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PARALLEL NUMERICAL SOLUTION OF ABD AND BABD LINEAR SYSTEMS ARISING

FROM BVPS∗

PIERLUIGI AMODIO†AND GIUSEPPE ROMANAZZI‡

Abstract. We consider linear systems with coefficient matrices having the ABD or the Bordered ABD (BABD) structures.
These systems arise in the discretization of BVPs for ordinary and partial differential equations with separated and non-separated
boundary conditions, respectively. We describe the cyclic reduction algorithm for the solution of BABD linear systems which allowed
us to write the codes BABDCR and GBABDCR (the latter code is suitable for matrices with a more generic BABD structure).
A comparison of the GBABDCR code with respect to the well-known sequential code COLROW on ABD linear systems is then
analysed. We report some tests on an OpenMP Fortran 90 parallel version of the GBABDCR code and finally we discuss about
the use of GBABDCR inside the BVP code BVP SOLVER.
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1. Introduction. The discretization of Boundary Vale Problems for ordinary and partial differential equa-
tions leads often to linear systems with Almost Block Diagonal (ABD) structure in case of separated boundary
conditions, and Bordered ABD structure (BABD) in case of non-separated conditions (see [3, 18, 24]).

BABD linear systems

Ax = f (1.1)

have the coefficient matrix A with the following sparsity structure

A =




Ba Bb

V1

V2

V3

V4

. . .

. . .

VN




. (1.2)

We recognize the boundary blocks Ba and Bb on the first row, and the block rows Vi which have some columns
that overlap the blocks on the adjacent rows. For this reason, each block Vi can be represented as

Vi =
(
Si−1 Ti Ri

)
, (1.3)

where the columns of Si−1 and Ri overlap columns of Vi−1 and Vi+1, respectively. Also V1 and VN have the
same structure in (1.3): the first columns of V1 (i. e., S0) are overlapped with those of Ba while the last
columns of VN (i. e., RN ) are overlapped with those of Bb, see (1.2). We set the size of each block Vi equal to
ni × (mi−1 + ki +mi), where mi is the number of overlapped columns between the blocks Vi and Vi+1, and ki
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is the number of the non-overlapped columns of Vi; the size of the boundary blocks Ba and Bb is n0 ×m0 and
n0 ×mN , respectively. Since A is a square matrix we have

N∑

i=0

ni = m0 +

N∑

i=1

(mi + ki); (1.4)

it is also supposed that N is much larger with respect to each ni, mi and ki.
The ABD structure differs from the BABD structure for the presence of boundary blocks that have some

null rows (the non-null rows of Ba correspond to null rows of Bb and viceversa). In this case it is preferable
to refer to Ba and Bb as blocks of size na ×m0 and nb ×mN , respectively. We impose then that no rows are
overlapped between Ba and Bb and we set n0 = na + nb in (1.4). Moreover, Bb is located after VN as the last
block row so that the coefficient matrix can be represented as

A =




Ba

V1

V2

V3

V4

. . .

. . .

VN

Bb




. (1.5)

We note that ABD linear systems can be also solved by BABD solvers; this implies an higher computational
cost and fill-in, see [24]. Conversely, a doubling of the size of each block is required for solving a BABD linear
system using an ABD solver.

Since ABD linear systems are easier to solve than BABD systems, historically the former problem has
received much more attention and several codes have been proposed. We quote the package SOLVEBLOK [14]
that uses Gaussian elimination with partial pivoting to ensure stability and requires fill-in. On the contrary,
the packages COLROW and ARCECO in [15] are based on a modified version of Varah’s alternate row and
column stable elimination [27] which exploits the structure of the ABD matrices to avoid fill-in. In particular,
COLROW solves ABD linear systems with blocks Vi of constant size n× (2m+ k), so that we have n = m+ k
and ni = n, mi = m and ki = k for each i = 1, . . . , N .

