
Scalable Computing: Practice and Experience

Volume 10, Number 4, pp. 385–396. http://www.scpe.org
ISSN 1895-1767
c© 2009 SCPE

PARALLEL FACTORIZATIONS IN NUMERICAL ANALYSIS∗

PIERLUIGI AMODIO†AND LUIGI BRUGNANO‡

Abstract. In this paper we review the parallel solution of sparse linear systems, usually deriving by the discretization of ODE-
IVPs or ODE-BVPs. The approach is based on the concept of parallel factorization of a (block) tridiagonal matrix. This allows
to obtain efficient parallel extensions of many known matrix factorizations, and to derive, as a by-product, a unifying approach to
the parallel solution of ODEs.

Key words: ordinay differential equations (ODEs), initial value problems (IVPs), boundary value problems (BVPs), parallel
factorizations, linear systems, sparse matrices, parallel solution, “parareal” algorithm.

1. Introduction. The numerical solution of ODEs requires the solution of sparse and structured linear
systems. The parallel solution of these problems may be obtained in two ways: for BVPs, since the size of the
associated linear system is large, we need to develop parallel solvers for the obtained linear systems; for IVPs
we need to define appropriate numerical methods that allow to obtain “parallelizzable” linear systems.

In both cases, the main problem can then be taken back to the solution of special sparse linear systems,
whose solution is here approached through the use of parallel factorizations, originally introduced for deriving
efficient parallel tridiagonal solvers [2, 9], and subsequently generalized to block tridiagonal, Almost Block
Diagonal (ABD), and Bordered Almost Block Diagonal (BABD) systems [10, 11, 15, 16, 17, 19].

With this premise, the structure of the paper is the following: in Section 2 the main facts about parallel
factorizations and their extensions are briefly recalled; then, in Section 3 their application for solving ODE
problems is sketched; finally, in Section 4 we show that this approach also encompasses the so called “Parareal”
algorithm, recently introduced in [23, 24].

2. Parallel factorizations. In this section we consider several parallel algorithms in the class of partition
methods for the solution of linear systems,

Ax = f, (2.1)

where A is a n× n sparse and structured matrix, and x and f are vectors of length n. We will investigate the
parallel solution of (2.1) on p processors, supposing p ≪ n in order for the number of sequential operations to
be much smaller than that of parallel ones.

The coefficient matrices A here considered are (block) banded, tridiagonal, bidiagonal, or even Almost Block
Diagonal (ABD). All these structures may be rearranged in the form

A =




A(1) c
(1)
1

b
(1)T

1 a(1) c
(2)T

0

b
(2)
0 A(2) c

(2)
1

b
(2)T

1 a(2)

. . .

a(p−1) c
(p)T

0

b
(p)
0 A(p)




(2.2)

where the diagonal blocks are square and the superscript (i) indicates that this block is handled only by

processor i. The size of the blocks a(i), A(i), b
(i)
j , and c

(i)
j is in general independent of both i and j, and only

depends on the sparsity structure of the coefficient matrix A. In particular, the size of the blocks a(i) is quite
important, since the sequential section of the algorithm is proportional to it. Therefore, the blocks a(i) should
be as small as possible. As an example, if A is (block) tridiagonal, a(i) reduces to a single (block) entry. Vice
versa, in case of banded (block) matrices, the (block) size of a(i) equals to max(s, r), where s and r denote

∗Work developed within the project “Numerical methods and software for differential equations”
†Dipartimento di Matematica, Università di Bari, Bari, Italy (amodio@dm.uniba.it)
‡Dipartimento di Matematica, Università di Firenze, Firenze, Italy (luigi.brugnano@unifi.it)

385



386 P.Amodio and L. Brugnano

Fig. 2.1. Partitioning of a banded matrix. Each point represents a (block) entry of the matrix.

Fig. 2.2. Partitioning of an ABD matrix. Each point represents an entry of the matrix.

the number of lower and upper off (block) diagonals (see Figure 2.1), respectively. In case of ABD matrices,
a(i) is a block of size equal to the number of rows in each block row of the coefficient matrix (see Figure 2.2).
Since row and column permutations inside each block do not destroy the sparsity structure of the coefficient
matrix, in ABD matrices we may permute the elements inside a(i) to improve stability properties. Blocks A(i)

have the same sparsity structure as the original matrix, and are locally handled by using any suitable sequential
algorithm.

