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MATCHING JOBS WITH RESOURCES: AN APPLICATION-DRIVEN APPROACH

A. CLEMATIS†, A. CORANA‡, D. D’AGOSTINO†, A. GALIZIA†, AND A. QUARATI†

Abstract. We present a distributed matchmaking methodology based on a two-level (low-level and application-level) bench-
marking, that allows the specification of both syntactic and performance requirements. In particular, we point out how the use of
application-level benchmarks gives a more accurate characterization of resources, so enabling a better exploitation of Grid power.
The proposed methodology relies on the use of standard description languages at both application and resource sides, to foster
interoperability. Moreover, the proposed tool is independent of the underlying middleware, and its distributed structure supports
scalability.
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1. Introduction. Grid platforms supply users with a very large number of different resources to execute
demanding applications. To exploit at best Grid power, efficient query and discovery tools are needed, able to
provide a good matching of user requirements with resource characteristics. Unfortunately, Grid middleware
offer only basic services for the retrieving of information about single resources, and thus they are often inad-
equate to describe more detailed and specific user requirements. So, usually, a matchmaking component (e.g.
broker, matchmaker) manages over the middleware this supply-demand coupling process [1].

Some general criteria must be followed to provide a suitable and effective Grid matchmaker: a concise but
as complete as possible description of application needs and resource properties, grounded on a common and
shared basis, to assure interoperability; the management of both syntactic and performance requirements; the
independence of the underlying middleware; a distributed structure, to allow scalability.

During past years we developed the tool GEDA (Grid Explorer for Distributed Applications), based on a
distributed approach for Grid resource discovery, which combines a structured view of resources (single machines,
homogeneous and heterogeneous clusters) at the Physical Organization (PO) level with an overlay network
connecting the various POs [2, 3]. The GEDA architecture is modular and independent of the particular Grid
middleware, although we worked with Globus Toolkit 4 [4]. The system is particularly suitable for discovering
resources for structured parallel applications on large Grids.

To enhance the efficiency of the tool we develop a methodology to improve the matchmaking process based
on information about performance of resources. Our aim is to supplement the basic information available via
the Grid Information and Monitoring services by annotating resources with both low-level and application-
specific performance metrics. These relevant aspects of resources could be examined by a broker to filter out
the solutions that best fit application requirements.

Indeed, benchmarking is a widespread method to measure and evaluate performance of computer platforms
[5]. Particularly, application-specific benchmarks are widely acknowledged tools in the High-Performance Com-
puting (HPC) domain, to measure the performance of resources stressing simultaneously several aspects of the
system. Notwithstanding, so far application benchmarks have not been extensively considered on the Grid,
owing to various problems, such as very diversified types of applications, architectural complexity, dynamic
Grid behavior, and heavy computational costs [6].

On this basis, we design GREEN (GRid Environment ENabler), a Grid service which represents an enhanced
version of GEDA, whose main improvement is the management of benchmarks for a more precise characterization
of resources. GREEN is a distributed matchmaker which complies with the above specifications, useful both
for Grid administrators and users. It assists administrators in the insertion of benchmark information related
to every PO composing the Grid, and provides users with features which a) facilitate the submission of job
execution requests, by specifying both syntactic and performance requirements on resources; b) support the
automatic discovery and selection of the most appropriate resources. The aim of GREEN is the discovery of
the resources that satisfy user requirements and their ordering by performance ranking. The selection phase is
left to a (meta)scheduler, allowing to apply the preferred scheduling policies to meet specific purposes.

An important point of our work is the use of both low-level and application-level benchmarks. Indeed, often
it can occur that the rankings of resources based on low-level and application-level benchmarks are different,
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with the second one usually closer to the effective performance obtainable by the user application. In this sense
the use of application-level benchmarks allows a better exploitation of Grid resources.

Another important design goal of GREEN is interoperability. To this end, a unique standard language,
namely JSDL (Job Submission Description Language) [7], is used to express job submission requirements, and an
internal translation to the job submission languages used by the various middleware is performed. Middleware
independence is pursued through an extension of JSDL in conformity with the GLUE (Grid Laboratory for
a Uniform Environment) schema v. 2.0 [8]. Moreover, since we are interested in the execution of parallel
applications, we borrowed from JSDL SPMD [9] some extensions to JSDL related to concurrency aspects.

