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EXPLORING CARRIER AGENTS IN SWARM-ARRAY COMPUTING

BLESSON VARGHESE∗
AND GERARD MCKEE†

Abstract. How can a bridge be built between autonomic computing approaches and parallel computing systems? The work
reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing approach based on ‘Intelligent
Agents’ to achieve autonomy for distributed parallel computing systems. In the proposed approach, a task to be executed on parallel
computing cores is carried onto a computing core by carrier agents that can seamlessly transfer between processing cores in the event
of a predicted failure. The cognitive capabilities of the carrier agents on a parallel processing core serves in achieving the self-ware
objectives of autonomic computing, hence applying autonomic computing concepts for the benefit of parallel computing systems.
The feasibility of the proposed approach is validated by simulation studies using a multi-agent simulator on an FPGA (Field-
Programmable Gate Array) and experimental studies using MPI (Message Passing Interface) on a computer cluster. Preliminary
results confirm that applying autonomic computing principles to parallel computing systems is beneficial.
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1. Introduction. Inspirations from nature have led computing scientists to focus on biologically inspired
computing paradigms. Amorphous computing [1], evolutionary computing [2] and organic computing [3] are such
areas that focus on abstracting designs from nature. Lately, autonomic computing inspired by the autonomic
human nervous system [4] is the emphasis of distributed computing researchers which is considered in this paper.

With the aim of building large scale systems [5], reducing cost of ownership [6] [7] and reallocating man-
agement responsibilities from administrators to the computing system itself [8][9][10], autonomic computing
principles have paved necessary foundations towards self-managing systems. Self-managing systems are char-
acterized by four objectives, namely self-configuration, self-healing, self-optimizing and self-protecting and four
attributes, namely self-awareness, self-situated, self-monitoring and self-adjusting [4][11][12].

Autonomic computing researchers have adopted six different approaches, namely emergence-based, compo-
nent/service-based, control theoretic based, artificial intelligence, swarm intelligence and agent based approaches
to achieve self-managing systems.

The emergence based approach for distributed systems considers complex behaviours of simple entities
with simple behaviours without global knowledge [13]. Autonomic computing research on emergence based
approaches is reported in [13] and [14].

The component/service based approach for distributed systems employ service-oriented architectures, and
is implemented in many web based services. These approaches are being developed for large scale networked
systems including grids. Autonomic computing research on component/service based approaches is reported in
[15], [16] and [17].

The control theoretic based approach aims to apply control theory for developing autonomic computing
systems. The building blocks of control theory are used to model computing systems and further used to study
system properties. Using a defined set of control theory methodologies, the objectives of a control system can
be achieved. Research on control theoretic based approaches applied to autonomic computing is reported in
[18] and [19].

The artificial intelligence based approaches aim for automated decision making and the design of rational
agents. The concept of autonomy is realized by maximizing an agent’s objective based on perception and action
in the agent’s environment with the aid of information from sensors and in-built knowledge. Work on artificial
intelligence approaches for autonomic computing is reported in [20] and [21].

The swarm intelligence based approaches focus on designing algorithms based on collective behaviour of
swarm units that arise from local interactions with their environment. The algorithms considered are population-
based stochastic methods executed on distributed processors. Autonomic computing research on swarm intelli-
gence approaches is reported in [22] and [23].

The agent based approaches for distributed systems is a generic technique adopted to implement emer-
gence, component/service, artificial intelligence or swarm intelligence based approaches. The agents act as
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autonomic elements or entities that perform distributed task. The domain of software engineering considers
agents to facilitate autonomy and hence have a profound impact on achieving the objectives of autonomic
computing. Research work based on multi-agents supporting autonomic computing are reported in [9], [24]
and [25].

However, though all of the autonomic computing approaches above aim towards the objectives of auto-
nomic computing, few researchers have applied autonomic computing concepts to parallel computing systems.
This is surprising since most distributed computing systems are closely associated with the parallel computing
paradigm. The benefits of autonomy in computing systems, namely reducing cost of ownership and reallocating
management responsibilities to the system itself are also relevant to parallel computing systems.

How can a bridge be built between autonomic computing approaches and parallel computing system? The
work reported in this paper is motivated towards bridging this gap by proposing a swarm-array computing
approach, that aims to achieve autonomy for distributed parallel computing systems.