In order to keep track of any parallel algorithm, we consider the following factorization [2, 9]

A = F T G, (2.3)



Parallel Factorizations in Numerical Analysis 387

where

F =




N (1) o

v(1)T I w(2)T

o N (2) o

v(2)T I w(3)T

o N (3) o

v(3)T I

. . .

I w(p)T

o N (p)




, (2.4)

T =




Î o

oT α(1) oT γ(2)

o Î o

β(2) oT α(2) oT γ(3)

o Î o

β(3) oT α(3)

. . .

α(p−1) oT

o Î




, (2.5)

G =




S(1) y(1)

oT I oT

z(2) S(2) y(2)

oT I oT

z(3) S(3) y(3)

oT I
. . .

I oT

z(p) S(p)




, (2.6)

I, Î and o are identity and null matrices of appropriate sizes, and N (i)S(i) is any suitable factorization of the
block A(i). The remaining entries of F , T , and G can be derived from (2.3) by direct identification.

Factorization (2.3) may be computed in parallel on the p processors. For simplicity, we analyze the factor-
ization of the sub-matrix identified by the superscript (i) (with obvious differences for i = 1 and i = p)

M (i) =




0 c
(i)T

0

b
(i)
0 A(i) c

(i)
1

b
(i)T

1 a(i)


 . (2.7)

Following (2.2)–(2.6) we have

M (i) =




I w(i)T

o N (i) o

v(i)T I







α
(i)
1 oT γ(i)

o I o

β(i) oT α
(i)
2







I oT

z(i) S(i) y(i)

oT I


 , (2.8)

where α
(i)
2 + α

(i+1)
1 = α(i), and the other entries are the same as defined in (2.4)–(2.6).

Consequently, by considering any given factorization for A(i), it is possible to derive corresponding parallel
extensions of such factorizations, which cover most of the parallel algorithms in the class of partition methods.
In particular, the following ones easily derive for matrices with well conditioned sub-blocks A(i) (this means,
for example, that pivoting is unnecessary or does not destroy the sparsity structure):



388 P.Amodio and L. Brugnano

• LU factorization, by setting in (2.8) N (i) = L(i) and S(i) = U (i), where L(i)U (i) is the LU factorization
of the matrix A(i). In this case, the (block) vectors y(i) and v(i) maintain the same sparsity structure

as that of c
(i)
1 and b

(i)
1 , respectively, while the vectors z(i) and w(i) are non-null fill-in (block) vectors,

obtained by solving two triangular systems.

• LUD factorization (which derives from the Gauss-Jordan elimination algorithm), by setting in (2.8)
S(i) = D(i), a diagonal matrix, and




I w(i)T

o N (i) o

v(i)T I


 =




I oT

o L(i) o

v(i)T I






I w(i)T

o U (i) o

oT I


 ,

where L(i) and U (i) are lower and upper triangular matrices, respectively, with unit diagonal. Therefore,

v(i) and w(i) maintain the same sparsity structure as that of b
(i)
1 and c

(i)
0 , respectively, while z(i) and

y(i) are non-null fill-in (block) vectors.

• cyclic reduction algorithm [2, 9] (see also [1, 12, 15, 16]), which is one of the best known parallel
algorithms but that, in its original form, requires a synchronization at each step of reduction. In fact,
the idea of this algorithm is to perform several reductions that, at each step, halve the size of the
system. On the other hand, to obtain a factorization in the form (2.8), it is possible to consider cyclic
reduction as a sequential algorithm to be applied locally,

M (i) = (P̂
(i)
1 L̂

(i)
1 P̂

(i)
2 L̂

(i)
2 · · · )D̂(i)(· · · Û

(i)
2 P̂

(i)T

2 Û
(i)
1 P̂

(i)T

1 ),

where P̂
(i)
i are suitable permutation matrices that maintain the first and last row in the reduced matrix.

The computational cost, which is much higher if the algorithm is applied to A on a sequential computer,
becomes comparable to the previous local factorizations since this algorithm does not compute fill-in
block vectors. As a consequence, the corresponding parallel factorization algorithm turns out to be one
of the most effective.