This paper summarizes design principles, and provides an extended and modified version of the work [10];
main extensions regard the presentation of some experimental data on two different high performance platforms,
and some preliminary results highlighting the usefulness of the proposed approach in a Grid environment.

The paper is organized as follow. Section 2 gives a brief overview on the state of the art about matchmaking
and benchmarking on the Grid; Section 3 discusses the main contributions in the field of job and resource
characterization languages. Section 4 briefly outlines the two-level benchmarking methodology, while Section 5
reports some preliminary experimental data collected on two parallel machines enlightening the usefulness of our
approach. Section 6 gives a proof of concept of its adoption. Section 7 describes the design issues of GREEN,
and an analysis of the extensions operated to existing languages. Section 8 gives some concluding remarks.

2. Related Works. The implementation of an efficient and automatic mechanism for the effective discov-
ery of the resource that best suits a user job is one of the major problems in present Grids.

An important requirement is scalability, that is assured avoiding centralized structures; for example in [11]
the Vigne tool is proposed, whose main features are a simple abstract view of resources, an application manager
which selects resources using a resource allocator based on scalable and distributed discovery, and a decentralized
overlay network. However, the tool does not support benchmark information.

The Globus toolkit does not provide a resource matchmaking/brokering as a core service, but the GridWay
metascheduler [12, 13] was included as an optional high-level service since June 2007. GridWay provides dy-
namic scheduling, performance slowdown detection, opportunistic and on request migration, and fault recovery
mechanisms. The main drawback of GridWay is that it allows users to specify only a fixed and limited set of
resource requirements, most of them related to the queue policies of the underlying batch job systems. This
choice limits the ranking of resources, and benchmarks are not considered at all.

On the contrary, gLite has a native matchmaking/brokering service that takes into account a richer set of
requirements, including benchmark values [14]. However, this service is based on a semi-centralized approach,
and may result in long waiting time in the job execution. Moreover, at the moment only the SPEC benchmark
suite is considered, which mainly evaluates CPU performance; thus, the description of resources is partial, and
can be inadequate to specific application requirements.

Work Binder [15] is a tool developed for the gLite middleware, based on the use of pilot jobs and aimed
at assuring to incoming applications a fast access to computing resources; the tool is specifically designed to
support interactive applications and on-demand computing, and can be adapted for different middleware.

A way to improve the efficiency of resource discovery, is to drive the search towards resources that shown
good performance in the execution of jobs with similar or known behaviour. As explained in Section 3, the
characterization of Grid resources based on pre-computed benchmarks seems a valid strategy to follow. The
importance of benchmarking to evaluate resources in a Grid environment is largely acknowledged together with
the criticalities that this task implies [16]. Actually, besides the set of interesting parameters to measure (e.g.
CPU speed, memory size) different factors have to be taken into account when considering the execution of a
benchmark suite on a Grid.

Several works proposed tools to manage and execute benchmarking on Grid. The Grid Assessment Probes
[17] attempt to provide an insight into the stability, robustness, and performance of the Grid. The probes are
designed to serve as simple Grid application exemplars and diagnostic tools. They test and measure performance
of basic Grid functions, including file transfer, remote execution, and Grid Information Services (ISs) response.

The GridBench [18] is a modular tool aimed at exploring large-scale Grids in a interactive manner, taking
into account performance aspects, adding new metrics to the basic ones supplied by middleware. It provides
a graphical interface to define, execute and administrate benchmarks, also considering interconnection perfor-
mance and resource workload. GridBench makes use of plug-ins to assure interoperability with the various
middleware (currently Globus and gLite).
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The NAS Grid Benchmark (NGB) suite [19] is defined by NASA, and represents typical activities of Compu-
tational Fluid Dynamics applications. It provides a set of computationally intensive benchmarks representative
of scientific, post-processing and visualization workloads, and tests the Grid capabilities to manage and execute
distributed applications. It uses four kinds of data-flow graphs according to parallel paradigms extracted from
real applications in NASA.

