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PRECONDITIONING OF IMPLICIT RUNGE-KUTTA METHODS∗

LAURENT O. JAY†

Abstract. A major problem in obtaining an efficient implementation of fully implicit Runge-Kutta (IRK) methods applied
to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by
application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified
Newton method can actually be solved approximately with a preconditioned linear iterative method. In this article we present a truly
parallelizable preconditioner to the approximate Jacobian matrix. Its decomposition cost for a sequential or parallel implementation
can be made equivalent to the cost corresponding to the implicit Euler method. The application of the preconditioner to a vector
consists of three steps: two steps involve the solution of a linear system with the same block-diagonal matrix and one step involves
a matrix-vector product. The preconditioner is asymptotically correct for the Dahlquist test equation. Some free parameters of the
preconditioner can be determined in order to optimize certain properties of the preconditioned approximate Jacobian matrix.
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1. Introduction. We consider the numerical solution of implicit systems of differential equations by fully
implicit Runge-Kutta (IRK) methods. A major problem in obtaining an efficient implementation of IRK
methods lies in the numerical solution of the underlying systems of nonlinear equations. These nonlinear
equations are usually solved by modified Newton iterations. This requires at each iteration the solution of a
system of linear equations with an approximate Jacobian matrix. Instead of being solved exactly, these systems
of linear equations can actually be solved approximately and iteratively with the help of a preconditioner to
the approximate Jacobian matrix. In this paper we present a new preconditioner whose decomposition cost for
a sequential or parallel implementation can be made equivalent to the cost corresponding to the implicit Euler
method. Therefore, this preconditioner is of interest for both sequential and parallel computers. The application
of the preconditioner to a vector consists of three steps: two involving the solution of a linear system with the
same block-diagonal matrix and one involving a matrix-vector product. Each of these steps can be executed
in parallel with some communication in-between. Not only the decomposition of the block-diagonal matrix
can be executed in parallel, but of course also the solution of the linear systems corresponding to each block.
This makes this preconditioner truly parallel compared to the one proposed in [23, 25]. The preconditioner is
asymptotically correct for the Dahlquist test equation. Moreover, some free parameters of the preconditioner
can be determined in order to optimize certain properties of the preconditioned approximate Jacobian matrix
in relation, for example, with the convergence properties of the preconditioned linear iterative method. In
this paper we consider exclusively initial value problems for ordinary differential equations (ODEs). Parallel
algorithms for boundary value problems of ODEs can be found for example in [13, 27].

In section 2, the class of implicit systems of ODEs considered in this article is presented together with a
definition of the application of IRK methods to these equations. In section 3, we motivate the use of inexact
modified Newton iterations to solve the systems of nonlinear equations of IRK methods. A detailed presentation
of the new preconditioner is given in section 4. In section 5, the free parameters of the preconditioned Jacobian
matrix corresponding to the Dahlquist test equation are optimized with respect to various criteria. In section 6,
we present a numerical experiment for a reaction-diffusion problem, showing that the new preconditioner is
effective. A short conclusion is given in section 7.

2. The implicit system of ODEs and IRK methods. We consider an implicit system of ordinary
differential equations (ODEs)

d

dt
a(t, y) = f(t, y), (2.1)
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where y = (y1, . . . , yn)T ∈ R
n. When a(t, y) ≡ y we obtain a standard system of ODEs d

dt
y = f(t, y). We

suppose that an initial value y0 at t0 is given and we assume that

ay(t, y) :=
∂

∂y
a(t, y) is invertible (2.2)

in a neighborhood of the solution of the initial value problem. Applying the chain rule to the left-hand side of
(2.1) and then inverting ay(t, y), we obtain an explicit system of ODEs

d

dt
y = a−1

y (t, y) (f(t, y)− at(t, y)) , (2.3)

where at(t, y) :=
∂
∂t
a(t, y). In this paper we consider IRK methods applied directly to (2.1), not to (2.3). This

has the advantage of not requiring the exact computation of at(t, y) and a−1
y (t, y). It is assumed that the system