Most nonlinear BVP packages employ ABD packages. The BVP code COLSYS [9] uses SOLVEBLOK to
solve ABD linear systems arising from the use of orthogonal spline collocation (OSC) at Gauss points with
B-spline bases. COLNEW [11] uses a modified version of SOLVEBLOK to solve ABD linear systems arising
from the application of OSC at Gauss points with monomial spline bases. Both the Mono Implicit Runge Kutta
(MIRK) code with defect control MIRKDC [17] and its new implementation BVP SOLVER [28] (the latter
solves a wider class of BVPs with respect the former) use COLROW as solver for the obtained ABD systems.
Modified versions of COLROW are used in the deferred correction code TWPBVP [13]. Other versions of
COLROW are used in COLMOD [26], a modified version of COLNEW, and in ACDC [12], that uses automatic
continuation and OSC at Lobatto points to solve singularly perturbed BVODEs.

For what concerns the numerical solution of BABD systems (1.1)-(1.2), a common idea is to double the
size of the system (that is the number of unknowns) in order to obtain an equivalent ABD system that can be
solved with ABD solvers. Of course, this involves a high computational cost. In fact, since the computational
cost of a general ABD solver is cubic with the dimension of the blocks, then its cost for solving a BABD linear
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system is eight times larger with respect to the solution of an ABD linear system with blocks of the same size
as the given BABD system.

The first available package for solving BABD systems is RSCALE ; it is a shared memory parallel code
used inside PMIRKDC [21], a parallel version of MIRKDC. In [7, 8] the cyclic reduction algorithm is applied
to the BABD matrix (1.2) with a simplified structure: the blocks Si and Ri are square of dimension m and
the blocks Ti are null. This structure is also used by RSCALE. The coefficient matrix considered is then block
lower bidiagonal with an additional block in the right-upper corner. The sequential code BABDCR, introduced
in [8] and available at the url

http://www.netlib.org/toms/859.
solves this kind of linear systems. Moreover, in [4] we have generalized the code BABDCR to solve BABD
linear systems with the general structure (1.1)-(1.2) where each block Vi have size n× (2m+ k), with k > 0 and
n = m+ k. This latter code is called GBABDCR and is available on the net at the url

http://www.pitagora.dm.uniba.it/∼romanazzi/babdcr.html.
In [4, 5, 8, 24] BABDCR and GBABDCR have been compared to RSCALE and COLROW for solving

BABD systems. The theoretical and numerical results show that COLROW has a computational cost which is
till 3 times larger than GBABDCR. This means that each code for BVPs with separated boundary conditions
(for example, BVP SOLVER) using COLROW to solve the associated ABD linear systems, may be generalized
to the solution of BVPs with non-separated boundary conditions by just replacing (the calls to) the linear
solver COLROW with GBABDCR. Moreover, BABDCR performs better (resulting faster and more precise)
and has the same degree of parallelism with respect to RSCALE. Therefore, the efficiency of PMIRKDC can
be improved by replacing RSCALE with a parallel version of BABDCR.

This work originates from the observation that nowadays personal computers have motherboards with more
CPUs (or core-processors), and this permits to overcome the physical limitations (such as speed and memory)
of a single core-processor. Moreover these multi-core processors are easily accessible, and we can use them to
speed-up the execution of each numerical code if the underlying algorithm is parallelizable. In our case, since
cyclic reduction has an obvious parallel implementation, we can speed up the solution of ABD linear systems
by implementing GBABDCR on such parallel architectures.

We propose, in fact, a shared memory implementation of GBABDCR and compare it with COLROW (that
is not parallelizable) on multi-core computers. We believe that the replacement of COLROW in the existing
(previously cited) BVODE packages with the parallel implementation of GBABDCR, can lead to a twofold
advantage: the reduction of the computational cost when the code is run on multi-core processors, and the
solution with no extra cost of BVODEs with non-separated boundary conditions.

The paper is organized as follows: in the next section we briefly sketch the cyclic reduction algorithm applied
to general BABD linear systems, in Section 3 we explain the strategy used to parallelize the code on shared
and distributed memory computers, and finally in the last section we compare the shared memory parallel
implementation of GBABDCR with COLROW in the solution of ABD systems and we discuss the performance
of BVP SOLVER when GBABDCR replaces COLROW.

2. The cyclic reduction algorithm. Let us rewrite the coefficient matrix (1.2)-(1.3) as

A =




Ba Bb

S0 T1 R1

S1 T2 R2

S2 T3 R3

. . .