All tools described above do not provide mechanisms for the submission of jobs and for their matching
with resources. A brokering mechanism based on benchmarking of Grid resources is proposed in [20]. However,
the scope of that broker is focused on the ARC middleware and the NorduGrid and SweGrid production
environments, and it adopts xRSL, an extension of RSL (Resource Specification Language), to submit user’s
jobs. As a consequence, this approach lacks in generality and interoperability.

3. Resource and Job Characterization. To accomplish the matchmaking task, a proper description of
resources is required at resource/owner and job/user side. To this end, different projects and research groups
have proposed different languages.

At the resource side, adequate information is required to advertise resource’s static (e.g. OS, number of
processors) and dynamic (e.g. number of executing tasks, amount of free memory) properties. Actually, the
main efforts in the direction of a standard resource description language come from the GLUE Working Group,
which deployed the GLUE schema [8]. It is a conceptual model of Grid entities comprising a set of information
specifications for Grid resources; an implementation through an XML Schema is given in [21]. As the schema
has evolved during years, different versions have been used by various middleware, leading to the GLUE 2.0
specification. It allows the benchmarking characterization of resources by specifying the Benchmark t complex
type referencing benchmarks of type defined by BenchmarkType t. Through the latter, declared as an open and
extensible enumeration type, it is possible to specify a benchmark amongst a list of six values (e.g. specint2000,
specfp2000, cint2006). However, other values compatible with the string type and with the recommended syntax
are allowed.

At the user side, a job submission request expressed via a Job Submission Language (JSL), in addition to
stating the application-related attributes (e.g. name and location of source code, input and output files), should
express syntactic requirements (e.g. number of processors, main memory) and ranking preferences (if any) to
guide and constraint the matching process on resources.

The Job Description Document (JDD) [22], introduced by Globus Alliance with the Web Services versions of
the Globus Toolkit, defines an XML language closer to the XMLish dialects used in the Web Services Resource
Framework (WSRF) family. The main purpose of a JDD document is to set the parameters for the correct
execution of a job. The selection of the facilities to use has to be performed in advance by interacting with the
WS MDS services of the available resources. In the JDD schema, it is possible to specify only few requirements,
as the minimum amount of memory, or to set useful information as the expected maximum amount of CPU
time. It is however possible to extend the schema with user-defined elements.

The European Data Grid Project proposed the Job Description Language (JDL), afterwards adopted by
the EGEE project [23]. A JDL document contains a flat list of argument-value pairs, specifying two classes of
job properties: job specific attributes and resources-related properties (e.g. Requirements and Ranks) used to
guide the matching process towards the most appropriate resources. These values can be arbitrary expressions
using the fields published by the resources in the MDS, and are not part of the predefined set of attributes for
the JDL, as their naming and meaning depend on the adopted Information Service schema. In this way, JDL
is independent of the resources information schema adopted.

The Job Submission Description Language (JSDL) developed by the JSDL- Working Group [7] of the
Global Grid Forum, aims to synthesize consolidated and common features available in other JSLs, obtaining
a standard language for the Grid. JSDL contains a vocabulary and normative XML Schema facilitating the
declaration of job requirements as a set of XML elements. Likewise JDL, job attributes may be grouped in two
classes. The JobIdentification, Application and DataStaging elements describe job-related properties. The
Resources element lists some of the main attributes used to constraint the selection of the feasible resources
(e.g. CPUArchitecture, FileSystem, TotalCPUTime). Since only a rather reduced set of these elements is
stated by the JSDL schema, an extension mechanism is foreseen. Examples of JSDL extensions able to capture
a more detailed description of the degree of parallelism of jobs are presented in [9, 24].

In Section 7 we present our proposal aimed at extending GLUE and JSDL with elements capable of ac-
counting for the association of benchmarks data at both user and resource sides.
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4. A Two-Level Benchmarking Methodology. To describe Grid resources, we propose a two-level
methodology aimed at giving a useful enriched description of resources, and at facilitating the matchmaking
process. Our methodology considers two approaches: I) the use of micro-benchmarks to supply a basic de-
scription of resource performance; II) the deployment of application-driven benchmarks to get a closer insight
into the behavior of resources under more realistic conditions of a class of applications. Application-driven
benchmarks can consist of:

a) the application itself, often in a light version obtained choosing a reference input data set and spe-
cific parameters to avoid long executions, obtaining in the meantime a representative run of the real
application;

b) a suitable benchmark or benchmark suite belonging to the same class of the application of interest (e.g.
the LINPACK benchmark for the class of linear algebra applications).