of ODEs presents some stiffness, thus justifying the application of implicit methods.
The direct application of IRK methods to the implicit system of ODEs (2.1) can be defined as follows [23]:
Definition 2.1. One step y0 7→ y1 from t0 to t0 + h of an s-stage implicit Runge-Kutta (IRK) method

applied to (2.1) with initial value y0 at t0 and stepsize h is defined implicitly by

a(t0 + cih, Yi)−
(
a(t0, y0) + h

s∑

j=1

aijf(t0 + cjh, Yj)
)
= 0 for i = 1, . . . , s, (2.4a)

a(t0 + h, y1)−
(
a(t0, y0) + h

s∑

j=1

bjf(t0 + cjh, Yj)
)
= 0. (2.4b)

The RK coefficients are given by (bj)j=1,...,s, (cj)j=1,...,s, and A := (aij)i,j=1,...,s. The equations (2.4a) define
a nonlinear system of dimension s · n to be solved for the s internal stages Yi for i = 1, . . . , s. The numerical
approximation y1 at t0 + h is then given by the solution of the n-dimensional implicit system (2.4b). In this
paper we concentrate the discussion on the solution of the system of nonlinear equations (2.4a). The value y1
can then be obtained by standard application of modified Newton iterations to (2.4b) when a(t, y) is nonlinear.
It can also be obtained explicitly in certain situations. For example when the IRK method is stiffly accurate,
i. e., when asj = bj for j = 1, . . . , s, this value is directly given by y1 = Ys.

3. Modified Newton iterations for the internal stages. The system of nonlinear equations (2.4a)
for the s internal stages is usually solved by modified Newton iterations with approximate/modified Jacobian
matrix

L := Is ⊗M − hA⊗ J where M ≈ ay(t0, y0), J ≈ fy(t0, y0). (3.1)

Here, the symbol ⊗ denotes the matrix tensor product and Is is the identity matrix in R
s. Modified Newton

iterations read

L∆Y k = −F (Y k), Y k+1 = Y k +∆Y k, k = 0, 1, 2, . . . , (3.2)

where Y := (Y T
1 , . . . , Y T

s )T is a vector collecting the s internal stages and F (Y ) corresponds to the left-hand
side of (2.4a). Hence, each modified Newton iteration requires the solution of an (s · n)-dimensional system of
linear equations. A direct decomposition of the approximate Jacobian matrix L is generally inefficient when
s ≥ 2. However, the computational cost of its decomposition can be greatly reduced by exploiting its special
structure. For example by diagonalizing the RK coefficient matrix A

SAS−1 = Λ = diag(λ1, . . . , λs),

the approximate Jacobian matrix L can be transformed into a block-diagonal matrix

(S ⊗ In)L(S
−1 ⊗ In) = Is ⊗M − hΛ⊗ J =




M − hλ1J O
. . .

O M − hλsJ


 . (3.3)
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This kind of transformation can dramatically reduce the number of arithmetic operations when decomposing
L and it allows for parallelism. Unfortunately, all eigenvalues (except one when s is odd) of most standard
IRK methods, such as Radau IIA, Gauss, and Lobatto IIIC methods, arise as conjugate complex eigenpairs
with nonzero imaginary parts. This impairs parallelism and significantly increases the decomposition cost
of the transformed approximate Jacobian matrix (3.3) compared to the situation where all eigenvalues are
real [20, Section IV.8]. Moreover, if several distinct IRK methods are used in a partitioned/additive way, such
as for SPARK methods [22, 24, 32], this diagonalization technique cannot be applied since distinct RK matrices
have in general distinct eigenvectors. Ideally, the decomposition cost of the approximate Jacobian matrix for
s-stage IRK methods should be reduced to at most s independent decompositions of matrices of dimension n.

