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ULTRA-FAST CARRIER TRANSPORT SIMULATION ON THE GRID.
QUASI-RANDOM APPROACH.∗

EMANOUIL ATANASSOV†, TODOR GUROV†, AND ANETA KARAIVANOVA†

Abstract. The problem for simulation ultra-fast carrier transport in nano-electronics devices is a large scale computational
problem and requires HPC and/or Grid computing resources. The most widely used techniques for modeling this carrier transport
are Monte Carlo methods.

In this work we consider a set of stochastic algorithms for solving quantum kinetic equations describing quantum effects
during the femtosecond relaxation process due to electron-phonon interaction in one-band semiconductors or quantum wires. The
algorithms are integrated in a Grid-enabled package named Stochas-tic ALgorithms for Ultra-fast Transport in sEmiconductors
(SALUTE).

There are two main reasons for running this package on the computational Grid: (i) quantum problems are very computationally
intensive; (ii) the inherently parallel nature of Monte Carlo applications makes efficient use of Grid resources. Grid (distributed)
Monte Carlo applications require that the underlying random number streams in each subtask are independent in a statistical sense.
The efficient application of quasi-Monte Carlo algorithms entails additional difficulties due to the possibility of job failures and the
inhomogeneous nature of the Grid resource. In this paper we study the quasi-random approach in SALUTE and the performance
of the corresponding algorithms on the grid, using the scrambled Halton, Sobol and Niederreiter sequences. A large number of
tests have been performed on the EGEE and SEEGRID grid infrastructures using specially developed grid implementation scheme.
Novel results for energy and density distribution, obtained in the inhomogeneous case with applied electric field are presented.

Key words: ultra-fast carrier transport, Monte Carlo methods, quasi-Monte Carlo, scrambled Halton, Sobol and Niederreiter
sequences, grid computing

1. Introduction. The Monte Carlo Methods for quantum transport in semiconductors and semiconductor
devices have been actively developed during the last two decades [3, 10, 16, 20, 24]. These Monte Carlo
calculations need large amount of computational power and the reason is as follows: If temporal or spatial
scales become short, the evolution of the semiconductor carriers cannot be described in terms of the Boltzmann
transport and therefore a quantum description is needed. Let us note that in contrast to the semiclassical
transport when the kernel is positive, the kernel in quantum transport can have negative values. The arising
problem, sometimes referred to as the “negative sign problem,” leads to additional computational efforts for
obtaining the desired solution. That is why the quantum problems are very computationally intensive and
require parallel and Grid implementations.

Quasi-Monte Carlo (QMC) simulation, using deterministic sequences that are more uniform than random
ones, holds out the promise of much greater accuracy, close to O(N−1) [23] in optimal cases. While these
sequences (called low discrepancy sequences or quasirandom sequences) do improve the convergence of applica-
tions like numerical integration, it is difficult to apply them for Markov chain based problems due to correlations.
These difficulties can be overcame by reordering, hybrid algorithms or randomization techniques. Successful
examples can be found in [13, 14, 15, 17, 19] and many other papers.

In this paper we present quasirandom approach for ultrafast carrier transport simulation. Due to cor-
relation, the direct quasirandom variants of Monte Carlo methods do not give adequate results. Instead
of them, we propose hybrid algorithms with pseudorandom numbers and scrambled quasirandom sequences.
We use scrambled modified Halton [2], scrambled Sobol [1] and scrambled Niederreiter (the scrambling al-
gorithm is similar to described in [1]). In this paper we present also the developed grid implementation
scheme which uses not only the computational capacity of the grid but also the available grid services in a
very efficient way. With this scheme we were able to obtain new estimates about important physical quanti-
ties.