• Alternate row and column elimination [25] which is an algorithm suitable for ABD matrices. In fact,
for such matrices alternate row and column permutations always guarantee stability without fill-in.
This feature extends to the parallel algorithm, by taking into account that row permutations between

the first block row of A(i) and the block containing c
(i)
0 (see (2.7)), still make the parallel algorithm

stable without introducing fill-in. Such parallel factorization is defined by setting N (i) = P (i)L(i) and
S(i) = U (i)Q(i), where P (i) and Q(i) are permutation matrices and L(i) and U (i), after a suitable
reordering of the rows and of the columns, are 2× 2 block triangular matrices (see [10] for full details).

Finally, the (block) vectors y(i) and z(i) maintain the same sparsity structure as that of b
(i)
1 and c

(i)
0 ,

respectively, whereas w(i) and v(i) are fill-in (block) vectors.

For what concerns the solution of the systems associated to the previous parallel factorizations, there is
much parallelism inside. The solution of the systems with the matrices F and G may proceed in parallel on
the different processors. Conversely, the solution of the system with the matrix T requires a sequential part,
consisting in the solution of a reduced system with the (block) tridiagonal reduced matrix

Tp =




α(1) γ(2)

β(2) α(2) . . .

. . .
. . . γ(p−1)

β(p−1) α(p−1)




. (2.9)

We observe that the (block) size of Tp only depends on p and is independent of n.

For a matrix A with singular or ill-conditioned sub-blocks A(i), the local factorizations may be unstable or
even undefined. Consequently, it is necessary to slightly modify the factorization (2.8), in order to obtain stable
parallel algorithms. The basic idea is that factorization (2.8) may produce more than two entries in the reduced
system. In other words, the factorization of A(i) is stopped when the considered sub-block is ill-conditioned (or



Parallel Factorizations in Numerical Analysis 389

the local factorization with a singular factor). As a consequence, the size of the reduced system is increased as
sketched below. Let then

M (i) = L̂
(i)
1 D̂

(i)
1 Û

(i)
1 ,

where

L̂
(i)
1 =




I w
(i)T

1

o N
(i)
1 o

v
(i)T

1 I oT

o Î o

oT I




, Û
(i)
1 =




I oT

z
(i)
1 S

(i)
1 y

(i)
1

oT I oT

o Î o

oT I




,

D̂
(i)
1 =




α
(i)
1 oT γ

(i)
1

o I o

β
(i)
1 oT α

(i)
2 c

(i)T

2

b
(i)
2 A

(i)
2 c

(i)
3

b
(i)T

3 α
(i)
3




,

when the sub-block A
(i)
1 of A(i),

A
(i)
1 =

(
N

(i)
1

v
(i)T

1 α
(i)
2

)(
S
(i)
1 y

(i)
1

I

)
,

is singular, because the block α
(i)
2 is singular (i. e., α

(i)
2 = 0, in the scalar case). Then, α

(i)
2 is introduced in

the reduced system. By iterating this procedure on D̂
(i)
1 , we obtain again the factorization (2.3), with the only

difference that now the reduced matrix in Tp may be of (block) size larger than p − 1 (compare with (2.9)).
However, it may be shown that it still depends only on p, whereas it is independent of n [3, 4]. Consequently,
the scalar section of the whole algorithm is still negligible, when n ≫ p.

The parallel algorithms that fall in this class are [3, 4]:

• LU factorization with partial pivoting, defined by setting N
(i)
1 = (P

(i)
1 )TL

(i)
1 and S

(i)
1 = U

(i)
1 where P

(i)
1

is a permutation matrix such that L
(i)
1 U

(i)
1 is the LU factorization of P

(i)
1 A

(i)
1 . The remaining (block)

vectors are defined similarly as in the case of the LU factorization previously described.

• QR factorization, defined by setting N
(i)
1 = Q

(i)
1 and S

(i)
1 = R

(i)
1 . In this case both w

(i)
1 and z

(i)
1 are fill-

in (block) vectors while v
(i)
1 and y

(i)
1 maintain the same sparsity structure as that of the corresponding

(block) vectors in M (i).