Through application-driven benchmarks, it is possible to add an evaluation of the resources on the basis of the
system indicators that are more stressed by an application. Our present aim is to provide a proper description
of each Grid resource in isolation, i. e. without considering complexity aspects of Grid environments. Future
developments of our work foreseen to address more complex scenarios.

4.1. Micro-Benchmarks. In order to supply a basic resource characterization, mainly based on low-
level performance capacity, we consider the use of traditional micro-benchmarks. To this aim, a reasonable
assumption is that the performance of a machine mainly depends on the CPU, the memory and the cache, and
on the interconnection network [25]; therefore, we choose a concise number of parameters to evaluate in order to
provide an easy-to-use description of the various nodes. Table 4.1 shows resource properties and related metrics
measured by the micro-benchmarks we employed.

Table 4.1
Low-level benchmarks and related metrics.

Resource Capability CPU Memory Memory-Cache Interconnection I/O

Metric MFLOPS MB/sec MB/sec MB/sec MB/sec

Benchmark Flops Stream CacheBench Mpptest Bonnie

Flops provides an estimate of peak floating-point performance (MFLOPS); Stream is the standard bench-
mark for measuring sustained memory bandwidth, as it works with datasets much larger than the available
cache; CacheBench is designed to characterize the performance of possibly multiple levels of cache present on
the processor; Mpptest measures the performance of some basic MPI communication routines; Bonnie performs
a series of tests on a file of known size (default 100 MB).

The micro-benchmarks used in this phase generally return more than one value; so, to obtain results
easily usable in the matchmaking process, we considered for each benchmark synthetic parameters or the most
significant value. They are used to characterize resources by populating the benchmark description managed
by GREEN.

4.2. Application-Specific Benchmarks. Micro benchmarks are a good solution when the user has little
information about the job she/he is submitting, and for applications that are not frequently executed. Indeed,
very often the participants to a Virtual Organization have similar aims, and therefore it is possible to identify a
set of the most used applications. In these cases the most suitable approach is to evaluate system performance
through application-specific benchmarks that approximate at best the real application workload. This kind of
benchmarks represent the second level of our methodology.

As case studies for this level we considered some applications of our interest, i. e. image processing, isosurface
extraction, and linear algebra. For the first two classes of applications, we choose a light version code aiming to
emphasize precise aspects of the considered metrics. With respect to image processing, we selected a compute
intensive elaboration applied to a reference image of about 1 MB; in this way CPU metrics are mainly stressed.
The isosurface extraction application provides a more exhaustive performance evaluation of the system, as also
I/O operations are heavily involved. In this case, we considered the processing of a small 3D data set of 16 MB,
producing a mesh made by 4 million triangles. On the contrary, to represent the class of applications based on
linear algebra, we used the well known Linpack benchmark [26]. For application-driven benchmarks, the metric
considered to characterize resources is execution time. Similarly to the micro-benchmarks case, the results are
stored in the internal data structures of GREEN.



Matching Jobs With Resources 113

5. Benchmarking resources. To evaluate the effectiveness of our methodology in resource characteriza-
tion, we performed some experiments on several resources normally used to deploy and execute our applications.
For sake of simplicity, here we focus on two specific high-performance resources: 1) the Michelangelo system,

Fig. 5.1. Comparison between resources according to FLOPS benchmark.

made up of 53 nodes interconnected by a Gigabit switched Ethernet. As a whole, the system provides 212
AMD Opteron 275 dual core with a clock rate of 2.2 GHz. Each CPU is equipped with 2 GB RAM, and the
total shared storage amounts to 30 TB [27]. 2) the SiCortex SC1458 system with 243 SiCortex node chips,
each equipped with six cores, and linked by a proprietary interconnection network supporting a large message
bandwidth of 4 GBytes/sec. This system pursues the Green Computing guidelines, through extremely low
energy consumption [28].

By a quick comparison clearly emerges that the two resources greatly differ both in terms of the total
number of CPUs and in terms of single CPU performance. In fact, SC1458 has a greater number of CPUs than
the Michelangelo cluster, but the latter has faster CPUs. Despite these technical differences from which one
may infer consequent performance results, this expectation is contradicted by our experiments as shown by the
following discussion.