Various iteration schemes to solve the nonlinear equations of IRK methods have been suggested [9, 10, 15,
16, 17, 18, 21, 33]. The schemes of [9, 21, 33] can be interpreted as the direct application of modified Newton
iterations with a modified Jacobian. Actually it could certainly be valuable to use such modified Jacobians
as preconditioners to the system of linear equations of the modified Newton method (3.2) with approximate
Jacobian matrix (3.1). The schemes of [10, 15, 16, 17, 18] do not have the same interpretation. They have an
inherent sequential structure and can be interpreted as nonlinear Gauss-Seidel iterations. All aforementioned
schemes require the solution of a sequence of s linear systems of dimension n and are therefore not truly fully
parallelizable compared to the iterations developed in this paper. The various coefficients introduced in these
ad hoc iterations are generally tuned for the numerical IRK solution y1 (2.4) of the Dahlquist test equation

y′ = λy, Re(λ) ≤ 0. (3.4)

Unfortunately, when Re(λ) → −∞, none of the aforementioned methods is asymptotically correct for the internal
stages Yi. In contrast, the preconditioner introduced in this paper is asymptotically correct by construction, as
is the one presented in [23, 25].

To reduce the amount of computations, instead of solving at each modified Newton iteration (3.2) the
linear system exactly, we can solve it approximately by application of a preconditioned linear iterative method,
as was already proposed in [23, 25]. Hence, we obtain a sequence of iterates Ỹ k with a residual error rk :=

L∆Ỹ k +F (Ỹ k) after each iteration. Theoretical and practical conditions to ensure convergence of such inexact
modified Newton iterations to the solution of the nonlinear system of equations (2.4a) are given in [23] in a
general framework. The use of linear iterative methods for the solution of implicit integration methods was also
considered in [2, 8, 12], with an emphasis on preconditioning in [3]. Inexact Newton-type methods are generally
considered to be amongst the most efficient ways to solve nonlinear system of equations [11, 29].

In this paper we present a preconditioner to the approximate Jacobian matrix (3.1) requiring s independent
decompositions of matrices of dimension n. Each matrix to be decomposed depends on a free and distinct
parameter. If these parameters are all chosen to be equal, only one matrix of dimension n needs to be decom-
posed. This is of high interest when using serial computers since the decomposition cost is thus really minimal
and equivalent to the decomposition cost corresponding to the implicit Euler method. In fact a major interest
of this new preconditioner is that not only matrix decompositions can be executed in parallel, but also the
solution of the systems of linear equations. This makes this preconditioner truly parallel compared to the one
developed in [23, 25] which entails the sequential solution of systems of linear equations and which is based on
the W-transformation of the RK coefficients and an approximate block-LU decomposition.

4. Preconditioning the linear systems. For the sake of generality we consider a linear transformation
T ⊗ I of the approximate Jacobian matrix L in (3.1). At each modified Newton iteration we obtain a system of
linear equations

Kx = b (4.1a)

with matrix

K = (T ⊗ I)L(T−1 ⊗ I) = I ⊗M − hTAT−1 ⊗ J. (4.1b)

The matrix T adds some potential additional freedom. To solve the linear system (4.1) we consider the appli-
cation of linear iterative methods, such as GMRES [14, 19, 26, 30, 31], with a preconditioner Q ≈ K−1. We
take Q of the form

Q := H−1GH−1,
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where

H := Is ⊗M − hΓ⊗ J, G := Is ⊗M − hΩ⊗ J, (4.2)

with coefficients matrices Γ and Ω still to be determined. We choose the coefficients matrix Γ to be diagonal

Γ := diag (γ1, γ2, . . . , γs)

so that H is block-diagonal

H =




H1 O
H2

. . .

O Hs


 (4.3)

with blocks given by

Hi := M − hγiJ for i = 1, . . . , s.

The matricesHi are independent, hence they can be decomposed in parallel. Solving a linear system with matrix
H can also be done in parallel since it is block-diagonal. This is the main advantage of this preconditioner
compared to the one presented in [23, 25]. Assuming at least s processors on a parallel computer, the local cost
on the ith processor of computing the matrix-vector product QKv consists essentially of:

• one decomposition of matrix Hi;
• solving two linear systems with the decomposed matrix Hi;
• two matrix-vector products with matrix M ;
• two matrix-vector products with matrix J ;
• some communication with other processors according to the nonzero coefficients of the ith row of
matrices TAT−1 and Ω.