Swarm-array computing is biologically inspired by the theory of autonomous agents in natural swarms that
are abstracted and implemented in parallel computing systems. This technique considers the computational
resource as a swarm of resources and the task to be executed as a swarm of sub-tasks. Hence, the approach
considers complex interactions between swarms of sub-tasks and swarms of resources. These interactions bring
about the notion of intelligent agents or swarm agents carrying the sub-tasks and intelligent cores or swarm of
cores executing the sub-task.

In this paper, a swarm-array computing approach is proposed as a solution that aims to apply autonomic
concepts to parallel computing systems and in effect achieve the objectives and attributes of self-managing
systems. Unlike another swarm-array computing approach reported in [26], the approach proposed in this
paper considers the task to be executed on parallel computing cores as a swarm of autonomous agents.

The remainder of the paper is organized as follows. Section 2 considers the proposed swarm-array computing
approach. The second approach is of focus in this paper. Section 3 investigates the feasibility of the proposed
approach by considering simulations. Section 4 presents the implementation of the proposed approach on a
computer cluster. Section 5 concludes the paper by considering future work.

2. Swarm-Array Computing Approach. Swarm-array computing is a swarm robotics inspired ap-
proach that is proposed as a path to achieve autonomy in parallel computing systems. The foundations of
swarm-array computing are the existing computing paradigms of parallel and autonomic computing. There are
three approaches based on intelligent cores, intelligent agents and a hybrid approach based on both intelligent
cores and intelligent agents that bind the swarm-array computing constituents together [26].

In this paper, the focus is on the second approach based on intelligent agents. The aim of the ‘Intelligent
Agent based’ approach is to demonstrate that the cognitive capabilities of an agent complementing its intelligence
can be used to achieve the objectives and attributes of autonomic computing.

In the intelligent agent based approach, a task to be executed on a parallel computing system is decomposed
into sub-tasks and mapped onto agents that carry these tasks onto nodes or cores for execution. The agent and
the sub-problem are independent of each other; in other words, the agents only carry the sub-tasks or act as a
wrapper around the sub-task independent of the operations performed by the task.

In the proposed approach, an agent has capabilities similar to the capabilities of a natural agent presented
above. Intelligence of an agent in the computing environment is demonstrated in four different ways. Firstly,
an agent is aware of its environment, that is the nodes or cores on which it can carry a task onto, other agents
in its vicinity and agents with which it interacts or shares information. Secondly, an agent can situate itself
on a node or core that may not fail soon and can provide necessary and sufficient consistency in executing the
task. Thirdly, an agent can predict core failures by consistent monitoring (for example, power consumption and
heat dissipation of the cores can be used to predict failures). Fourthly, an agent is capable of shifting gracefully
from one core to another, without causing interruption to the state of execution, and notifying other interacting
agents in the system when a core on which a sub-task being executed is predicted to fail.

Hence, objectives such as self-configuration, self-healing and self-optimizing and attributes such as self-
awareness, self-situated, self-monitoring and self-adjusting are inherently obtained in the proposed approach by
the cognitive capabilities demonstrated by the agent.

3. Simulation Studies. Simulation studies were pursued to validate and visualize the proposed intelligent
agent based approach. Various simulation platforms were considered, namely network simulators, which could
predict behaviours of data packets in networks, and multi-agent simulators, that could model agents and their
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behaviours in an environment. Since FPGA cores are considered in this paper, network simulators were not an
appropriate choice. The approach proposed in this paper considers executing cores as agents; hence a multi-
agent simulator is employed. This section is organized into describing the experimental environment, modelling
the experiment and experimental results.

With the objective of exploring swarm-array computing, FPGAs are selected as an experimental platform
for simulating the proposed approaches. FPGAs are a technology under investigation in which the cores of
the computing system are not geographically distributed. The cores in close proximity can be configured to
achieve a regular grid or a two dimensional lattice structure. Another reason of choice to look into FPGAs is
its flexibility for implementing reconfigurable computing.

The feasibility of the proposed swarm-array computing approach was validated on the SeSAm (Shell for
Simulated Agent Systems) simulator. The SeSAm simulator environment supports the modelling of complex
agent-based models and their visualization [27][28].