Fig. 5.2. Comparison between resources according to STREAM benchmark.

Starting from micro-benchmark results, the SC1458 achieves better performance in almost all cases and
parameters evaluated, when considering aggregate computing power. However, its single cores have relatively
low performance compared with the single CPU of the Michelangelo cluster, and the actual power of the resource
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derives from the high number of provided cores and the native fast connection among processes. To outline CPU
performance we depicted in Figures 5.1 and 5.2 the results obtained with FLOPS and STREAM benchmarks.

Fig. 5.3. Comparison between resources according to CacheBench.

Both benchmarks have been run on a CPU/core independently, and then the aggregated results are gathered
to represent the performance of the whole parallel resources [16].

With respect to the cache evaluation, Figure 5.3 shows that Michelangelo performs better for all vector
lengths. On the contrary, with respect to interconnection evaluation, the SC1458 achieved definitely better
performance, as reported in Figure 5.4. We tested point-to-point communication performance, through the
MPPTest benchmark; results are expressed in MB/Sec. As mentioned above, the Michelangelo Cluster employs
a Gigabit switched Ethernet, while SC1458 has a proprietary interconnection network that performs significantly
better.

Fig. 5.4. Comparison between resources according to MPPTest benchmark.

Considering the second level of benchmark, the situation is quite different. In fact, depending on the
application domain, best results are achieved alternatively by the two resources.

We conducted our tests considering the execution times (Wall Clock Time) as metric to evaluate perfor-
mance. The results are normalized according to a base value; to this end, we adopted the values returned
from the Michelangelo cluster. Tables 5.1 and 5.2 report the values obtained for Image Processing (IP), Iso-
surface Extraction (IE) and High-Performance Linpack (HPL) benchmarks. In the latter case, we examined
separately the use of different sets of processors (32, 64 and 128 for both). Due to the chosen metric, lower
values correspond to better execution times.
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Table 5.1
Application-level benchmarks, execution time normalized with respect to Michelangelo.

Michelangelo SC1458

Isosurface Extraction 1 6.1

Image Processing 1 3.2

Table 5.2
Application-level benchmarks, execution time normalized with respect to Michelangelo.

Michelangelo SC1458

32p 64p 128p 32p 64p 128p

HPL 1 0.3 0.2 0.44 0.13 0.08

Table 5.1 shows that Michelangelo cluster performed significantly better considering the Image Process-
ing and the Isosurface Extraction applications. Instead, Table 5.2 reporting the results related to the HPL
benchmark highlights that SC1458 outperforms Michelangelo up to a factor 3, when increasing the number
of processes. This behaviour depends on the different requirements of the various applications. As to Image
Processing and Isosurface Extraction resulted that they benefit from fast single CPU and cache memory, while
HPL tests the entire system and benefits from high number of processes linked with fast connections. Starting
from these remarks, it is quite evident that the Michelangelo cluster is faster in the execution of IP and IE,
while it poorly performs with respect to HPL. On the contrary, with respect to HPL, SC1458 outdoes the
Michelangelo Cluster, but it does not achieve good results on the considered image processing operations and
isosurface extraction.

Following our methodology, the differences in the performance of both resources in each level of benchmark
clearly emerge. SC1458 definitely outperforms Michelangelo with respect to almost all micro-benchmarks.
However, considering the second level of benchmark, the Michelangelo cluster appears as the suitable choice for
the execution of specific applications. This performance divergence also occurred in other similar comparisons
we conducted for the other benchmarks executed against the resources normally used to deploy and execute our
applications. This behaviour testifies the appropriateness of our approach.

6. A proof of concept. To exemplify the potentialities of our methodology, we introduce a simplified
evaluation that highlights the benefits of adopting a benchmark aware matchmaker. Let us consider a simplified
Grid scenario setting three jobs (J1, J2 and J3) belonging to the Image Processing and Linear Algebra classes,
that are executed against SC1458 and Michelangelo, denoted R1 and R2 respectively.

