1).
Corresponding ST code is shown in Fig. 6.1c, with FB_PULSE belonging to the project PROJ_MY_BLOCK (top of
Fig. 6.1c). XML file with PROJ_MY_BLOCKS source code should be saved for future extensions and modifications.
Semi-compilation of the project yields a file with VMASM mnemonics, called, for instance, My_Library. This
file must be exported to Libraries. If FB_PULSE is needed in a new project, both My_Library and IEC_61131
must be imported (the latter to support the former).

6.2. C-language blocks. Such blocks are needed at hardware level to handle I/O and communication
channels. Inputs and outputs are declared in ST, but the block body is implemented in C, at virtual machine
side (declarations are also repeated). Directive (*$HARDWARE_BODY_CALL. . .*) informs CPDev compiler that
the block is a component of VM.

Table 6.1 presents initial parts of the code of GPS_GGA block which provides serial communication with a GPS
device according to NMEA protocol (GGA is a command in NMEA). Identifier ID: 0003 in the (*$HARDWARE. . .)
directive means that GPS_GGA is the third of C language blocks at VM side. Align:4 tells the compiler to locate
the variables at addresses divided by 4.

332

D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

i i 1cycle
a) Time diagram
R_TRIG
N CLK Q —Q
r

RS

R1

TON
IN Q

][L]

PT ET

b) FBD realization

PROJ_MY_BLOCKS.FB_PULSE :: function K
PULSE

c) ST code

Fia. 6.1. Function block FB_PULSE

TaBLE 6.1

Declaration of C language block for GPS interfacing

ST declaration

C declaration in VM

FUNCTION_BLOCK GPS_GGA
(*$HARDWARE_BODY_CALL
ID:0003; Align:4 *)

VAR_INPUT

PORT : BYTE; END_VAR
VAR_QUTPUT

UTC : TIME_OF_DAY;

LAT : LREAL;

LON : LREAL;

ALT : LREAL;

QUALITY : BYTE; END_VAR

END_FUNCTION_BLOCK

typedef struct
__declspec(align(4))
tagI0_GPS_GGA

{

/*inputs*/ VM_BYTE Port;
/*outputsx/
VM_TIME_QOF_DAY Utc;
VM_LREAL Lat;

VM_LREAL Lon;

VM_LREAL Alt;

VM_BYTE Quality;
} I0_GPS_GGA, *PIQ_GPS_GGA;

Structure of the body

switch(ID) {...
case 0x0003: {

PIO_GPS_GGA arg = (PIO_GPS_GGA)GET_PARAM_POINTER();...}...}

RS _B:

Bl:=0);

00l FURCTION BLOCK FE
ooz

003 VAR _INPUT

004 IN : BOOL;

ook T TIME ;

006 EHD VAR

oo?

oog8 VAR _OUTPUT

oos Q BOOL

010 EHD VAR

oll

0lz VAR

o1z TRIG B: R_TRIG:
ol4 | TOM E: TOM:

015 END VAR

Ole

017 TRIG_B{CLK:=IN) :
ols R3_B(3:=TRIG B.Q,
0ls TCM_E(IN:=RS_E.Q1, PT:=T):
0z0 Q:=TON_B.Q:

ozl

0zz END_FUNCTIOH BLOCK

R3;

The block’s PORT input specifies communication channel. The outputs determine UTC time, LATitude,
LONgitude and ALTitude of actual position, together with QUALITY of GPS reading. We stress that besides the
declarations there is no body in ST component of the block.

Structure tagI0O_GPS_GGA defined at VM side repeats ST declarations with alignment, specifies type name
and pointer type. Executions of C blocks are implemented by switch(ID) statement with bodies entered at
successive cases. So the body of GPS_GGA is entered at case 0x0003. Function GET_PARAM_POINTER() returns
pointer to the structure determined for the blocks instance in declaration VAR ... END_VAR in the main ST
program. The pointer is of general type void*, so must be converted to the type PI0O_GPS_GGA. The resulting

Open environment for programming small controllers 333

pointer is saved in arg variable, sufficient for further processing. Other C language blocks are implemented in
the same way. Given such template, hardware designers can prepare C blocks themselves.

7. FBD and IL compiler. The CPDev environment has been extended recently with simple graphic
editor of FBD diagrams and compiler of IL textual language, mainly for teaching purposes. ST compiler
remains basic platform of the environment.

7.1. Programming in FBD. The graphic editor, called Blockers (Fig. 7.1), provides basic editing func-
tions, i. e. inserting blocks into diagram, connecting inputs and outputs of the blocks, selecting and removing
objects, zooming, etc. The blocks are chosen from CPDev libraries. Global input/output variables and constant
values are also placed in the diagram. Built-in syntax checker verifies correctness. Resulting FBD diagram is
saved in XML text file whose structure follows recommendations of PLCopen [13]. The XML file is then con-
verted into ST language by means of FBD2CPDev translator. Connections between the blocks and instances
of the blocks are represented by automatically created local variables of corresponding types. Convention of
variable names is based on types of blocks in the diagram and on execution order.