The environment has provisions for modelling agents, the world and simulation runs. Agents are character-
ized implemented in the form of an activity diagram by a reasoning engine and a set of state variables. The state
variables of the agent specify the state of an agent. The world provides knowledge about the surroundings in
which the agent is situated. A world is also characterized by variables and behaviours and defines the external
influences that can affect the global behaviour of the agent. Simulation runs are defined by simulation elements,
namely situations, analysis lists, simulations and experiments that contribute to the agent-based model being
constructed.

As considered in Section 2, the swarm-array computing approach considers the computing platform and the
problem/task. An FPGA is modelled in the SeSAm environment such that the hardware cores are arranged in
a 5 X 5 regular grid structure. The model assumes serial bus connectivity between individual cores. Hence, a
task scheduled on a core can be transferred onto any other core in the regular grid.

The breakdown of any given task into subtasks is not considered within the problem domain of swarm-array
computing. The simulation is initialized with sub-tasks scheduled to a few cores in the FPGA grid. Each sub-
task carrying agent consistently monitors the hardware cores. This is possible by sensory information (in our
model, temperature is sensed consistently) passed onto the carrier agent. In the event of a predicted failure, the
carrier agent displaces itself to another core in the computing system. The behaviour of the individual cores
vary randomly in the simulation. For example, the temperature of the FPGA core changes during simulation. If
the temperature of a core exceeds a predefined threshold, the subtask being executed on the core is transferred
by the carrier agent onto another available core that is not predicted to fail. During the event of a transfer
or reassignment, a record of the status of execution of the subtask maintained by the carrier agent also gets
transferred to the new core. If more than one sub-task is executed on a core predicted to fail, each sub-task
may be transferred to different cores.

Figure 3.1 is a series of screenshots of a random simulation run developed on SeSAm for nine consecutive
time steps from initialization. The figure shows the executing cores as rectangular blocks in pale yellow colour.
When a core is predicted to fail, i. e., temperature increases beyond a threshold, the core is displayed in red.
The subtasks wrapped by the carrier agents are shown as blue filled circles that occupy a random position on
a core. As discussed above, when a core is predicted to fail, the subtask executing on the core predicted to fail
gets seamlessly transferred to a core capable of processing at that instant.

The simulation studies are in accordance with the expectation and hence are a preliminary confirmation
of the feasibility of the proposed approach in swarm-array computing. Though some assumptions and minor
approximations are made, the approach is an opening for applying autonomic concepts to parallel computing
platforms.

4. Implementation. In this section, a cluster-based implementation of the intelligent agent approach is
considered. The cluster used for the research reported in this paper is one among the high performance comput-
ing resources available at the Centre for Advanced Computing and Emerging Technologies (ACET), University
of Reading, United Kingdom [29] [30]. The cluster is primarily used for the purpose of teaching and performing
multi-disciplinary research. The cluster consists of a head node and 33 compute nodes. All nodes are connected
via a Gigabit ethernet switch and communicate via the standard TCP protocol.

The cluster-based implementations reported in this paper are based on the Message Passing Interface (MPI)
[31], a standardized application programming interface (API) used for parallel and/or distributed computing.
Open MPI [32] [33] version 1.3.3, an open source implementation of MPI 2.0 is employed on the cluster. An
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Fig. 3.1. Sequence of nine simulation screenshots (a) - (i) of a simulation run from initialization on the SeSAm multi-agent
simulator. Figure shows how the carrier agents carrying sub-tasks are seamlessly transferred to a new core when executing cores
fail.

important feature of MPI 2.0, dynamic process creation and management, is of potential for exploration in the
context of swarm-array computing.

The MPI dynamic process model permits the creation and management of a set of processes both when
an MPI application begins and after the application has started. The management of newly created pro-
cesses include cooperative termination of a process, communication between newly created processes and
existing MPI application, and establishing communication between two independent processes. MPI rou-
tines such as MPI COMM SPAWN is used to create a new MPI process and establish communication from
an existing MPI application. On the other hand, MPI routines such as MPI MPI COMM ACCEPT and
MPI COMM CONNECT can be used to establish communication between two independent processes. More
MPI specific details on dynamic process model can be obtained from [31] [34].