Factorization (2.3)–(2.6), and the corresponding parallel algorithms mentioned above, are easily generalized
to matrices with additional non-null elements in the right-lower and/or left-upper corners. This is the case, for
example, of Bordered ABD (BABD) matrices (see Figure 2.3) and matrices with a circulant-like structure (see
Figure 2.4). Supposing the non-null elements are located in the right-upper corner (this is always possible by
means of suitable permutation), then the coefficient matrix is partitioned in the form

A =




a(0) c
(1)T

0 b

b
(1)
0 A(1) c

(1)
1

b
(1)T

1 a(1) c
(2)T

0

b
(2)
0 A(2) c

(2)
1

b
(2)T

1 a(2)

. . .

a(p−1) c
(p)T

0

b
(p)
0 A(p) c

(p)
1

b
(p)T

1 a(p)




, (2.10)



390 P.Amodio and L. Brugnano

Fig. 2.3. Partitioning of a BABD matrix. Each point represents an entry of the matrix.

Fig. 2.4. Partitioning of a matrix with a circulant-like structure. Each point represents a (block) entry of the matrix.

where b is the smallest rectangular block containing all the corner elements.
A factorization similar to that in (2.3)–(2.6) (the obvious differences are related to the first and last (block)

rows) produces a corresponding reduced system with the reduced matrix

Tp =




α(0) γ(1) β(0)

β(1) α(1) γ(2)

β(2) α(2) . . .

. . .
. . . γ(p)

β(p) α(p)




. (2.11)

We observe that, for the very important classes of BABD and circulant-like matrices (the latter, after a
suitable row permutation, see Figure 2.5), both the matrix (2.10) and the reduced matrix (2.11) have the form

of a lower block bidiagonal matrix (i. e., c
(i)
j = 0 and γ(i) = 0 for all i and j) with an additional right-upper



Parallel Factorizations in Numerical Analysis 391

Fig. 2.5. Partitioning of the matrix in Fig. 2.4 after row permutation. Each point represents a (block) entry of the matrix.

corner block:

A =




a(0) b

b
(1)
0 A(1)

b
(1)T

1 a(1)

b
(2)
0

. . .

. . . a(p−1)

b
(p)
0 A(p)

b
(p)T

1 a(p)




,

and

Tp =




α(0) β(0)

β(1) α(1)

. . .
. . .

β(p) α(p)


 .

We have also to note that, for this kind of matrices, the overall computational cost of a parallel factorization
algorithm has a very small increase. On a sequential machine, supposing to maintain the same partitioning
of the matrix on p > 1 processors, we have a computational cost which is similar to that of any efficient
sequential algorithm (the corner block b implies the construction of a fill-in (block) vector) but with better
stability properties (see [26]). For this reason, a method that is widely and efficiently applied to matrices in the
form (2.10), also on a sequential computer, is cyclic reduction (see [11, 17, 19] where cyclic reduction is applied
to BABD matrices).

3. Parallel solution of differential equations. The numerical solution of ODE-BVPs leads to the
solution of large and sparse linear systems of equations that represent the most expensive part of a BVP
code. The sparsity structure of the obtained problem depends on the methods implemented. In general,
one-step methods lead to ABD or BABD matrices, depending on the boundary conditions (separated or not,
respectively), while multistep methods lead to block banded systems (with additional corner blocks in case of
non-separated boundary conditions) [5, 6, 22]. The parallel algorithms previously described perfectly cope with
this kind of systems. For this reason we do not investigate further on ODE-BVPs.



392 P.Amodio and L. Brugnano

Conversely, we shall now consider the application of parallel factorizations for deriving parallel algorithms
for numerically solving ODE-IVPs, which we assume, for sake of simplicity, to be linear and in the form

y′ = Ly + g(t), t ∈ [t0, T ], y(t0) = y0 ∈ R
m, (3.1)

which is, however, sufficient to grasp the main features of the approach [5, 6, 7, 8, 20, 21, 22].
Let us consider a suitable coarse mesh, defined by the following partition of the integration interval in (3.1):

t0 ≡ τ0 < τ1 < · · · < τp ≡ T. (3.2)

Suppose, for simplicity, that inside each sub-interval we apply a given method with a constant stepsize

hi =
τi − τi−1

N
, i = 1, . . . , p, (3.3)

to approximate the problem

y′ = Ly + g(t), t ∈ [τi−1, τi], y(τi−1) = y0i, i = 1, . . . , p. (3.4)

If y(t) denotes the solution of problem (3.1), and we denote by

yni ≈ y(τi−1 + nhi), n = 0, . . . , N, i = 1, . . . , p, (3.5)

the entries of the discrete approximation, then, in order for the numerical solutions of (3.1) and (3.4) to be
equivalent, we require that (see (3.2) and (3.5))

y01 = y0, y0i ≡ yN,i−1, i = 2, . . . , p. (3.6)