The coefficients of matrices Γ and Ω remain to be fixed to some values. Assuming the coefficients γi
for i = 1, . . . , s to be given, it is natural to determine the coefficients Ωij for i, j = 1, . . . , s such that the
preconditioner Q is asymptotically correct when considering the Dahlquist test equation (3.4). Denoting z := hλ
we obtain

Q(z) = H−1(z)G(z)H−1(z), K(z) = T (Is − zA)T−1 (4.4a)

where

H(z) = Is − zΓ, G(z) = Is − zΩ. (4.4b)

Defining B(z) := Q(z)K(z) we have

B(z) = H−1(z)G(z)H−1(z)T (Is − zA)T−1 (4.5)

At z = 0 we have B(0) = Is. We determine Ω such that

B(z) −→ Is for |z| −→ ∞ (4.6)

to obtain an asymptotically correct result in one iteration in this case. From (4.5) we easily obtain the following
result.

Theorem 4.1. If the RK matrix A is invertible and the coefficients γi for i = 1, . . . , s satisfy γi > 0 then
condition (4.6) holds if and only if

Ω = ΓTA−1T−1Γ. (4.7)

When the RK matrix A is not invertible, an expression similar to (4.7) can be obtained for certain classes of
IRK methods such as the Lobatto IIIA and Lobatto IIIB methods.
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From now on we assume for simplicity that the matrix A of RK coefficients is invertible. The coefficients
γi for i = 1, . . . , s remain free, they are only required to satisfy γi > 0 which is a natural assumption to ensure
the invertibility of the matrices Hi. When all these coefficients are equal, only one matrix decomposition of
dimension n is needed. This is quite advantageous on a serial computer compared to some other implementations
of implicit Runge-Kutta methods [20, 21]. This new approach can also be extended to SPARK methods [22, 32]
applied to differential-algebraic equations [24].

Example 4.2. Consider the 2-stage Radau IIA method whose RK matrix is given by

A =

(
5/12 −1/12
3/4 1/4

)
. (4.8)

Assuming T = I and Γ = γI, we obtain Ω = γ2A−1 and

B(z) =
1

(1− γz)2

(
1− (5/12 + 3γ2/2)z + γ2z2 (1/12− γ2/2)z

(9γ2/2− 3/4)z 1− (1/4 + 5γ2/2)z + γ2z2

)
.

Ideally we would like B(z) to be as close as possible to the identity matrix. By taking γ := 1/
√
6 ≈ 0.408 the

matrix B(z) becomes diagonal with double eigenvalue

λ(z) = 1 + z

√
2/3− 2/3

(1− z/
√
6)2

.

Hence, the condition number of B(z) satisfies κ(B(z)) = 1 and is therefore minimal. This choice of γ is not
only natural, but also optimal in other ways which will be stated precisely in the next section. Interestingly the
value 1/

√
6 also appears in [28] for the same 2-stage Radau IIA method, but for a different type of iterations.

5. Optimal choices of coefficients γi. For simplicity we assume the matrix A of RK coefficients to be
invertible. The coefficients Ωij for i, j = 1, . . . , s are given by (4.7). The coefficients γi > 0 for i = 1, . . . , s
remain to be determined. We consider the preconditioned matrix B(z) := Q(z)K(z) given in (4.5) corresponding
to the Dahlquist test equation (3.4). This matrix B(z) depends on the coefficients γi of Γ. Ideally we would
like to have B(z) = Is and this is of course generally not possible. Hence, we must define some criterion to
determine the remaining coefficients γi. Here we present a few criteria based on the solution of optimization
problems

min
γ1>0,...,γs>0

φ(γ1, . . . , γs) (5.1)

for diverse functions φ in relation with the convergence properties of preconditioned linear iterative methods.
A first choice for φ is given by