SN−1 TN RN




. (2.1)

In accordance with the structure of (2.1) we define the right hand side f of the linear system (1.1) as f =(
fT
0 fT

1 . . . fT
N

)T
where each fi is of length ni, and the solution vector

x =
(
zT0 wT

1 zT1 . . . wT
N−1 zTN

)T
,

where zi and wi are of length mi and ki, respectively.
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We solve the system (1.1) using a block cyclic reduction algorithm, that is, a recursive approach that reduces
the original linear system to subsystems with a smaller number of unknowns. In this process the first and the
last unknowns, z0 and zN , are always among the unknowns of the successive reduced systems; moreover, the
first row containing the boundary blocks is unchanged in the reduction process. The boundary blocks Ba and
Bb are then maintained in the first row of each reduction step.

Following [4], we consider a reduction step to eliminate, locally in each block Vi, the odd unknowns wi of
the solution vector x. We observe that, since A is a non-singular matrix, the blocks Ti of size ni × ki, have full
rank ki because they are not overlapped by adjacent Vi blocks. We may then compute the factorization:

P̃iTi =

(
L̃i

G̃i

)
Ũi =

(
I

F̃i I

)(
L̃iŨi

O

)
(2.2)

where P̃i is a suitable permutation matrix, L̃i and Ũi are square matrices, and F̃i = G̃iL̃
−1
i .

Multiplying Vi on the left by P̃i and the inverse of the lower triangular matrix in the last term of (2.2) we
obtain

(
I

−F̃i I

)
P̃i

(
Si−1 Ti Ri

)
=

(
S̃i−1 L̃iŨi R̃i

Ŝi−1 R̂i

)
. (2.3)

Analogously, we perform the same operations on the right-hand side fi, thus obtaining corresponding vectors
f̃i and f̂i for the right side. The row with the boundary blocks and the second row of (2.3) (for each i = 1, . . . , N)
give the linear system




Ba Bb

Ŝ0 R̂1

Ŝ1 R̂2

. . .
. . .

ŜN−1 R̂N







z0
z1
z2
...
zN




=




f0
f̂1
f̂2
...

f̂N




. (2.4)

which has dimension equal to
N∑

i=0

mi = n0 +
N∑

i=1

(ni − ki) and no longer depends on the unknowns wi. These

unknowns will be computed in the last step of the back-substitution phase (when all the zi will be known), by
using the first row of (2.3):

L̃iŨiwi = f̃i − S̃i−1zi−1 − R̃izi.

Factorization (2.3) does not require additional memory since F̃i may be saved together with Li and Ui in place
of Ti. Therefore, this first reduction should be considered as a (completely parallelizable) initial step to be
applied to ABD or BABD matrices in order to simplify their structure.

Returning to the solution of (1.1), system (2.4) may be further on reduced by considering the cyclic reduction

algorithm in [7, 8] (even if blocks Ŝi and R̂i are not square). At first we compute the LU factorization of the
(ni − ki + ni+1 − ki+1)×mi matrix (of rank mi)

Pi

(
R̂i

Ŝi

)
=

(
Li

Gi

)
Ui =

(
I
Fi I

)(
LiUi

O

)

that, applied to the block rows of index i and i+ 1 in (2.4), gives

(
I

−Fi I

)
Pi

(
Ŝi−1 R̂i

Ŝi R̂i+1

)
=

(
S̄i−1 LiUi R̄i

S′

i−1 R′

i

)
. (2.5)

The second row of the right hand-side of (2.5) is independent of zi and allows to obtain, for i = 1, 3, 5, . . . , a
reduced system similar to (2.4) but with ⌈N/2⌉+1 block rows and unknowns zi with even indices. Conversely,
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the first row in (2.5) may be used to compute zi from zi−1 and zi+1. Factorization (2.5) requires additional
memory for the fill-in blocks Fi.