To analyse the proposed intelligent agent based approach a parallel reduction algorithm is considered.
Parallel reduction algorithms implement the bottom-up approach of binary trees [35], and are of interest in the
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Fig. 4.1. Illustration of the parallel summation algorithm.

context of applying autonomic computing concepts to parallel computing systems due to two reasons. Firstly,
the computing nodes of a parallel reduction algorithm tend to be critical. The execution of the algorithm stalls
or produces an incorrect solution if any node information is lost. Secondly, parallel reduction algorithms are
employed in critical applications such as space applications. Such applications require autonomic distributed
systems.

Parallel summation is an exemplar of parallel reduction algorithm considered in this paper. If this class of
algorithms do not incorporate fault tolerance concepts, then if a computing node fails due to an unpredictable
event, the execution of the algorithm would stall.

The general concept of the algorithm is illustrated in figure 4.1. The algorithm works in four sequential
levels. The first level comprising nodes N1 − N8 receives a live input feed of data I1 − I8. The second level
comprising nodes N9−N12 receives data from the first level, adds the data received and yields the result to the
third level nodes N13 and N14. The fourth level, adds data received from the third level nodes and produces
the final result.

For a given time step, every node in a level operates in parallel. Each node is characterized by input
dependencies (process or processor a node is dependent on for receiving an input), output dependencies (process
or processor a node yields data to as output) and data contained in the node. The first level nodes have one
input dependency and one output dependency. For instance, node N1 has one input dependency I1 and node N9

as its output dependency. However, the second, third and fourth levels have two input dependencies and one
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Fig. 4.2. Mapping hardware nodes of the cluster to logical nodes in the abstracted layer.

output dependency. For instance, node N13 of the third level has nodes N9 and N10 as input dependencies and
node N15 as output dependency. The data contained in a node is either the input data for the first level nodes
or a calculated value (sum of two value in the case of a parallel summation algorithm) stored within a node.

A layer that abstracted the hardware resource layer, otherwise referred to as the abstracted layer had to
be implemented. The hardware resource layer comprises physical nodes of the cluster and is connected via a
switch, thereby forming a fully connected mesh topology. However, the abstracted layer is obtained when the
physical nodes are abstracted as logical nodes. This is possible by implementing rules/policies. The policies
are such that a process can only communicate with a vertically, horizontally or diagonally adjacent process,
effectively leading to a grid topology on the abstracted layer. For example, nine nodes forming a fully connected
mesh topology in figure 4.2 is abstracted to a grid topology in the abstraction layer.

The intelligent agents implemented in the parallel summation algorithm are with respect to the cognitive
capabilities of agents considered in Section 2. The agents on the abstracted layer are created such that they carry
input and output dependencies and data. Since, parallel summation is relatively less complex when compared
to other computational algorithms, the agents carry little information and have only few dependencies.

Each process executing on a node also gathers some sensory information to predict whether a node is
likely to fail. The sensory information enables an agent to know its own surroundings on the computational
environment, hence demonstrating the first cognitive capability considered in Section 2.

In the implementation presented in this paper node temperatures are simulated. When the temperature
of a node rises beyond a threshold, the process executing on that node predicts a failure and hence spawns a
process on an adjacent core in the abstracted layer. In this case, an agent gathers sensory information on rising
temperature than can likely impair or deteriorate its functioning, thereby demonstrating the third cognitive
capability considered in Section 2. When rising temperature is detected, an agent has the potential to identify
a node in the computational environment on which a new process can be spawned, thereby demonstrating the
second cognitive capability considered in Section 2.

The agent on the abstracted core expected to fail shifts to the adjacent core on which the new process was
spawned. An agent is capable of passing from one node to another, thereby demonstrating the fourth cognitive
capability considered in Section 2.

The dependency information carried by the agent that was shifted to the new core is employed to reinstate
the state of execution of the algorithm. The data for summation contained in the agent, either obtained from
a previous level or a calculated value to be yielded to the next level, ensures that information is not lost and
does not affect the final solution in critical applications.

Since the agents possess cognitive capabilities autonomic computing objectives such as self-configuration,
self-healing and self-optimizing and autonomic computing attributes such as self-awareness, self-situated, self-
monitoring and self-adjusting are inherently achieved. Hence, the approach implemented above incorporates
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Fig. 5.1. Time taken for an agent transfer from a computational node in the third level to an adjacent node. Mean time for
agent transfer in third level nodes MTL3

= 0.343 sec.

concepts of the intelligent agent approach in swarm-array computing and is a preliminary step towards applying
autonomic computing concepts to parallel computing systems.