φ∞(γ1, . . . , γs) := max
Re(z)≤0

(
max

i=1,...,s
|λi(B(z))− 1|

)
(5.2)

where λi(B(z)) for i = 1, . . . , s are the eigenvalues of matrix B(z). The goal is to obtain a good clusterization of
the eigenvalues of the preconditioned approximate Jacobian to the value 1 to ensure a rapid convergence of the
preconditioned linear iterative method. This is justified since the convergence of most linear iterative methods,
such as GMRES [30, 31], is dictated by the eigenspectrum of the preconditioned matrix [7, 19, 26, 30]. We have

φ∞(γ1, . . . , γs) = max
i=1,...,s

(
max

Re(z)≤0
|λi(B(z))− 1|

)
= max

i=1,...,s

(
max

Re(z)=0
|λi(B(z))− 1|

)

from the maximum principle. Even for T fixed, finding a solution to the global optimization problem (5.1)-(5.2)
is certainly difficult and remains an open question. Nevertheless, for example for the 2-stage Radau IIA (4.8)
and T = I we have obtained numerically γ1,min ≈ 0.25, γ2,min ≈ 0.66 and φ∞,min ≈ 0.04 in (5.2). In the
situation where we assume that all parameters γi are equal to a unique value γ, i. e., Γ = γ · Is, the eigenvalues
λi(B(z)) are independent of T since, see again (4.7),

B(z) =
γ2

(1− γz)2
T (Is − zA−1)(Is − zA)T−1,
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and we obtain

|λi(B(z))− 1| =
∣∣∣∣

γz

(1 − γz)2

∣∣∣∣

∣∣∣∣∣
µi

γ

(
1− γ

µi

)2
∣∣∣∣∣

where µi for i = 1, . . . , s are the eigenvalues of A. The maximum value of the term
∣∣γz/(1− γz)2

∣∣ for Re(z) ≤ 0
is independent of γ and is equal to 1/2 (value taken at z = ±i/γ). Hence, we need to determine γ as the optimal
solution of

min
γ>0

(
max

i=1,...,s
fi(γ)

)
(5.3a)

where

fi(γ) :=

∣∣∣∣∣
µi

γ

(
1− γ

µi

)2
∣∣∣∣∣ =

|µi|
γ

+
γ

|µi|
− 2 cos(θi) (5.3b)

with θi := arg(µi). The minimum value of fi(γ) holds at γ = |µi|. Interestingly a similar derivation was made
in the context of blended implicit methods [4, 5, 6].

Theorem 5.1. The solution γmin of the optimization problem (5.3) satisfies either γmin ∈ {|µ1|, . . . , |µs|}
or lies at the intersection of two curves fi, i. e., fj(γmin) = fk(γmin) for two distinct indices j and k.

Proof. The functions fi(γ) are convex and satisfy

lim
γ→0+

fi(γ) = +∞, lim
γ→+∞

fi(γ) = +∞.

Hence, the result follows.
For s = 2 and µ1 = µ2 we obtain γmin = |µ1|. For example, for the 2-stage Radau IIA method (4.8) we have
γmin = 1/

√
6 and φ∞,min = 1−

√
6/3 ≈ 0.184 in (5.2).

A second choice for φ similar to (5.2) is given by

φ1(γ1, . . . , γs) := max
Re(z)≤0

(
s∑

i=1

|λi(B(z))− 1|
)
. (5.4)

Finding a solution to the global optimization problem (5.1)-(5.4) is also an open question. If we assume in
addition that all parameters γi are equal to a unique value γ, we obtain

φ1(γ, . . . , γ) = max
Re(z)≤0

∣∣∣∣
γz

(1− γz)2

∣∣∣∣
s∑

i=1

( |µi|
γ

+
γ

|µi|
− 2 cos(θi)

)
.