This paper is an extended version of [5], presented at the the international conference Parallel Processing

and Applied Mathematics (PPAM09), held in September 2009 in Poland. Here we have added more details
about the quasirandom approach for problems of considered kind (including our algorithm for generating Sobol
and Niederreiter sequences). We also have updated the Grid implementation description; the numerical tests
are obtained using the most recent Grid middleware and services.
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The paper is organized as follows: Section 2 describes very briefly the problem and the Monte Carlo
algorithms, section 3 presents the quasirandom sequences and hybrid algorithms, section 4 describes the grid
implementation scheme, section 4 contains the new estimates and performance analysis.

2. Background (Brief description of SALUTE). The first version of SALUTE was designed at IPP-
BAS in 2005 as a set of Monte Carlo algorithms for simulation of ultra-fast carrier transport in semiconductors
together with simple Grid implementation, [3, 4]. Later on, we extended the the area of application (quantum
wires), the algorithms (more complicated equations to be solved) and the implementation scheme. In this
paper we present the quasirandom approach in SALUTE and discuss the new results. The physical model
describes a femtosecond relaxation process of optically excited electrons which interact with phonons in one-
band semiconductor, [21]. The interaction with phonons is switched on after a laser pulse creates an initial
electron distribution. Experimentally, such processes can be investigated by using ultra-fast spectroscopy, where
the relaxation of electrons is explored during the first hundred femtoseconds after the optical excitation. In
our model we consider a low-density regime, where the interaction with phonons dominates the carrier-carrier
interaction. Two cases are studied using SALUTE: electron evolution in presence and in absence of electric
field.

As a mathematical model we consider Wigner equation for the nanometer and femtosecond transport
regime. In the homogeneous case we solve a version of the Wigner equation called Levinson (with finite
lifetime evolution), [18], or Barker-Ferry equation (with infinite lifetime evolution), [6]. Another formulation
of the Wigner equation considers inhomogeneous case when the electron evolution depends on the energy and
space coordinates. The problem is relevant e.g. for description of the ultra-fast dynamics of confined carriers.
Particularly we consider a quantum wire, where the carriers are confined in the plane normal to the wire by
infinite potentials. The initial condition is assumed both in energy and space coordinates.

The numerical results that we present in this paper are for the inhomogeneous case with applied electric field
(see figures in the Numerical tests section). We recall the integral form of the quantum-kinetic equation, [22]:
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Here, fw(z, kz, t) is the Wigner function described in the 2D phase space of the carrier wave vector kz and the
position z, and t is the evolution time.

F = eE/~, where E is a homogeneous electric field along the direction of the wire z, e being the electron
charge and ~—the Plank’s constant.

nq′ = 1/(exp(~ωq′/KT )− 1) is the Bose function, where K is the Boltzmann constant and T is the temper-
ature of the crystal, corresponds to an equilibrium distributed phonon bath.

~ωq′ is the phonon energy which generally depends on q′ = q′
⊥+q′z = q′

⊥+(kz−k
′
z), and ε(kz) = (~2k2z)/2m

is the electron energy.

F is obtained from the Fröhlich electron-phonon coupling by recalling the factor i~ in the interaction
Hamiltonian, Part I:
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where (ε∞) and (εs) are the optical and static dielectric constants. The shape of the wire affects the electron-
phonon coupling through the factor

G(q′
⊥) =

∫

dr⊥e
iq′

⊥
r⊥ |Ψ(r⊥)|

2 ,

where Ψ is the ground state of the electron system in the plane normal to the wire.
In terms of numerical solution the problem consists of determining different quantities of interest by

evaluating linear functional of the following type:

J(fw) = h(x)fw(x)dx = (h, fw), (2.2)

The given function h(x) depends on the choice of the physical quantities. In our quantum model, we are
interested from the following physical quantities:

1. Wigner function for fixed evolution times;
2. The wave vector;
3. Electron density distributions;
4. The energy density.