File Edit Elements Blocks Options Help

NEH kR

L

START L _| =

AND I MOTOR |

.

9
STOP NOT

10 11
°
ALARM NOT IN oy Q N o Q PUME

Lo PT ETf t#0s —p7 ET[

N < | 1l | [E3]

1111; 528

Fic. 7.1. FBD diagram of the START_STOP system

Figure 7.1 shows FBD diagram of the START_STOP system drawn using the Blockers editor. Numbers in the
upper left corners of the blocks indicate execution order. Notice that in case of the function blocks TON, TOF
the numbers may be used to distinguish instances. The variables placed in narrow rectangles on the left and
right are interpreted as global. Equivalent ST code generated by FBD2CPDev translator is shown in Table 7.1
(compare Fig. 3.2).

TABLE 7.1

ST program converted from FBD
PROGRAM START_STOP

TON10 : TON;
VAR_EXTERNAL TOF11 : TOF;
START : BOOL; END_VAR
STOP : BOOL;
ALARM : BOOL; var_AND6_0 := AND(var_0R7_0,var_NOT9_0,var_NOT8_0);
MOTOR : BOOL; var_0OR7_0 := OR(var_AND6_0,START);
PUMP : BOOL; var_NOT8_0 := NOT(ALARM);
END_VAR var_NOT9_0 := NOT(STOP);

TON10(IN := var_AND6_0, PT := t#5s);
VAR TOF11(IN := TON10.Q, PT := t#5s);
var_0R7_0 : BOOL; MOTOR := var_AND6_0;
var_NOT9_0 : BOOL; PUMP := TOF11.Q;
var_NOT8_0 : BOOL;
var_AND6_0 : BOOL; END_PROGRAM

334 D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

It is seen that:
e connections between the blocks are represented by local variables var_OR7_0 to var_AND6_0; name of
a variable indicates source block of that variable,
e two instances TON10, TOF11 are created, with names involving the block type and execution order.
Outputs of the instances, i. e. TON10.Q and TOF11.Q, are denoted in the standard way (compare Fig. 3.2).

7.2. Programming in IL. Since declaration parts of programs written in ST and IL are the same, and
outcome of each compilation is a file with VMASM code, the compiler of IL language has been developed by
extending the original ST compiler. The ST compiler generates the VMASM code from expression trees built
of tokens acquired from ST code. By analysing a sequence of IL instructions one can create similar trees and
employ them in succesive stages of compilation, in the same way as while compiling ST. This gives more efficient
VMASM code than direct translation of IL instructions into VMASM, since VMASM, unlike IL, does not rely
on the notion of accumulator. Accumulator is not needed in expression trees, typical for high-level languages.

TABLE 7.2
IL program for START_STOP project
PROGRAM PRG_START_STOP
LD START
VAR_EXTERNAL OR MOTOR

START : BOOL; ANDN STOP

STOP : BOOL; ANDN ALARM

ALARM : BOOL; ST MOTOR

MOTOR : BOOL;

PUMP : BOOL; CAL ON_DELAY(IN:=MOTOR, PT:=t#b5s)
END_VAR CAL OFF_DELAY(IN:=0N_DELAY.Q, PT:=t#5s)
VAR LD OFF_DELAY.Q

ON_DELAY : TON; ST PUMP

OFF_DELAY: TOF;

END_VAR END_PROGRAM

The PRG_START_STOP program of Fig 3.2 is rewritten in IL in Table 7.2. The instruction LD START loads
CR register (Current Result; accumulator in IEC) with the value of START. Next the CR is ORed with MOTOR, with
the result in CR. The following ANDN negates STOP, ANDs it with CR, always with the result in CR. Similarly for
another ANDN. ST MOTOR saves CR in the variable MOTOR. CAL instructions invoke function blocks.

8. CPDev applications. The CPDev package is currently applied for programming new SMC controller
from LUMEL, Zielona Gora, Poland. SMC operates as a central unit in small DCS systems involving dis-
tributed I/O modules, intelligent transmitters, PID controllers, etc. [12]. Development of another application in
forthcoming version of MINI-GUARD Ship Control & Positioning System from Praxis Automation Technology,
Leiden, The Netherlands, is in progress [8]. For lab and teaching applications PC-based softcontrollers can be
used.

8.1. SMC controller. The SMC shown in Fig. 8.1a is based on Atmel AVR 8-bit microcontroller.
Platform-dependent modules of virtual machine, i. e. interrupts, RTC and communication interfaces, have
been written by LUMEL engineers, and sent to the authors in binary format. Consolidation of universal and
LUMEL modules has resulted in a VM-SMC machine which, as SMC firmware, executes ST program compiled
and downloaded from PC. The controller is equipped with two serial ports, one (master) for distributed I/Os and
field devices, another (slave) for host PC or HMI panel. Modbus RTU protocol is applied (up to 230.4 kbaud).
Third Complex_blocks library to implement self-tuning PID control loops is provided.