Iterating this last step on the successively reduced systems we obtain, after ⌈log2 N⌉ steps, a 2 × 2 block
(full) linear system

(
Ba Bb

S∗

0 R∗

N

)(
z0
zN

)
=

(
f∗

0

f∗

N

)
. (2.6)

The factorization and the solution of (2.6) gives the first and the last unknowns of the vector x. Successively,
a back substitution phase allows us to compute, in reverse order, all the other unknowns.

If m and k are constant (with n = m+ k), the computational cost of this algorithm is

(143 m
3 + 4m2k + 2mk2 + 2

3k
3)N. (2.7)

If k = 0 (all columns are overlapped), we have from (2.7) that the cost is 14
3 m3N as for the BABDCR algo-

rithm, see [8]. The additional memory requirement (fill-in) is always m2N (it does not depend on k) since the
factorization of the blocks Ti in (2.2) does not require fill-in.

The typical dimensions of the BABD linear system arising from BVPs consists of small dimensions k,m of
each row block, with respect to a large number of row blocks N .

In order to make a fair comparison, the computational cost of COLROW is

(53m
3 + 4m2k + 3mk2 + 2

3k
3 +mnanb − (2m+ k)kna)N, (2.8)

where na and nb, with na + nb = m, denote the number of rows of the initial and of the final boundary block,
respectively; remember that COLROW solves only ABD linear systems. Supposing na = nb = m/2, we have
that GBABDCR costs at most 2.4 times more than COLROW and this ratio decreases when k increases (if
k = m the ratio is 1.4).

3. Parallel implementation. In this section we analyze and compare the main properties of parallel
cyclic reduction algorithms written for shared and distributed memory architectures.

The cyclic reduction algorithm has a straightforward parallel implementation which has been described in
several papers. See, for example, [1, 2, 6] where parallel cyclic reduction is used to solve tridiagonal systems
and [5, 7, 24] where it is applied to BABD systems.

Let p the number of processors used1, the first phase of parallel reduction requires that each processor
reduces a contiguous set of block rows,




Si−1 Ti Ri

Si Ti+1 Ri+1

. . .

Sj−1 Tj Rj


 , (3.1)

to a single row

(
S∗

i−1 R∗

j

)
. (3.2)

In particular, q = N − ⌈N/p⌉p processors reduce ⌊N/p⌋ block rows and the remaining p− q processors reduce
⌈N/p⌉ block rows each. Note that, when q is non-zero, a different workload per processor is required.

At the end of this phase, each processor stores the block row (3.2) in the first and last m2 locations of the
assigned contiguous block rows (3.1) in place of Si−1 and Rj . The fill-in of these reductions is stored locally
in a private array of each processor, when a distributed memory architecture is used, or consists of contiguous
blocks generated by each single processor, in case of a shared memory architecture.

1We use the generic term “processor” to refer to each core per physical processor used in the parallel architecture considered.
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Therefore, the first phase of reduction produces a reduced BABD system with coefficient matrix




Ba Bb

V (1)

V (2)

. . .

V (p)




, (3.3)

where V (i) is computed by the i-th processor; this phase is then completely parallelizable.
Let us now analyze the parallel solution of the system with the coefficient matrix (3.3). Supposing, for sake

of simplicity, that p is a power of 2, the parallel MPI algorithm (as in [7, 24, 5]), for a distributed memory
architecture, requires log2 p synchronizations, communications between processors, and reduction steps. On
shared memory architectures, clearly we do not require communications between processors because both the
coefficient matrix and the right-hand side of the original system (1.1) are shared among processors. However,
log2 p synchronizations between processors are necessary.

This part of the algorithm determines, in both the architectures, the 2× 2 block system (2.6). The solution
of (2.6) is the only sequential part of the algorithm and is followed by the back-substitution phase which still
has much parallelism inside.

On a distributed memory architecture it is made possible that all the back-substitution phase requires
no more synchronization or communication among the processors by considering bidirectional communications
in the reduction phase (see Figure 3.1 and [6] for more details). This means that a copy of (2.6) is solved
(concurrently) on all the processors.

On the other hand, on shared memory architectures, the number of processors is halved at each of the last
log2 p reduction steps and (2.6) is solved on a single processor. Then the number of processors is doubled for
the first log2 p steps of back-substitution with a synchronization after each step.