The method proposed is an ample demonstration, though not highly sophisticated, that accommodates the
concepts of intelligent agents leading towards achieving a few autonomic computing objectives and attributes.

5. Results. TNn
, the time taken by an agent to transfer from a node Nn predicted to fail onto an adjacent

node in the abstracted layer and re-establish all process dependencies for seamless execution was noted. Nodes
N13 and N14 as shown in figure 4.1 are the third level computational nodes of the parallel summation algorithm,
and hence are the only nodes considered for calculating TNn

in this paper. Thirty different trial runs were
performed to gather the statistic.

Figure 5.1 is the plot that shows TNn
for the third level nodes N13 and N14 for 30 different trials.

Further, MTNn
, the mean time of TNn

for a particular node was calculated. This metric yields information
on the mean time taken by an agent to transfer from a node Nn predicted to fail onto an adjacent node in
the abstracted layer and re-establish all process dependencies for seamless execution. MTNn

is calculated as
follows:

MTNn
=

(

30
∑

TR=1

Tn

)

/

30, n = 13, 14 (5.1)

and TR being independent trials.
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MTLp
, p = 3, the mean time taken for an agent transfer from all nodes predicted to fail in the third level

of the parallel summation algorithm onto an adjacent node in the abstracted layer is calculated as follows:

MTL3
=

1

2

14
∑

n=13

MTNn
(5.2)

The mean time for an agent transfer from a computational node in the third level to an adjacent node in
the abstracted layer is obtained as MTL3

= 0.343sec, indicated by a red axis line in figure 5.1.
This statistic is the time taken for reinstating execution after a predicted third level node failure. If other

approaches such as traditional checkpointing with human adminstration was employed, reinstating execution
would be atleast in the order of minutes. This brief comparison reveals that the intelligent based approach
is effective than traditional methods. Hence, applying autonomic computing concepts to parallel computing
systems is beneficial.

In short, though preliminary results obtained through simple experiments are presented, the intelligent
agent based approach of swarm-array computing proposed in this paper is promising and paves a path for
bridging autonomic computing concepts and parallel computing systems.

6. Discussion & Conclusion. The impact that swarm-array computing can bring about can be foreseen
by taking into account the industrial or business perspective and research perspective. From the industrial
viewpoint, achieving autonomy in parallel computing systems is productive. The path towards autonomy can
be equated to increasing reliability of geographically dispersed systems and hence reduction in total cost for
maintenance. From the research perspective, achieving mobility of swarm agents in a heterogeneous parallel
computing environment opens a new avenue to be explored. Moreover, swarm-array computing can be proposed
as a new approach for closer examination and investigation.

From an application oriented point of view, swarm-array computing can be more assuring for applications
that demand reliability. One potential application that can be influenced includes space applications. Space
crafts employ FPGAs, a special purpose parallel computing system that are subject to malfunctioning or
failures of hardware due to ‘Single Event Upsets’ (SEUs), caused by radiation on moving out of the protection
of the atmosphere [36]–[38]. One solution to over-come this problem is to employ reconfigurable FPGAs.
However, there are many overheads in using such technology and hardware reconfiguration is challenging in
space environments. In other words, replacement or servicing of hardware is an extremely limited option in
space environments. On the other hand software changes can be accomplished. In such cases, the swarm-
array computing approach can provide solutions based on agent mobility and minimize overheads in software
uploading and exclude requirement to reconfigure hardware.

In this paper, a swarm-array computing approach based on intelligent agents that act as carriers of decom-
posed tasks has been explored. Foundational concepts of a swarm-array computing approach namely intelligent
agent based approach is considered. The feasibility of the proposed approach is validated on a multi-agent sim-
ulator. Experimental results obtained from a cluster based implementation of a parallel summation algorithm
that implements concepts of intelligent agents is presented. Though only preliminary results are presented in
this paper, the approach gives ground for expectation that autonomic computing concepts can be applied to
parallel computing systems and hence open a new avenue of research in the scientific community.

Future work will aim to study the other swarm-array computing approaches considered in section 2. Efforts
will also be made towards implementing the approaches in real time on other parallel computing systems using
other existing middleware for parallel computing systems.
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