Table 6.1 reports the relative spped of resources R1 and R2 with respect to the two classes of applications.
As shown in the previous Section, Michelangelo performs three times better than SC1458 for Image Processing
applications, while it is about two times slower than SC1458 for Linear Algebra applications.

Table 6.1
Relative speed of resources with respect to the applications.

Applications R1 R2

Image Processing 3 1

Linear Algebra 0.43 1

Table 6.2 lists the jobs. In particular, J1 and J3 are two Image Processing jobs, and J3 is computationally
heavier since it processes a larger image. J2 is a Linear Algebra job. For each job the computational time
required on the two resources is reported, expressed in seconds; the first column also shows the temporal instant
at which the job is submitted.

In Figure 6.1-(a) we depicted the case in which our benchmark-driven methodology does not apply, no
matchmaker operates and jobs are scheduled on the first available resource in a FIFO order. In this case, when
J1 arrives at time 0, it is mapped to R1 which employs 60 seconds to process it. At time 10, J2 arrives and is
mapped to R2, which executes it in 80 seconds. When J3 arrives at time 20 no resources are available, hence
J3 is queued until one is released. This happens at time 60, when J1 terminates and J3 is assigned to R1 which
takes 120 seconds to run it, ending at time 180.



116 A. Clematis, A. Corana, D. D’Agostino, A. Galizia and A. Quarati

Table 6.2
Job characteristics.

Job Comp. Time on R1 (sec) Comp. Time on R2 (sec) Application

J1(0) 60 20 Image Processing

J2(10) 35 80 Linear Algebra

J3(20) 120 40 Image Processing

Let us now consider the case in which our methodology is applied and benchmark information is used to
describe resources, see Figure 6.1-(b). Now the matchmaker is at work and, when asked for a suitable resource
to execute the Image Processing job J1, it returns R2, since it ranks better than R1 on that job class. Running
three times faster, R2 employs just 20 seconds to execute J1. When J2 arrives at time 10, R1 is selected and
it takes about 35 seconds to complete the Linear Algebra job. Finally, J3 arrives and it is assigned to R2 that
in the meantime becomes free, and the job ends after 40 seconds. The overall computation in this case ends at
time 60.

Fig. 6.1. (a) scheduling of three jobs without any matchmaker, (b) improvement of execution times when a benchmark-driven
matchmaker is applied.

From our example it clearly emerges that the use of benchmark information could be adopted to improve
scheduling strategy, raising the performance of the overall execution.

7. Benchmark-Driven Matchmaking. Due to the huge gap separating users and resources, tools that
allow the two parts to better come to an agreement are highly useful. In [2, 3] we presented GEDA, a Grid
service based on a distributed and cooperative approach for Grid resource discovery. It supplies users with a
structured view of resources (single machines, homogeneous and heterogeneous clusters) at the PO level, and
leverages on an overlay network infrastructure which connects the various POs constituting a Grid. For each
PO, a GEDA instance is deployed to keep updated information about the state of all PO’s resources, and to
exchange them with other GEDA instances in the discovery phase.

In the present work, we describe an advanced version of GEDA, called GREEN, able to characterize Grid
resources through benchmark evaluations. In this context, acting as a distributed matchmaker, GREEN man-
ages and compares the enriched view of resources with user-submitted jobs, with the goal of selecting the most
appropriate resource(s). Operating at intermediate level between applications (e.g. schedulers) and Grid mid-
dleware, GREEN aims to discover the whole set of resources satisfying user requirements ordered by ranks.
The selection of a particular resource is left to a (meta)scheduler to which the resources set is forwarded; so
it is possible to apply the preferred scheduling policies to optimize Grid throughput or other target functions
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(e.g. response times, QoS). Once the “best” resource is chosen, GREEN will be re- invoked to carry-out the
submission of the job on it, via the Execution Environment (EE).

7.1. Benchmarking Grid Resources. GREEN supplies Grid administrators with the facility of submit-
ting, executing benchmarks (both micro and application-related) against the resources belonging to a certain
administrative domain (PO), and storing results.