Hence, we need to determine γ as the optimal solution of

min
γ>0

f(γ) (5.5a)

where

f(γ) :=
1

γ

s∑

i=1

|µi|+ γ

s∑

i=1

1

|µi|
− 2

s∑

i=1

cos(θi). (5.5b)

The minimum value of this optimization problem holds at

γmin =

√ ∑s
i=1 |µi|∑s

i=1 1/|µi|
.

For s = 2 and µ1 = µ2 we obtain again γmin = |µ1|. For example, for the 2-stage Radau IIA method (4.8) we
obtain again γmin = 1/

√
6.
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A third natural choice for φ in (5.1) is given by

φF (γ1, . . . , γs) := max
Re(z)≤0

‖B(z)− Is‖F (5.6)

where ‖ · ‖F denotes the Frobenius norm. The goal here is to have the preconditioned approximate Jacobian as
close to the identity matrix as possible. From the maximum principle we have

max
Re(z)≤0

‖B(z)− Is‖F = max
Re(z)=0

‖B(z)− Is‖F .

Finding a solution to the global optimization problem (5.1)-(5.6) is also an open question. Nevertheless, for
example for the 2-stage Radau IIA (4.8) and T = I we have obtained numerically γ1,min ≈ 0.32, γ2,min ≈ 0.60
and φF,min ≈ 0.16 in (5.6). Assuming Γ = γ · Is, we have

‖B(z)− Is‖F =

∣∣∣∣
γz

(1 − γz)2

∣∣∣∣ ‖γA
−1 + γ−1A+ 2Is‖F .

Hence, we need to determine γ as the optimal solution of

min
γ>0

g(γ) (5.7a)

where

g(γ) := ‖γA−1 + γ−1A+ 2Is‖2F . (5.7b)

The solution γmin of the optimization problem (5.7) must be one of the roots of g′(γ). For example, for the
2-stage Radau IIA method (4.8) we obtain

g(γ) = 29γ2 + 16γ +
11

2
+

8

3γ
+

29

36γ2
.

We have

g′(γ) =
58

γ3

(
γ − 1√

6

)(
γ +

1√
6

)(
γ2 +

8

29
γ +

1

6

)
and g′′(γ) = 58 +

16

3γ3
+

29

6γ4
.

Therefore, the minimum of g(γ) is once again attained at γmin = 1/
√
6.

6. A numerical experiment. We consider a reaction-diffusion problem, the Brusselator system in one
spatial variable, see [20],

∂u

∂t
= A+ u2v − (B + 1)u+ α

∂2u

∂x2
,

∂v

∂t
= Bu− u2v + α

∂2v

∂x2

where x ∈ [0, 1] and α ≥ 0, A, and B are constant parameters. The boundary conditions for u and v are
u(0, t) = 1 = u(1, t), v(0, t) = 3 = v(1, t), u(x, 0) = 1 + sin(2πx), v(x, 0) = 3. We apply the method of lines by
discretizing the diffusion terms using finite differences on a grid of N points xi = i/(N + 1) for i = 1, . . . , N ,
∆x = 1/(N + 1). We consider the value N = 500 and parameters A = 1, B = 3, α = 0.02. We obtain a system
of 2N = 1000 differential equations

dui

dt
= 1 + u2

i vi − 4ui +
0.02

(∆x)2
(ui−1 − 2ui + ui+1) , (6.1a)

∂vi
∂t

= 3ui − u2
i vi +

0.02

(∆x)2
(vi−1 − 2vi + vi+1) (6.1b)

where u0(t) = 1 = uN+1(t), v0(t) = 3 = vN+1(t), ui(0) = 1 + sin(2πxi), and vi(0) = 3 for i = 1, . . . , N . We
consider the time interval [t0, tend] = [0, 10] and the s = 3-stage Radau IIA method. The eigenvalues of the
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Jacobian matrix J have a wide spectrum. The largest negative eigenvalue of J is close to −20000, so the system
is stiff. By ordering the variables as y = (u1, v1, u2, v2, u3, v3, . . .), matrices I−γhJ have a bandwidth of 5. They
are decomposed using the routine DGBTRF of LAPACK for banded matrices [1]. We have taken the absolute and
relative error tolerances for each component equal to a certain error tolerance TOL. We give some statistics
obtained with the code SPARK3 on this problem in Table 6.1. The TOL-norm ‖ · ‖tol is a scaled 2-norm which
depends on absolute and relative error tolerances for each component, ATOLi and RTOLi respectively, to be
specified by the user