For convention, we also set

y01 ≡ yN0. (3.7)

Let now suppose that the numerical approximations to the solutions of (3.4) are obtained by solving discrete
problems in the form

Miyi = viy0i + gi, yi =
(
y1i, . . . , yNi

)T
, i = 1, . . . , p, (3.8)

where the matrices Mi ∈ R
mN×mN and vi ∈ R

mN×m, and the vector gi ∈ R
mN , do depend on the chosen

method (see, e.g., [5, 6], for the case of block BVMs) and on the problems (3.4). Clearly, this is a quite general
framework, which encompasses most of the currently available methods for solving ODE-IVPs. By taking into
account all the above facts, one obtains that the global approximation to the solution of (3.1) is obtained by
solving a discrete problem in the form (hereafter, Ir will denote the identity matrix of dimension r):

My ≡




Im
−v1 M1

−V2 M2

. . .
. . .

−Vp Mp







yN0

y1

y2
...
yp




=




y0
g1

g2
...
gp




,

(3.9)

Vi = [O |vi] ∈ R
mN×mN , i = 2, . . . , p.



Parallel Factorizations in Numerical Analysis 393

Obviously, this problem may be solved in a sequential fashion, by means of the iteration (see (3.6)-(3.7)):

yN0 = y0, Miyi = gi + viyN,i−1, i = 1, . . . , p.

Nevertheless, by following arguments similar to those in the previous section, we consider the factorization:

M =




Im
M1

M2

. . .

Mp







Im
−w1 ImN

−W2 ImN

. . .
. . .

−Wp ImN




,

where (see (3.9))

Wi = [O |wi] ∈ R
mN×mN , wi = M−1

i vi ∈ R
mN×m. (3.10)

Consequently, at first we solve, in parallel, the systems

Mizi = gi, zi =
(
z1i, . . . , zNi

)T
, i = 1, . . . , p, (3.11)

and, then, (see (3.10) and (3.6)) recursively update the local solutions,

y1 = z1 +w1y01,

(3.12)

yi = zi +Wiyi−1 ≡ zi +wiy0i, i = 2, . . . , p.

The latter recursion, however, has still much parallelism. Indeed, if we consider the partitionings (see (3.8),
(3.11), and (3.10))

yi =

(
ŷi

yNi

)
, zi =

(
ẑi

zNi

)
, wi =

(
ŵi

wNi

)
, wNi ∈ R

m×m, (3.13)

then (3.12) is equivalent to solve, at first, the reduced system




Im
−wN1 Im

. . .
. . .

−wN,p−1 Im







y01
y02
...

y0p


 =




y0
zN1

...
zN,p−1


 , (3.14)

i. e.,

y01 = y0, y0,i+1 = zNi + wNiy0i, i = 1, . . . , p− 1, (3.15)

after which performing the p parallel updates

ŷi = ẑi + ŵiy0i, i = 1, . . . , p− 1, yp = zp +wpy0p. (3.16)

We observe that:



394 P.Amodio and L. Brugnano

• the parallel solution of the p systems in (3.11) is equivalent to compute the approximate solution of the
following p ODE-IVPs,

z′ = Lz + g(t), t ∈ [τi−1, τi], z(τi−1) = 0, i = 1, . . . , p, (3.17)

in place of the corresponding ones in (3.4);

• the solution of the reduced system (3.14)-(3.15) consists in computing the proper initial values {y0i} for
the previous ODE-IVPs;

• the parallel updates (3.16) update the approximate solutions of the ODE-IVPs (3.17) to those of the
corresponding ODE-IVPs in (3.4).

Remark 1. Clearly, the solution of the first (parallel) system in (3.11) and the first (parallel) update in
(3.12) (see also (3.16)) can be executed together, by solving the linear system (see (3.6))

M1y1 = g1 + v1y0, (3.18)

thus directly providing the final discrete approximation on the first processor; indeed, this is possible, since the
initial condition y0 is given.

We end this section by emphasizing that one obtains an almost perfect parallel speed-up, if p processors are
used, provided that the cost for the solution of the reduced system (3.14) and of the parallel updates (3.16) is
small, with respect to that of (3.11) (see [5, 6] for more details). This is, indeed, the case when the parameter
N in (3.3) is large enough and the coarse partition (3.2) can be supposed to be a priori given.