In conclusion, if p ≪ N the total operation count for each processor is essentially 1/p times the cost of
(2.7). On shared memory architectures, the number of synchronizations is 2 log2 p. The parallel code does not
require additional memory with respect to the sequential code and only a few local variables are needed on
each processor. On distributed memory architectures, the number of synchronizations is only log2 p but each
processor needs to maintain log2 p blocks of size m× 2m to avoid synchronization in the back-substitution and,
moreover, log2 p communications of m×2m arrays and vectors of length m are necessary in the reduction phase.

Since distributed parallel architectures can have even hundreds processors, the main advantage of the
parallel algorithm for these architectures is the possibility to strongly reduce the cost of the reduction and
back-substitution phases by increasing the number of processors used. In such a case, however, a moderate
overhead (of order log2 N) appears due to the presence of synchronizations and communications.

As already mentioned, shared memory architectures are nowadays much easier to access. They have a
limited number of processors (up to 4 in our tests), but the parallel algorithms for these architectures have a
double advantage: there is no need to send the initial data to the local memory of each processor and there is
no large communication step after each synchronization. This means that, for a given number of processors,
these algorithms can lead to a better speed-up than that observed on distributed memory architectures.

4. Numerical results. In this section we report some numerical tests to compare COLROW with the
shared memory (OpenMP) parallel version of GBABDCR (here called GBABDCR OMP) in the solution of
ABD systems on multi-core computers. Our aim is to stress that GBABDCR OMP may be efficiently employed
in each BVP solver that requires the solution of ABD/BABD systems on the new multi-core personal computers.

For this reason we analyze the execution times of sequential runs performed on an alpha EV6.7 (21264A,
667 MHz) and of parallel runs performed on an Intel Core 2, Quad CPU Q9550, (2.83 GHz) multi-processor
with 4 cores. We consider ABD linear systems with blocks of the same size and with the same overlap (mi = m,
ki = k and ni = n = k +m). Moreover, we set the number of initial and final conditions equal to m/2.
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Fig. 3.1. Communications among processors on a distributed memory architecture with p = 4.

In Tables 4.1 and 4.2 we compare the elapsed time of some GBABDCR and COLROW runs using the
sequential computer to estimate the theoretical operation counts. We observe that, for k = 0 the ratio between
the elapsed time of GBABDCR and COLROW decreases from 3.26 to 2.32 (the expected value is 2.4) as we
increase n while for k = m the ratio decreases from 4.75 to 1.64 (the expected value is 1.4). A reason of this
strange behaviour is due to the large use in GBABDCR of BLAS3 routines [16] (such as DGEMM, DTRSM)
which have poor performance for small matrices (see tests in [22, 23]) and make this algorithm more efficient
for large k and m only.

Table 4.1

Elapsed times (in seconds) of GBABDCR and COLROW for solving ABD linear systems with N = 10000 and variable n = m

(k = 0)

n GBABDCR COLROW GBABDCR/COLROW
4 0.0795 0.0244 3.2600
8 0.2525 0.0947 2.6675
12 0.5768 0.2294 2.5149
16 1.0753 0.4377 2.4565
20 1.6946 0.7291 2.3243

These results show therefore that, for small size n of each block, it is quite difficult that GBABDCR

overcomes the performance of COLROW on parallel machines. Effectively for n < 8 we were not able to lower
COLROW timings by using GBABDCR OMP on 4 cores.

In Tables 4.3-4.6 we show the performance of GBABDCR OMP running on shared memory architectures
for N = 10000, 20000, 40000 and n = 8, 16.

We note that, when N ≫ p, the computational cost of the parallel algorithm scales with the number of
processors and in all the considered cases GBABDCR OMP on 4 cores is faster than COLROW. Therefore, on
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Table 4.2

Elapsed times of GBABDCR and COLROW for solving ABD linear systems with N = 10000 and variable n = 2m (k = m)

n GBABDCR COLROW GBABDCR/COLROW
4 0.0986 0.0207 4.7529
8 0.1840 0.0712 2.5822
12 0.3582 0.1940 1.8465
16 0.5558 0.3235 1.7179
20 0.9118 0.5546 1.6441

Table 4.3

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = m = 8 (k = 0)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.091 0.199 0.102 0.062 0.892 1.468
20000 0.186 0.398 0.204 0.132 0.912 1.409
40000 0.360 0.797 0.410 0.224 0.878 1.607

a multicore architecture, we can effectively speed-up the performance of any BVP solver when the size of the
problem is sufficiently large, just replacing COLROW with GBABDCR OMP. Since a code for BABD systems
may be directly applied to ABD systems, the modifications in the code are limited to a few instructions.