In the inhomogeneous case the wave vector (and respectively the energy) and the density distributions are
given by the integrals

f(kz, t) =

∫

dz

2π
fw(z, kz, t); n(z, t) =

∫

dkz
2π

fw(z, kz, t). (2.3)

Our aim is to estimate these quantities (2.3), as well as the Wigner function (2.1) by quasi-MC approach.
At present, SALUTE numerical experiments use GaAs material parameters. In one of the next version

of the SALUTE application, we will provide results for other types of semiconductors like Si or for composite
materials.

Detailed description of MCMs for this problem can be found in [3, 12, 16]. Let us mention that MCMs have
the advantage that MCMs estimate directly the necessary quantities, i. e. without calculating the solution of
the Wigner function in the whole domain. The serious problem with MCMs is the large variance of the random
variable which is proportional to the exp(T 2) where T is the evolution time. As the physicists are interested
in the quantum effects for large evolution time, the problem becomes computationally very intensive—we have
to perform billions of trajectories in order to obtain reasonable results. This was our motivation for applying
quasirandom approach and using computational grid.

3. Quasirandom approach in SALUTE. Quasi-Monte Carlo methods and algorithms proved to be
efficient in many areas ranging from physics to economy. We have applied quasirandom approach for studying
quantum effects during ultra-fast carrier transport in semiconductors and quantum wires in order to reduce the
error and to speedup the computations. Next, we have used scrambled sequences for two main reasons: (i) the
problem is very complicated (the use of scrambling corrects the correlation problem found when we have used
a purely quasi-Monte Carlo algorithm), and, (ii) the Grid implementation which needs parallel streams.

The computational Grid (or, shortly, the Grid) proved to be very efficient computing model. The Grid
goes well beyond simple communication between computers and aims ultimately to turn the global network of
computers into one vast computational resource. Using the Grid is especially useful for Monte Carlo applications
as there the amount of similar calculations that has to be done is huge. Technically Grid coordinates resources
which are not a subject to central administrative control and utilizes general-purpose protocols. Another
distinction is that a Grid could in principle have access to parallel computers, clusters, farms, local Grids, even
Internet computing solutions, and would choose the appropriate tool for a given calculation. In this sense, the
Grid is the most generalized form of distributed computing. One major advantage of Monte Carlo methods is
that they are usually very easy to be parallelized. This is, in principal, also true of quasi-Monte Carlo methods.
However, the successful parallel implementation of a quasi-Monte Carlo application depends crucially on various
quality aspects of the parallel quasirandom sequences used [8, 9]. Much of the recent work on parallelizing quasi-
Monte Carlo methods has been aimed at splitting a quasirandom sequence into many subsequences which are
then used independently on the various parallel processes, for example in [1, 2, 7]. This method works well for
the parallelization of pseudorandom numbers, but due to the nature of quality in quasirandom numbers, this
technique has some difficulties. Our algorithms are based on scrambling (suitable for heterogeneous computing
environments).
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3.1. Quasirandom sequences. We use scrambled Halton, Sobol and Niederreiter sequences.

Halton sequence. We use the modified Halton sequences introduced in [2] for which the discrepancy has
a very small leading term. His construction is based on the existence of some numbers, called “admissible”.
Here we recall the definitions of admissible numbers and modified Halton sequence.
Definition 1. Let p1, . . . , ps be distinct primes. The integers k1, . . . , ks are called admissible for them, if

pi ∤ ki and for each set of integers m1, . . . ,ms, pi ∤ mi, there exists a set of integers α1, . . . , αs, satisfying the

congruences

ki
αi

∏

1≤j≤n, j 6=i

pj
αj ≡ mi(mod pi), i = 1, . . . , s.

Definition 2. Let p1, . . . , ps be distinct primes, and the integers k1, . . . ks are admissible for them. The mod-

ified Halton sequence σ(p1, . . . , ps; k1, . . . , ks) = {(xn
(1), . . . , xn

(s))}n = {0,∞} is constructed by setting each

sequence {xn
(i)}n=0

∞
to be a generalized Van der Corput - Halton sequence in base pi, with the sequence of

permutations τj
(i)(t) to be the reminder of tki

j modulo pi, τj
(i)(t) ∈ {0, . . . , pi − 1}.