‖y‖tol :=

√√√√ 1

n

n∑

i=1

(
yi
Di

)2

, Di := ATOLi +RTOLi|yi|. (6.2)

We consider the preconditioner with T = I and γi = γ for i = 1, . . . , s where γ = |µ1| ≈ 0.246232757526440536
both for the sequential and parallel versions in order to obtain identical results but different timings in order
to compare these versions. In the parallel version we decompose the matrix M − γhJ on each processor. For
the results in Table 6.1, the preconditioner is applied to the system of linear equations only once per modified
Newton iteration and we have set ATOLi = RTOLi := TOL.

Table 6.1

Results for the 3-stage Radau IIA method on the Brusselator equations (6.1) with 1 preconditioner solve per modified Newton
iteration, ATOLi = RTOLi := TOL, T = I, γ = |µ1| ≈ 0.246232757526440536

Error tolerance TOL 10−3 10−6 10−9

Measured error in TOL-norm ‖ · ‖tol 0.59 0.39 0.19
CPU-time [s] - sequential 1.19 2.38 6.35
CPU-time [s] - parallel 0.70 2.02 4.12
number of steps 24 49 190
number of rejected steps 0 5 1
number of function evaluations 243 531 1524
number of modified Newton iterations 75 176 508
number of J evaluations 6 1 1
number of P decompositions 21 29 28
number of P solves 81 177 508
number of matrix-vector products 0 0 0

Table 6.2

Results for the 3-stage Radau IIA method on the Brusselator equations (6.1) with 2 preconditioner solves per modified Newton
iteration, ATOLi = RTOLi := TOL, T = I, γ = |µ1| ≈ 0.246232757526440536.

Error tolerance TOL 10−3 10−6 10−9

Measured error in TOL-norm ‖ · ‖tol 0.11 0.81 0.11
CPU-time [s] - sequential 1.44 4.50 11.01
CPU-time [s] - parallel 0.82 2.60 6.61
number of steps 18 50 187
number of rejected steps 0 3 1
number of function evaluations 183 606 1533
number of modified Newton iterations 58 202 511
number of J evaluations 3 1 1
number of P decompositions 18 32 24
number of P solves 117 401 1019
number of matrix-vector products 56 199 508

For the results in Table 6.2 we consider the application of one preconditioned Richardson iteration as
preconditioned linear iterative solver, corresponding to two applications of the preconditioner per modified
Newton iteration. We do not observe a significant gain compared to Table 6.1. This demonstrates numerically
the quality of the preconditioner.
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The numerical experiments discussed in this section were made on a SGI Power Challenge using 3 processors
for the parallel version.

7. Conclusion. We have considered the application of IRK methods to implicit systems of ODEs. The
major difficulty and computational bottleneck for an efficient implementation of these numerical integration
methods is to solve the resulting nonlinear systems of equations. Linear systems of the modified Newton method
can be solved approximately with a preconditioned linear iterative method. In this paper we have developed
a preconditioner which is asymptotically exact for stiff systems. The preconditioner requires m independent
matrices of the type M−γihJ (γi > 0, i = 1, . . . ,m) to be decomposed. The integer parameterm of the number
of decompositions satisfies 1 ≤ m ≤ s and is free, m = 1 being particularly advantageous for serial computers.
Not only the decompositions parts of the preconditioner are parallelizable, but the solution parts involved when
applying the preconditioner are also parallelizable, making the preconditioner truly parallel. This preconditioner
has been implemented in the code SPARK3 and is shown to be effective on a problem with diffusion.
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