In particular, in BVP SOLVER we have inserted a subroutine that creates the non-separated boundary
blocks of the linear system starting from the given separated boundary conditions and we have added a fill-in
vector which is only required by GBABDCR OMP. We point out that in BVP SOLVER the resulting linear
systems have a BABD structure with k = 0 and m = n.

As an example, we have considered the solution of a 8 × 8 nonlinear system of equations describing fluid
injection through one side of a long vertical channel (see [10, Example 1.4]). We have taken into account this
problem with the following parameters

R = 1000, P = 0.7 ∗R, METH = 2

and fixed equal to 1 both the initial guess for the solution and the unknown parameter A.
Table 4.7 shows the results obtained by setting the exit tolerance equal to 10−6, 10−7 and 10−8. A few

comments need to be done on this example. The number of requested linear system solutions (SOLV) is about
8 times the number of factorizations (FACT). Since this size of the ODE is just n = 8 and in any ABD/BABD
code the computational cost of the factorization phase (FACT) is about n times that of the solution phase
(SOLV), then we expect the execution time of the two phases to be approximately equivalent.

From Table 4.7 we observe that the percentage of time required by SOLV using GBABDCR is higher than
that requested by FACT (the opposite happens when we use COLROW ) and it is therefore difficult to obtain
a large speed-up with the replacement of the linear algebra solver. By considering only the linear algebra part
(see % LIN ALG in the table) of BVP SOLVER, GBABDCR reduces its elapsed time of a factor in the range
[1.5, 1.7] when we use 4 cores instead of 1. This is anyway sufficient to obtain on 4 cores an execution faster
than COLROW.

We have to specify that on BVPs of size smaller than 8 we were not able to improve timings obtained with
COLROW. The size of the considered problem is anyway small, and this implies two negative aspects: linear
algebra is not the most time consuming part of the algorithm and, for such small dimensions, COLROW is
much better than GBABDCR. Nevertheless, it is clear that parallelism is really more useful to reduce timing
in presence of very large nonlinear BVPs.

A better speed-up is, in fact, obtained when we solve BVODE of larger size. Table 4.8 shows, for example,
some results of the application of the BVP SOLVER to a kidney problem of size 21×21 that describes the mass
and the energy balance of a renal counter-flow system, see [10]. We note that the Linear Algebra part requires
a larger portion of computation (between 60% and 70%) with respect to the previous example and, therefore,
the use of GBABDCR sensibly improves the performance of BVP SOLVER, when a multi-core computer is



Parallel Solvers for ABD and BABD Linear Systems 381

Table 4.4

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = m = 16 (k = 0)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.584 1.038 0.525 0.299 1.112 1.953
20000 1.174 2.054 1.049 0.552 1.119 2.127
40000 2.332 4.131 2.098 1.092 1.112 2.136

Table 4.5

Elapsed times of GBABDCR OMP and COLROW on a quad-core machine for ABD linear systems with n = 2m = 8 (k = m)
and variable N . Speed-up is computed as the ratio between the elapsed time of COLROW and GBABDCR OMP

GBABDCR OMP speed-up
N COLROW 1 core 2 cores 4 cores 2 cores 4 cores

10000 0.060 0.122 0.066 0.041 0.909 1.463
20000 0.120 0.249 0.137 0.078 0.876 1.539
40000 0.240 0.500 0.271 0.175 0.886 1.371

used. Finally, we emphasize that the performance of BVP SOLVER can be further improved with GBABDCR,
by considering that the original problem has three nonseparated boundary conditions and, therefore, it can be
recast so that a 18× 18 BABD linear system is obtained.
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