Determining “admissible” generation of modified Halton sequence can be found in [2]. In the experiments
described in this paper we use the following scrambling: We change the formulas for the permutations as

τj
(i)(t) ≡ tki

(j+1) + bj
(i)(mod pi),

where the integers bj
(i) are chosen independently in the interval [0, pi − 1]. The scrambled sequence has the

same estimate for its discrepancy as if for any integers m1, . . . ,ms the congruences

ki
αi

∏

1≤j≤n, j 6=i

pj
αj ≡ mi(mod pi), i = 1, . . . , s (3.1)

have a solution, then the same is true for the congruences

ki
αi+1

∏

1≤j≤n, j 6=i

pj
αj + bj ≡ mi(mod pi), i = 1, . . . , s. (3.2)

The chosen algorithm is very fast, requires a small amount of memory and generates the terms of sequences
with maximal error less that 10−14 when 106 terms are generated. It shows superior results compared to other
Halton generators.

Niederreiter and Sobol sequences. We use the Definition 3 (below), which covers most digital (t,m, s)-
nets in base 2. The Sobol sequence is a (t, s)-sequence in base 2 and is a particular case of this definition.

Definition 3. Let A1, . . . , As be infinite matrices Ak = {a
(k)
ij }, i, j = 0, 1, . . . , with a

(k)
ij ∈ {0, 1}, such that

a
(k)
ii = 1 for all i and k, a

(k)
ij = 0 if i < j. The τ (1), . . . , τ (s) are sequences of permutations of the set {0, 1}.

Each non-negative integer n may be represented in the binary number system as

n =
r

∑

j−0

bi2
i.

Then the nth term of the low-discrepancy sequence σ is defined by

x(k)n =

r
∑

j=0

2−j−1τ
(k)
j (⊕j

i=0bia
(k)
ij ),

where by ⊕ we denote the operation of bit-wise addition modulo 2.

Next lemma explains how we generate consecutive terms of the sequence.
Lemma. Let σ be a sequence or net satisfying Definition 3, and let the non-negative integers n, p,m be given.

Suppose that we desire the first p binary digits of elements in σ with indices of the form 2mj + n < 2p; this
implicitly defines a set of compatible j′s. Thus the only numbers we need to compute are

y
(k)
j = ⌊2px

(k)
2mj+n⌋.
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The integers {v
(k)
r }∞r=0, which we call ”twisted direction numbers”, are defined by

v(k)r =

p−1
∑

t=0

2p−1−t ⊕p−1
j=m a

(k)
tj .

Suppose that the largest power-of-two that divides 2m(j + 1) + n is l, i. e. 2m(j + 1) + n = 2i(2K + 1). Then

the following equality holds

y
(k)
j+1 = y

(k)
j ⊕ v

(k)
i .

To obtain the results presented in this paper we have used the scrambled Sobol and Niederreiter sequences.
The algorithm for generating scrambled Sobol sequence is described in [1]. We have modified this algorithm
for generating scrambled Niederreiter sequence. We have to note that not all optimizations for Sobol sequence
can be applied for Niederreiter (due to the structure of metrices A′s. This algorithm allows consecutive terms
of the scrambled sequence to be obtained with essentially only two operations per coordinate: one floating
point addition and one bit-wise xor operation (this omits operations that are needed only once per tuple).
This scrambling is achieved at no additional computational cost over that of unscrambled generation as it
is accomplished totally in the initialization. In addition, the terms of the sequence are obtained in their
normal order, without the usual permutation introduced by Gray code ordering used to minimize the cost of
computing the next Sobol element. This algorithm is relatively simple and very suitable for parallel and grid
implementation.