4. Connections with the “Parareal” algorithm. We now briefly describe the “Parareal” algorithm
introduced in [23, 24], showing the existing connections with the parallel method previously described. This
method, originally defined for solving PDE problems, for example linear or quasi-linear parabolic problems, can
be directly cast into the ODE setting via the semi-discretization of the space variables; that is, by using the
method of lines. In more detail, let us consider the problem

∂

∂t
y = L y, t ∈ [t0, T ], y(t0) = y0, (4.1)

where L is an operator from a Hilbert space V into V ′. Let us consider again the partition (3.2) of the time
interval, and consider the problems

∂

∂t
y = L y, t ∈ [τi−1, τi], y(τi−1) = y0i, i = 1, . . . , p. (4.2)

Clearly, in order for (4.1) and (4.2) to be equivalent, one must require that

y0i = y(τi−1), i = 1, . . . , p. (4.3)

The initial data (4.3) are then formally related by means of suitable propagators Fi such that

y0,i+1 = Fiy0i, i = 1, . . . , p− 1. (4.4)

The previous relations can be cast in matrix form as (I now denotes the identity operator)

Fy ≡




I
−F1 I

. . .
. . .

−Fp−1 I







y01
y02
...

y0p


 =




y0
0
...
0


 ≡ η. (4.5)



Parallel Factorizations in Numerical Analysis 395

For solving (4.5), the authors essentially define the splitting

F = (F −G) +G, G =




I
−G1 I

. . .
. . .

−Gp−1 I


 ,

with coarse propagators

Gi ≈ Fi, i = 1, . . . , p,

and consider the iterative procedure

Gy(k+1) = (G− F )y(k) + η, k = 0, 1, . . . ,

with an obvious meaning of the upper index. This is equivalent to solve the problems

y
(k+1)
01 = y0,

y
(k+1)
0,i+1 = Giy

(k+1)
0i + (Fi − Gi)y

(k)
0i , i = 1, . . . , p− 1, (4.6)

thus providing good parallel features, if we can assume that the coarse operators Gi are “cheap” enough. The
iteration (4.6) defines the “Parareal” algorithm, which is iterated until

‖y
(k+1)
0i − y

(k)
0i ‖, i = 2, . . . , p,

are suitably small. In the practice, in case of linear operators, problem (4.1) becomes, via the method of lines, an
ODE in the form (3.1), with L a huge and very sparse matrix. Consequently, problems (4.2) become in the form
(3.4). Similarly, the propagator Fi consists in the application of a suitable discrete method for approximating
the solution of the corresponding ith problem in (3.4), and the coarse propagator Gi describes the application of
a much cheaper method for solving the same problem. As a consequence, if the discrete problems corresponding
to the propagators {Fi} are in the form (3.8), then the discrete version of the recurrence (4.4) becomes exactly
(3.15), as well as the discrete counterpart of the matrix form (4.5) becomes (3.14).

We can then conclude that the “Parareal” algorithm in [23, 24] exactly coincides with the iterative solution
of the reduced system (3.14), induced by a suitable splitting.

We observe that the previous iterative procedure may be very appropriate, when the matrix L is large and
sparse since, in this case, the computations of the block vectors {wi} in (3.10), and then of the matrices {wNi}
(see (3.13)) would be clearly impractical. Moreover, it can be considerably improved by observing that

wNiy0i ≈ e(τi−τi−1)Ly0i.

Consequently, by considering a suitable approximation to the matrix exponential, the corresponding parallel
algorithm turns out to become semi-iterative and potentially very effective, as recently shown in [8].

REFERENCES

[1] P.Amodio. Optimized cyclic reduction for the solution of linear tridiagonal systems on parallel computers. Comput. Math.
Appl. 26 (1993) 45–53.

[2] P.Amodio and L.Brugnano. Parallel factorizations and parallel solvers for tridiagonal linear systems. Linear Algebra Appl.
172 (1992) 347–364.

[3] P.Amodio and L.Brugnano, The parallel QR factorization algorithm for tridiagonal linear systems. Parallel Comput. 21

(1995) 1097–1110.



396 P.Amodio and L. Brugnano

[4] P.Amodio and L.Brugnano. Stable Parallel Solvers for General Tridiagonal Linear Systems. Z. Angew. Math. Mech. 76,
suppl. 1 (1996) 115–118.