To reflect the underlying view of Grid resources offered by the GLUE 2.0 specification language, and to
support the matching mechanism (i. e. the comparison with resources information contained in the previously
acquired XML) the benchmark-value copies are directly represented as GLUE entities according to the XML
reference realizations of GLUE 2.0. By employing the openness of BenchmarkType t (as recalled in Section 3),
the set of recognized benchmarks is extensible without any change in the document schema. An example of a
benchmark document related to the execution of micro-benchmark Flops against the cluster identified by the
IP 150.145.8.160, resulting in 480 MFlops is:
<Benchmark>

<LocalID>150.145.8.160</LocalID>

<Type>MFlops</Type>

<Value>480</Value>

<BenchLevel>micro</BenchLevel>

</Benchmark>

Through the use of the extension mechanism defined in GLUE specification, we enriched the Benchmark t

type by adding the element BenchLevel which specifies the benchmark level (by accepting the two string values
micro and application) according to our two-level methodology.

Once a benchmark is executed and its results collected, an XML fragment, similar to the one reported
above, is created for each resource and inserted in an XML document (namely Benchmark image), managed by
GREEN, which collects all benchmark evaluations for the PO.

7.2. Extending JSDL. The counterpart of benchmarking resources is the ability for users submitting a
job to express their preferences about the performance of target machines. Resources are then ordered according
to performance values (ranks). As explained in Section 3, both JDD and JSDL do not provide any construct
able to express some preferential ordering on selected resources. We add the element Rank (of complex type
Rank Type) devoted to this task, which embeds a sub-element BenchmarkType t corresponding to the one
contained in our extension of the GLUE schema. In the context of JSDL, the Value sub-element (see list below)
is to be intended as a threshold to be satisfied by the corresponding Value (related to the benchmark stated by
Type) contained in the Benchmark element of any resource to be selected by the matchmaker before the ranking
takes place.

As we are interested in the execution of parallel applications, we borrowed from SPMD [9] an extension
to JSDL that supports users with a rich description set of applications and resources related to concurrency
aspects (e.g. number of processes, processes per host). The following is an example of an extended JSDL
document, containing information related to parallel requirements, along with our extension to rank resources
on benchmark specification. The document is requesting for nodes able to execute the application-level “Iso-
Surface Benchmark” in no more than 300 time units. Note how the Rank element has been located inside the
Resource one, according to the extension mechanism included by JSDL schema.
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:JobDefinition

xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl/2005/11/jsdl-posix"

xmlns:jsdl-spmd="http://schemas.ogf.org/jsdl/2007/02/jsdl-spmd"

xmlns:jsdl-

rank="http://saturno.ima.ge.cnr.it/ima/PONG/jsdl/2009/01/jsdl-rank">

<jsdl:JobDescription>

<jsdl:Application>

<jsdl:ApplicationName>ParIsoExtrctn</jsdl:ApplicationName>

<jsdl-spmd:SPMDApplication>

<jsdl-posix:Executable>parisoextraction</posix:Executable>
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<jsdl-posix:Argument> inputvolume.raw</posix:Argument>

<jsdl-posix:Argument>200</posix:Argument>

<jsdl-posix:Output>isosurface.raw</posix:Output>

<jsdl-spmd:NumberOfProcesses>4</spmd:NumberOfProcesses>

<jsdl-spmd:ProcessesPerHost>2</spmd:ProcessesPerHost>

<jsdl-spmd:SPMDVariation>http://www.ogf.org/jsdl/2007/02/

jsdl-spmd/MPICH2</>

</jsdl-spmd:SPMDApplication>

</jsdl:Application>

<jsdl:Resources>

<jsdl:OperatingSystemType>

<jsdl:OperatingSystemName>LINUX</jsdl:OperatingSystemName>

</jsdl:OperatingSystemType>

<jsdl-rank:Rank>

<jsdl-rank:Type>IsoSurface_Benchmark</rank:Type>

<jsdl-rank:Value>300</rank:Value>

<jsdl-rank:BenchLevel>application</rank:BenchLevel>

</jsdl-rank:Rank>

</jsdl:Resources>

</jsdl:JobDescription>

</jsdl:JobDefinition>

7.3. Distributed Matchmaking Process. The main components of a GREEN instance along with some
of their interactions with other middleware services, notably IS and EE, by considering a Grid composed of
several POs are shown in Figure 7.1. In the following, we summarise their roles and the behaviours.

Fig. 7.1. Example of the matching phase with various GREEN instances.