The mathematical explanations can be found in [1], here we present the algorithm in pseudo code.
• Input initial data:

– if the precision is single, set the number of bits b to 32, and the maximal power of two p to 23,
otherwise set b to 64 and p to 52;

– dimension s;
– direction vectors {aij}, i = 0, p, j = 1, . . . , s representing the matrices A1, . . . , Ad (always aij <

2i+1);
– scrambling terms d1, . . . , ds - arbitrary integers less than 2p, if all of them are equal to zero, then

no scrambling is used;
– index of the first term to be generated - n;
– scaling factor m, so the program should generate elements with indices 2mj + n, j = 0, 1, . . ..

• Allocate memory for s⋆l b-bit integers (or floating point numbers in the respective precision) y1, . . . , ys..
• Preprocessing: calculate the twisted direction numbers vij , i = 0, . . . , p− 1, j = 0, . . . , s:

– for all j from 1 to s do
– for i = 0 to p− 1 do
– if i = 0, then vij = aij2

p−m, else vij = vi−1jxor(ai+m,j ⋆ (2
p−i−m));

• Calculate the coordinates of the n-th term of the Sobol sequence (with the scrambling applied) using
any known algorithm (this operation is performed only once). Add +1 to all of them and store the
results as floating point numbers in the respective precision in the array y.

• Set the counter N to the integer part of n
2m .

• Generate the next point of the sequence:
– When a new point is required, the user supplies a buffer x with enough space to hold the result.
– The array y is considered as holding floating point numbers in the respective precision, and the

result of subtracting 1. from all of them is placed in the array x.
– Add 1 to the counter N ;
– Determine the first nonzero binary digit k of N so that N = (2M + 1)2k (on the average this is

achieved in 2 iterations);
– Consider the array y as an array of b-bit integers and updated it by using the kth row of twisted

direction numbers:
for i = 1 to d do
yi = yixorvki.

– Return the control to the user. When a new point is needed, go to beginning of this paragraph
(Generate the next point of the sequence).



142 Emanouil Atanassov, Todor Gurov and Aneta Karaivanova

Parallelization. There are three basic ways to parallelize quasirandom number sequences:
• Leap-frog - The sequence is partitioned in turn among the processors like a deck of cards dealt to card
players.

• Sequence splitting or blocking- The sequence is partitioned by splitting it into non-overlapping contigu-
ous subsections.

• Independent sequences - Each processor has its own independent sequence.
The first and second schemes produce numbers from a single quasirandom sequence. The third scheme needs a
family of quasirandom sequences. Scrambling techniques can generate such a stochastic family of quasirandom
sequences from one original quasirandom sequence. Numerical calculations presented in this paper are done
using blocking. In this way we can exactly repeat the results for comparison.

3.2. Hybrid Algorithms in SALUTE. We have constructed hybrid Monte Carlo algorithms that use
pseudo-random numbers for some dimensions and scrambled quasi-random numbers for the other dimensions.

A schematic description of the algorithm is given below, assuming that we only need to compute the Wigner
function at one point (k1, z1). In the algorithm, ǫ1 is the truncation parameter.

• Input number of trajectories to be used N , relaxation time T , other parameters, describing the initial
condition.

• For i from 1 to N sample a trajectory as follows:
– set time t := T , weight W := 1, k = k1, z := z1
– prepare the next point of the quasirandom sequence to be used (Niederreiter, Halton or Sobol)

(x1, x2, . . . , xn), with n sufficiently big (n = 100 in our case), and set j = 1
– repeat until t > ǫ1:

∗ k is simulated using pseudorandom numbers
∗ t′, t are simulated using consecutive dimensions of the quasirandom sequence, i. e. the points
x2j−1, x2j , by the formula

t2 := tx2j−1, t1 := t2 + x2j(t− t2), t
′ := t1, t = t2

∗ multiply the weight: W :=W ⋆ t(t− t2)
∗ compute the two kernels K1 and K2

∗ select which one to use with probability proportional to their absolute values.
∗ multiply the weight: W :=W ⋆ (|K1|+ |K2|)sgn(Km) if Km is the kernel selected
∗ sample q using a spline approximation of the inverse function
∗ multiply the weight by the appropriate integral: W :=W ⋆ I
∗ modify k, depending on the kernel and the electric field applied: knew = k− c3 ⋆ (t− t2) if K1

was chosen or knew = k − c3 ⋆ (t− t2) if K2 was chosen
∗ modify z : znew = z − c1 ⋆ k ⋆ (t− t2)− c2 ⋆ (t− t2) ⋆ (t+ t2)
∗ compute the contribution of this iteration to the Wigner function: add W ⋆ ψ(z, k) to the
estimator, where ψ(z, k) is the value of the initial condition

∗ increment j := j + 1

The constructive dimensionality of the algorithm is 4n, where n is the maximal length of the trajectory.
We use 2n pseudorandom numbers for each trajectory, and the dimensionality of the Halton sequence is 2n.

4. Grid implementation. A computational grid is a computing environment which enables the unifica-
tion of geographically widely distributed computing resources into one big (super)computer [11]. The individual
computing resources commonly consist mostly of computer clusters or several individual computers, which are
interconnected by a high-speed wide area network. At present, the grid is intended for supporting e-Science,
however the technology itself is very adaptable for a very wide area of future computer use. The grid accumu-
lates and coordinates as much computing power as possible and make it available for use by applications, which
have a particularly high demand for computing resources.

In order to compute the physical quantities (2.1),(2.3) SALUTE application requires considerable computa-
tional power and time to obtain sufficiently accurate results. Hundreds (thousands) of jobs with different input
data have been implemented on grid clusters included in the SEEGRID infrastructure.
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The SEEGRID infrastructure integrates computational and storage resources in South Eastern Europe.
Currently there are more than 40 clusters with a total of more than 3000 CPUs and more than 400 TB of
storage and this infrastructure is a part of European Grid infrastructure named EGEE [25]. The peculiarities of
the region are that the network connectivity of many of these clusters is insufficient, which implies the necessity
to avoid network-hungry applications and emphasize computationally intensive applications, that make efficient
use of the available resources. It also imposes the need of fault-tolerant implementations.

The SEEGRID infrastructure was built using the gLite middleware [26]. Each of the SEEGRID clusters
has the mandatory Grid services:

• Computing Element
• Worker Nodes
• Storage Element
• MON box

The Worker Nodes provide the computational resource of the site, and the Storage Element provides the
storage resources. The set of services, that are not tied to the specific site are called core services. They include

• VOMS (Virtual organisation management system)
• MyProxy
• R-GMA registry/schema server (distributed data-base)
• BDII (provides comprehensive information about the resources)
• WMS (distributes and manages the jobs among the different grid sites)
• FTS (file transfer service)
• AMGA (metadata catalog)

4.1. Grid implementation scheme. The need of performing a large number of tests on the EGEE and
SEEGRID infrastructures allows us to develop a grid implementation scheme in order to facilitate the execution
and monitoring of the submited tasks. In our grid implementation scheme we incorporated the use of the FTS
and AMGA services, available in the gLite, and we were able to include the estimation of several new physical
quantities, which increased the total amount of data to be generated, stored, processed and visualized.

On the User Interface (UI) computer the scientist launches the Graphical User Interface (GUI) of the
application (see Fig. 1). The job submission, monitoring and analysis of the results is controlled from there.

The jobs are monitored from a monitoring thread, started from the GUI, and information about their
progress is displayed to the user. Another thread run from the GUI is responsible for collecting the output
results from the various Storage Elements to the local one. For each output file a request for transfer is sent to
the File Transfer Service (FTS) computer.

The computational tasks are submitted using a messaging broker, that follows the AMQP protocol. The
grid jobs contact the AMQP broker and obtain the tasks from a message queue.