[5] P.Amodio and L.Brugnano. Parallel implementation of block boundary value methods for ODEs, J. Comput. Appl. Math.
78 (1997) 197–211.

[6] P.Amodio and L.Brugnano. Parallel ODE solvers based on block BVMs, Adv. Comput. Math. 7 (1997) 5–26.
[7] P.Amodio and L.Brugnano. ParalleloGAM: a Parallel Code for ODEs, Appl. Numer. Math. 28 (1998) 95–106.
[8] P.Amodio and L.Brugnano. Parallel solution in time of ODEs: some achievements and perspectives. Appl. Numer. Math. 59

(2009) 424–435.
[9] P.Amodio, L. Brugnano and T. Politi. Parallel factorizations for tridiagonal matrices. SIAM J. Numer. Anal. 30 (1993)

813–823.
[10] P.Amodio, J.R.Cash, G. Roussos, R.W.Wright, G.Fairweather, I. Gladwell, G.L.Kraut and M.Paprzycki. Almost block

diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Linear Algebra Appl. 7,
no. 5 (2000) 275–317.

[11] P.Amodio, I. Gladwell and G.Romanazzi. Numerical solution of general Bordered ABD linear systems by cyclic reduction.
JNAIAM J. Numer. Anal. Ind. Appl. Math. 1, no. 1 (2006) 5–12.

[12] P.Amodio, N.Mastronardi. A parallel version of the cyclic reduction algorithm on a Hypercube. Parallel Comput. 19 (1993)
1273–1281.

[13] P.Amodio and F.Mazzia. A parallel Gauss-Seidel method for block tridiagonal linear systems. SIAM J. Sci. Comput. 16

(1995) 1451–1461.
[14] P.Amodio and F.Mazzia. Parallel iterative solvers for banded linear systems. Lecture Notes in Comput. Sci. 1196, (Numerical

Analysis and its Applications. L.Vulkov, J.Wàsniewski, and P.Yalamov editors, Springer, Berlin), 17–24, 1997.
[15] P.Amodio and M.Paprzycki. Parallel solution of Almost Block Diagonal systems on a Hypercube. Linear Algebra Appl.

241-243 (1996) 85–103.
[16] P.Amodio and M.Paprzycki. On the parallel solution of Almost Block Diagonal systems. Control Cybernet. 25, no. 3 (1996)

645–656.
[17] P.Amodio and M.Paprzycki. A cyclic reduction approach to the numerical solution of boundary value ODEs. SIAM J. Sci.

Comput. 18, no. 1 (1997) 56–68.
[18] P.Amodio, M.Paprzycki and T.Politi. A survey of parallel direct methods for block bidiagonal linear systems on distributed

memory computers. Comput. Math. Appl. 31 (1996) 111–127.
[19] P.Amodio and G.Romanazzi. BABDCR: a Fortran 90 package for the solution of Bordered ABD systems. ACM Trans. Math.

Software 32, no. 4 (2006) 597–608. (Available on the url: http://www.netlib.org/toms/859)
[20] L.Brugnano and D.Trigiante. On the potentiality of sequential and parallel codes based on extended trapezoidal rules (ETRs),

Appl. Numer. Math. 25 (1997) 169–184.
[21] L.Brugnano and D.Trigiante. Parallel implementation of block boundary value methods on nonlinear problems: theoretical

results, Appl. Numer. Math. 78 (1997) 197–211.
[22] L.Brugnano and D.Trigiante. Solving Differential Problems by Multistep Initial and Boundary Value Methods, Gordon and

Breach, Amsterdam, 1998.
[23] J. L. Lions, Y.Maday and G.Turinici. Résolution d’EDP par un schéma en temps “pararéel”, C.R.Acad. Sci. Paris, Série I

332 (2001) 661–668.
[24] Y.Maday and G.Turinici. A parareal in time procedure for the control of partial differential equations, C.R.Acad. Sci. Paris,

Série I 335 (2002) 387–392.
[25] J. M.Varah. Alternate row and column elimination for solving certain linear systems. SIAM J. Numer. Anal. 13 (1976) 71–75.
[26] S. J.Wright. A collection of problems for which Gaussian elimination with partial pivoting is unstable. SIAM J. Sci. Stat.

Comput. 14 (1993) 231–238.

Edited by: Francesca Mazzia
Received: June 27, 2009
Accepted: September 10, 2009