8.2. MINI-GUARD controllers. The MINI-GUARD system consists of seven types of controllers
(Fig. 8.1b) involving NXP ARM7 16/32-bit microcontrollers. The controllers have application dedicated face-
plates. Virtual machine for Atmel ARMT has been sent to Praxis A.T., to be adapted for the NXP ARM?7. The
software to handle C language blocks described in Sec 6.2 has been developed especially for MINI-GUARD. The
controllers communicate over Ethernet, external devices are connected via universal serial interface or OPC.

8.3. Softcontrollers with NI and InTeCo boards. A PC equipped with I/O board and executing
a control program is called softcontroller. Two such boards can be used so far, namely NI-DAQ USB 6008
from National Instruments and RT-DAC/USB from InTeCo, Cracow, Poland (Fig. 8.1c,d). A common interface

Open environment for programming small controllers 335

a) SMC controller

-
-
&
&
[
¢
& = &
a Gl -
@ = @
& o
@ TIONAL <
i NETRUMENTS I K .
o i &
[nlusl-ﬂ'; &
® |w-m|muabf-iw“ a I
@ = L
e & .
s L
&
&

/ L
c¢) NI-DAQ I/0 board d) RT-DAC I/O board
Fic. 8.1. Applications of CPDev package

CPDev.CPCom. ICommDev has been developed, with provision for other types. Softcontroller is configured in two
steps. First a board is selected from menu and I/O channels defined. Then global variables of the project are
linked to the channels. Binary channels become BOOLs and analog one REALs. Softcontrollers can be connected
into DCS system by means of Modbus TCP protocol.

9. Conclusions and future work. CPDev environment for programming small controllers in ST, FBD
and IL languages of IEC 61131-3 standard has been presented. The environment is considered open because
compiled code can be executed by different processors, low-level software components are provided by hardware
designers, and control programmers can create their own libraries with reusable program units. The compiler
produces universal executable code processed by runtime virtual machine operating as interpreter. The machine
is an ANSI C program composed of universal and platform-dependent modules. The machines for AVR, ARM,
MCS51 (core) and x86 processors have been developed so far. User function blocks can be programmed in ST
and C. The ST blocks are kept in CPDev libraries, whereas C blocks become components of virtual machine.
FBD diagram is translated to ST and then compiled. CPDev has been used for programming controllers in two
small DCS systems and for PC-based softcontroller with I/O boards.

Future work on CPDev will be motivated primarily by needs of the users. Next version will include
structured data types and global arrays, at least two-dimensional (local arrays are available now). Current

336

D. Rzorica, J. Sadolewski, A. Stec, Z. Swider, B. Trybus, and L. Trybus

simple FBD editor should be upgraded to more professional level. Depending on ST statements the compiled
code is longer or shorter, as in the expression x1 AND x2 vs. function AND(x1, x2). Templates indicating more
efficient solutions are important for the users. Virtual machine for FPGA platform with simple multitasking
mechanism is currently under development.

1]

[10]
(1]

[12]
[13]

REFERENCES

A. AppEL, J. PALSBERG, Modern compiler implementation in Java, Cambridge University Press, Second edition, (2002).

C# LANGUAGE SPECIFICATION, http://msdn2.microsoft.com/en-us/vcsharp/aa336809.aspx, (2007).

K. CooPERr, L. Torczon, Engineering a Compiler, Morgan Kaufmann, San Francisco, (2003).

IEC 61131-3 STANDARD: PROGRAMMABLE CONTROLLERS—PART 3, PROGRAMMING LANGUAGES, IEC, (2003).

ISAGRAF User’s Guipg, ICS Triplez Inc., (2005).

K. H. Joun, M. TiecgeLkamp, IEC 61131-8: Programming Industrial Automation Systems Berlin—Heidelberg, Springer-
Verlag, (2001).

T. LinpHoLM, F. YEeLLiM, Java Virtual Machine Specification - Second FEdition, Java Software, Sun Microsystems Inc,
(2004).

MiNi-GUARD SHIP SysTEM, Prazis Automation Technology B. V., http://www.praxis-automation.com, (2009).

D. Rzoxca, J. SapoLEwskI, A. STEC, Z. SwWIDER, B. TRYBUS, L. TRyBUS, Mini-DCS System Programming in IEC 61131-3
Structured Text, Journal of Automation, Mobile Robotics & Intelligent Systems, Vol. 2, No 3, (2008).

D. Rzoxca, J. SapoLEwskl, A. STec, Z. Swiper, B. TryBus, L. TryBuUs, Programming controllers in Structured Text
language of IEC 61131-3 standard, Journal of Applied Computer Science, Vol. 16, No 1, (2008).

E. TisserRaNT, L. BEssarp, M. pE Sousa, An Open Source IEC 61131-8 Integrated Development Environment, 5'" Int.
Conf. Industrial Informatics, Piscataway, NJ, USA, (2007).

SMC, Lumel S.A., http://www.lumel.com.pl/en, (2009).

XML Formats For IEC 61131-3 ver. 1.01 Official Release, http://www.plcopen.org, (2007).

Edited by: Janusz Zalewski
Received: September 30, 2009
Accepted: October 19, 2009