The Job Submission (JS) component receives requests of jobs submission initiated by users; depending on
the activation mode it behaves just like a messages dispatcher or as a translator of JSL documents, carrying
out their subsequent submission to the EE. The Benchmark Evaluation (BE) supports administrators in the
performance-based characterization of PO resources. The Resource Discovery (RD) is in charge of feeding
GREEN with the state of Grid resources. RD operates both locally and globally by carrying out two tasks:
1) to discover the state of the PO resources; 2) to dispatch requests to other GREEN instances. As to the
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first task, RD dialogues with the underlying IS (e.g. MDS, gLite IS) that periodically reports the state of the
PO in the form of an XML file conformed to the GLUE version adopted by the underlying middleware. This
document (namely the PO snapshot) is stored, as it is, and managed by GREEN to answer to external queries
issued by various clients (e.g. other GREEN instances, meta-schedulers). To accomplish the dispatching task,
RD handles the so-called neighbors view. Depending on the number of POs, i. e. GREEN instances running,
their management could consider different strategies, whose description is beyond the scope of the paper.

To deal with different underlying middleware transparently to Grid users and applications, the syntactic
differences among the various versions of GLUE are managed by GREEN through a conversion mapping at
matching time. The Matchmaker performs the matching among resources in the Grid, and their subsequent
ranking, with the requirements expressed by the users through the application submission document.

More in detail, let us consider the case in which a user submits an extended JSDL document through a
Grid portal (1). The document is managed by the Resource Selector component, which initiates the distributed
matchmaking by forwarding it to the JS component of a randomly selected GREEN instance (2) (e.g. PO2).
JS activates the Matchmaker (3). This instance of matchmaker, namely the Master Matchmaker (MM), is
responsible to provide the set of candidate resources to the Resource selector for this specific request. MM
through RD forwards the document to all the other known GREEN instances and contemporaneously checks its
local memory (4-5). All the matchmakers filter their PO snapshot selecting the set of PO resources satisfying
the query. By analyzing the pre-computed Benchmark image, the satisfying resources with a Value element
(for the chosen benchmark) that fulfils the threshold fixed in the corresponding Rank element of the JSDL
document are extracted. The resources identifiers and their corresponding benchmark values are included in a
list, called PO list which is returned to MM (6-10). MM merges these lists with its own PO list, producing a
Global List ordered on the ranking values. The Global list is passed to JS (11) which returns it back to RS (12).
Besides applying the selection policy to determine the resource to use, the Resource Selector calls the JS of the
GREEN responsible of the PO owning the selected machine (GREEN PO1’s instance in our case), by sending
it the extended JSDL document along with the data identifying the selected resource (13). JS translates the
information regarding the job execution of the original JSDL document in the format proper of the specific
PO middleware, stating the resource on which the computation takes place. In particular, it will produce a
JDD document for GT4 resources or a JDL document for the gLite ones. Finally, it activates the Execution
Environment in charge of executing the job represented in the translated document (14).

8. Conclusions. The efficient matchmaking of application requirements with characteristics of resources
is a very important issue in Grid computing, and developing a satisfactory solution may greatly improve the
usefulness of Grid platforms for a large class of potential applications. However this is not an easy task, owing
to the high abstraction level of Grid platforms which causes a semantic gap between application requirements
and resource properties, the large number of possible Grid applications, the large number of available resources,
the dynamicity of the Grid environment.

To reduce this gap we designed GREEN, a distributed matchmaker which provides Grid users with features
to make easier the submission of job execution requests containing performance requirements, in order to
support the automatic discovery and selection of the most suitable resource(s). GREEN relies on a two-level
benchmarking methodology: resources are characterized by means of their performance evaluated through the
execution of low-level and application-specific benchmarks. According to our methodology, every resource of a
PO is tagged with the results obtained through the execution of the two levels of benchmarks and hence it is
selectable, on a performance basis, during the matchmaking phase. A preliminary analysis outlined promising
results; thus future efforts are planned in the direction of a deeper evaluation of our proposal in the context of
a simulated Grid environment with particular emphasis on scheduling policies.

To ensure a good degree of independence from the underlying middleware, GREEN leverages on two stan-
dards such as JSDL and GLUE, that have been properly extended to manage the performance-based description
of resources.
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