The AMGA (ARDA Metadata Catalog) is used to hold information about the results obtained so far by
the user—for example input parameters, number of jobs executed, execution date etc.

The WMS sends the job to the Grid sites. When the job starts on the WN (Worker Node), it downloads
the executable from the Storage element. The executable obtains the input parameters from the AMQP broker,
performs the computations and stores the results in the local Storage Element. It registers the output. One of
the Worker Nodes is responsible for gradual accumulation of the output of the jobs. At regular intervals the
accumulated results are registered and made available to the user.

The FTS is used in order to limit the number of files that are transferred simultaneously, because of the
limited bandwidth available. In this way we also avoid some scalability limitations of the middleware and we
try not to overload the Storage Elements. This approach is efficient, because in most cases it will not lead
to increase of the total time necessary for completing all transfers, since they compete for the same network
resource. Additional benefit of the FTS is that it provides reliable transfer of the files, by retrying the transfers
if necessary.

5. Numerical Tests and Grid performance analysis. The problems arising when we solve the Wigner
equation using Monte Carlo approach are due to the large statistical error. This error is a product of two factors:
standard deviation and sample size on the power one half. The standard deviation increases exponentially with
time, so in order to achieve reasonable accuracy, we must increase considerably the sample size. This implies
the need of computational resources. Using the grid and above described grid implementation scheme, we were
able to obtain new results about important physical quantities: Wigner function, wave vector, electron density
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Fig. 4.1. Graphical User Interface (GUI) for submission and monitoring of SALUTE jobs, and accumulation and visualization
of their results.

and energy density. The results presented here are for inhomogeneous case with applied electric field for 140
femtoseconds evolution time. Normally, the execution times of the jobs at the different sites are similar, and
the delay in starting is caused by lack of free Worker Nodes. Thus our new scheme allows the user to achieve
the maximum possible throughput.

We have performed experiments with pseudorandom, and scrambled Niederreiter, Sobol and Halton se-
quences. In order to achieve the sufficient accuracy we have implemented 400 jobs (each with 4000000 tra-
jectories) with our Monte Carlo algorithm, and 64 jobs (each with 222 trajectories) with the hybrid algo-
rithm (correspondingly, with scrambled Halton, Niederreiter and Sobol sequences). The mean square errors of

rez
(i)
MCM − rez

(i)
Hybrid, where rez

i means wave vector, electron density energy density and Wigner function has

order ranging from O(10−4) to O(10−5). But to achieve the same results with the hybrid method we
performed 6 times less trajectories.

On the Figures 2, 3 and 4 one can see the quantum effects—there is no symmetry when electric field is
applied. The results obtained with MCM and the three hybrid algorithms are plotted on the same picture for
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Fig. 5.1. Wave vector obtained with MCM and Hybrid1 (with Niederreiter) and Hybrid2 (with Halton) algorithm. The electric
field is 15[kW/cm] along to the nanowire.

Fig. 5.2. The Wigner function at 140fs presented in the plane z × kz. The electric field is 15[kV/cm] along to the nanowire.

each of the estimated quantities. They are not visible on Fig. 2 because the error is very small. The graph
on Fig. 4 is in logarithmic scale and the differences can be seen. The best results are obtained using the
Niederreiter sequence (in our version with the described scrambling algorithm).
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Fig. 5.3. Electron density obtained with MCM and Hybrid1 (Niederreiter) and Hybrid2 (Halton). The electric field is
15[kV/cm] along to the nanowire.

6. Conclusion. The use of scrambled quasi-random sequences allows for faster convergence of the algo-
rithms compared to pure Monte Carlo, providing also aposteriory error estimation and avoiding singularities.
The chosen computational infrastructure - Grid, enabled the achievement of interesting new results through
extensive computations, which would otherwise require considerable amount of time.

Further improvement of the convergence of the algorithms may be obtained by employing improved scram-
bling algorithms of modified quasi-random sequences and this will be an important direction for our future
work.
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